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Abstract: Next to cow’s milk and eggs, plant foods, i.e., legumes, tree nuts and cereal grains, most
often sensitise atopic children. Storage proteins constitutes the most relevant protein fraction of plant
foods, causing primary sensitisation. They exhibit strong allergenic properties and immunogenicity.
Our goal was to analyse sensitisation to 26 plant storage proteins in a group of 76 children aged
0–5 years with chronic symptoms of atopic dermatitis using Allergy Explorer ALEX2 and to discover
changes in serum protein–peptide patterns in allergic patients with the use of MALDI-TOF-MS.
We reported that 25% of children were allergic to 2S albumins, 19.7% to 7S globulins, 13.2% to
11S globulins and 1.3% to cereal prolamins. The most common allergenic molecules were Ara h 1
(18.4%), Ara h 2 (17.1%), Ara h 6 (15.8%) and Ara h 3 (11.8%) from peanuts, and the mean serum sIgE
concentrations in allergic patients were 10.93 kUA/L, 15.353 kUA/L, 15.359 kUA/L and 9.038 kUA/L,
respectively. In children allergic to storage proteins compared to the other patients (both allergic
and non-allergic), the cell cycle control protein 50A, testis-expressed sequence 13B, DENN domain-
containing protein 5A and SKI family transcriptional corepressor 2 were altered. Our results indicate
that the IgE-mediated allergy to storage proteins is a huge problem in a group of young, atopic
children, and show the potential of proteomic analysis in the prediction of primary sensitisation to
plant foods. It is the next crucial step for understanding the molecular consequences of allergy to
storage proteins.

Keywords: allergy; storage proteins; biomarkers; MALDI-TOF; protein–peptide profiling; anaphy-
laxis; inflammation; component-resolved diagnostics; personalized medicine

1. Introduction

Food allergies (FAs) affect over 6% of young children worldwide [1,2]. The strongest
and best established risk factor for the development of FA is atopic dermatitis (AD) [3–5]. It
is reported that 30% of children who develop moderate to severe AD also suffer from FA [6].
The damaged skin barrier of eczema patients is probably a gateway to the absorption
of food allergens, contributing to the development of sensitization [7,8]. According to
literature data, atopic lesions appear before the onset of food sensitization and FAs most
often accompany severe and chronic AD [8].

Next to cow’s milk and eggs, the most common allergens that sensitise atopic children
are plant foods: legumes (e.g., peanuts, beans, lentils, chickpeas), tree nuts (e.g., walnut,
hazelnut, almond), cereal grains (e.g., wheat, rye, rice, corn, oats), other seeds (e.g., sesame,
buckwheat, mustard), vegetables and fruits [9,10]. Food allergens constitute a heterogenic
group; among them there are 2S albumins, non-specific lipid transfer proteins (nsLTPs),
vicilins (7S globulins), legumins (11S globulins), pathogenesis-related protein family 10 and

Int. J. Mol. Sci. 2023, 24, 1804. https://doi.org/10.3390/ijms24021804 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24021804
https://doi.org/10.3390/ijms24021804
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8646-1884
https://orcid.org/0000-0002-2475-1066
https://orcid.org/0000-0002-5765-2603
https://orcid.org/0000-0002-9993-1504
https://doi.org/10.3390/ijms24021804
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24021804?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 1804 2 of 21

oleosins [11]. Allergens have diverse pro-inflammatory properties that may increase their
allergenic activity, but some of them are still not clearly defined [12]. Certainly, the course
and severity of an allergic reaction to individual plant allergens depend on the allergenic
properties of a particular protein, its structure, stability, sensitivity to temperature and
digestive enzymes [13]. The largest group of defence proteins—apart from proteases and
protease inhibitors—are pathogenesis-related proteins (PR), which have enzymatic func-
tions (PR-2: beta-1,3-glucanases), chitinolytic activity (PR 3, PR-4, PR-8, PR-11, chitinases)
or regulate the permeability of cell membranes (defensins and lipid transfer proteins) [14].
However, from a clinical point of view, allergens of plant origin that cause the most serious
systemic reactions occur in grains and belong to the group (not a family) of storage proteins
which participate in the processes of plant germination and growth. Storage proteins are
also found in fruit and vegetable seeds (e.g., Act d 13, kiwi) [15]. These allergens are
extremely thermostable and resistant to digestive enzymes and bile. The stable structure of
storage proteins results from the presence of numerous disulphide bridges [16]. Heating
and other food processing methods have little effect on the allergenic activity of storage
proteins [17]. It has been shown that roasting peanuts increased their allergenicity, i.e., the
IgE binding capacity and stability of the allergens, due to the formation of stable molecular
aggregates [18]. Because of their stability, storage proteins are digested only partially in the
stomach, and therefore, immunologically active allergens can reach the small intestine and
the circulation [17,19,20]. Patients allergic to storage proteins from legumes, nuts or seeds
may thus react with severe systemic symptoms and even life-threatening anaphylaxis [11].
The group of storage proteins includes structural proteins from the cupin superfamily (7S
globulins—vicilins and 11S globulins—legumins) and some proteins from the prolamin
superfamily (2S albumins and cereal prolamins) [21,22]. Storage proteins are most often
the major allergens that are the cause of primary sensitization. At the same time, storage
proteins give unexpected cross-reactions, even in spite of a small homology between them,
and therefore, the knowledge of the mutual relationships of allergens belonging to this
group is the basis for the correct diagnosis of many serious allergies and the assessment of
the risk of anaphylactic reaction [23]. To date, a growing number of allergenic molecules
and their isoforms have been discovered, purified, sequenced and cloned [24]. It allows
studying the immunologic reactivity and the degree of cross-reactivity of these allergen
proteins, which leads to the creation of new diagnostic methods/algorithms for clinicians.

The aims of this study were as follows:

(1) To analyse sensitisation to plant storage proteins in a group of children aged 0–5 years
with chronic symptoms of atopic dermatitis.

(2) To discover changes in serum protein–peptide patterns in atopic children allergic to
plant storage proteins.

We evaluated the detailed profile of sensitisation to 26 plant storage proteins in a
Polish population of young children aged 0–5 years with chronic symptoms of atopic
dermatitis. Molecular ALEX2 Allergy Explorer (MacroArray Diagnostics, Wien, Austria)
was applied. Next, we investigated the influence of IgE-mediated allergy to plant storage
proteins on the patients’ proteomic profile using the MALDI-TOF (matrix-assisted laser
desorption/ionization time of flight) mass spectrometer. To our knowledge, there has
been no research focusing on the proteomic profiling in children allergic to plant storage
proteins. We would like to emphasize the essence of the problem of primary allergy to plant
foods (legumes, tree nuts, cereal grains, other seeds, fruits) in a group of young, atopic
children. We also would like to discover changes in protein expression in these patients
and to point out proteins and peptides involved in allergic inflammation. The results
may contribute to a better understanding of the mechanism and molecular consequences
of primary allergy to storage proteins. A compilation of proteomic data can explain the
molecular pathogenesis of storage protein allergy and provide the basis for better diagnosis
and appropriate personalized treatment.
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2. Results
2.1. Allergy to Plant Storage Proteins—Sensitisation Patterns in Atopic Children

Using the ALEX2 test, we measured the serum concentration of IgE specific to 26 plant
storage proteins: Ara h 1, Cor a 11, Jug r 6, Jug r 2, Pis v 3, Gly m 5, Ara h 3, Cor a 9, Jug r 4,
Gly m 6, Ana o 2, Pis v 2, Ara h 2, Ara h 6, Cor a 14, Ses i 1, Sin a 1, Jug r 1, Ana o 3, Mac i,
Ber e 1, Pis v 1, Pap s, Fag e 2, Gly m 8 and Tri a 19. Among all studied proteins, 6 belonged
to the family of vicilins (7S globulins), 6 to legumins (11S globulins), 13 to 2S albumins and
1 allergen to the family of cereal prolamins.

In a group of 76 atopic children aged 0 to 5 years, we detected a higher concentration
of sIgE (<0.30 kUA/L) against plant storage proteins in the serum of 22 individuals. All
of these patients were sensitised to at least one storage protein and exhibited the full
symptoms of primary allergy to plant foods. Moreover, 25% of atopic children were allergic
to 2S albumin, 19.7% to 7S globulins, 13.2% to 11S globulins and 1.3% to the family of cereal
prolamins (Figure 1). The complete results are presented in Table 1.
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Figure 1. Prevalence of sensitisation to 2S albumins, 7S globulins, 11S globulins and cereal prolamins
in atopic children aged 0–5 years.

The most common allergens from the family of vicilin, legumin and 2S albumin in the
population of children aged 0–5 years with chronic symptoms of atopic dermatitis were
peanuts: Ara h 1 (18.4%), Ara h 2 (17.1%), Ara h 6 (15.8%) and Ara h 3 (11.8%) (Figure 2).
In the allergy group, the highest mean concentration of IgE was detected for Ara h 6
(15.359 kUA/L) and Ara h 2 (15.353 kUA/L) (Figure 3).



Int. J. Mol. Sci. 2023, 24, 1804 4 of 21

Table 1. Results of Allergy Explorer ALEX2.

Superfamily Family Allergen Allergen
Source

Concentration (kUA/L)

Population Allergy Group

Mean SD Median Mean SD Median

Cupins

Vicilins/
7S

globulins

nAra h 1 Peanut 2.104 7.669 0.1 10.93 14.959 3.165
nCor a 11 Hazelnut 0.210 0.413 0.1 1.592 0.727 1.6
nJug r 6 Walnut 0.146 0.189 0.1 0.838 0.399 0.705
nJug r 2 Walnut 0.187 0.474 0.1 2.223 1.169 2.43
nPis v 3 Pistachio 0.106 0.039 0.1 0.44 0.0 0.44
rGly m 5 Soy - - - - - -

Legumins/
11S

globulins

nAra h 3 Peanut 1.160 4.820 0.1 9.038 11.216 3.59
nCor a 9 Hazelnut 0.342 1.113 0.1 3.157 2.662 2.695
nJug r 4 Walnut 0.206 0.516 0.1 1.662 1.332 1.47
rGly m 6 Soy 0.391 1.652 0.1 5.623 4.792 4.455
rAna o 2 Cashew nut - - - - - -
nPis v 2 Pistachio - - - - - -

Prolamins
2S

albumins

nAra h 2 Peanut 2.553 8.335 0.1 14.434 15.359 9.81
nAra h 6 Peanut 2.376 8.052 0.1 14.513 15.353 7.975
nCor a 14 Hazelnut 0.315 0.926 0.1 2.767 2.081 2.21
nSes i 1 Sesame 0.202 0.443 0.1 1.56 0.997 1.19
nSin a 1 Mustard 0.298 1.193 0.1 5.047 3.549 3.65
nJug r 1 Walnut 0.425 2.514 0.1 8.287 9.787 2.38
rAna o 3 Cashew nut 0.141 0.283 0.1 1.127 1.011 0.53
nMac i Macadamia 0.149 0.395 0.1 1.94 1.62 1.94

nBer e 1 Brazil nut 0.107 0.062 0.1 0.64 0.0 0.64
rPis v 1 Pistachio 0.121 0.179 0.1 1.67 0.0 1.67
nPap s Poppy seeds 0.107 0.062 0.1 0.64 0.0 0.64

nFag e 2 Buckwheat - - - - - -
rGly m 8 Soy - - - - - -

Cereal
prolamins

rTri a 19
(gliadin) Wheat 0.113 0.037 0.1 0.3 0.0 0.3
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2.2. Proteomic Features Characterization of Allergy to Plant Storage Proteins
2.2.1. Protein–Peptide Profiling

Seventy-six serum samples from atopic children allergic to plant storage proteins
(n = 22) and controls (n = 54) were pre-treated with ZipTips and analysed in triplicate by
MALDI-TOF MS. The average MALDI-TOF MS spectra of the study groups are shown
in Figure 4. Three mathematical algorithms were used to analyse the obtained data:
genetic algorithm (GA), supervised neural network (SNN) and quick classifier (QC). All
these algorithms differ in methodology; hence, the peaks defined as discriminating for
each of them are different (Table 2). However, peaks (m/z 3689.35 and 4964.58) were
present in both the genetic algorithm and the quick classifier, while another peak (m/z
1795.39) was common to the quick classifier and the supervised neural network. The
recognition capability and cross-validation were calculated for all algorithms (Table 3). The
highest value of average cross-validation (94.91%) and the recognition capability (99.25%)
from three replicates was obtained using the genetic algorithm. An assessment of the
discrimination ability of each peak was obtained by calculating the receiver operating
characteristic (ROC) curve and the area under the ROC curve (AUC). In the mass range of
m/z 1000–10,000, the highest AUC value (0.68) was calculated for a peptide of m/z 2144.89,
classified as discriminative by the quick classifier algorithm.
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Figure 4. Average MALDI-TOF MS spectra of serum samples characteristic of study groups. Spectra
of patients allergic to plant storage proteins (red) and controls (green) are presented over the full scan
range of m/z 1000–10,000.

Table 2. Peaks (m/z) discriminating study groups calculated by genetic algorithm (GA), supervised
neural network (SNN) and quick classifier (QC).

GA QC SNN

1077.88
1219.27
1419.92
1897.85
2661.39
3159.56
3198.01
3689.35
4287.68
4396.62
4645.8
4964.58
7922.04
8126.66
8866.89

1277.39
1773.08
1795.39
1945.54
2012.59
2016.56
2144.89
2269.28
2474.89
2601.66
2726.71
3689.35
4964.58
5004.83
5017.61
5044.33
6065.66
8866.89

1450.43
1795.39
4151.16
5352.47
5905.01
6221.79
8601.73
9135.64
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Table 3. Chemometric parameters for genetic algorithm (GA), quick classifier (QC) and supervised
neural network (SNN).

GA QC SNN

Cross-validation (%) 94.91 67.56 62.29
Recognition capability (%) 99.25 68.61 56.66
Correct classified (%):

X Allergy 42.7 54.5 0

X Control 94.4 81.5 96.3

2.2.2. Identification of the Discriminatory Features

To identify the peaks which statistically had the highest diagnostic efficacy, serum
samples were pre-treated with ZipTips and examined by nanoLC-MALDI-TOF/TOF-
MS/MS tandem mass spectrometry. We identified five proteins, i.e., cell cycle control
protein 50A, testis-expressed sequence 13B, DENN domain-containing protein 5A, SKI
family transcriptional corepressor 2 and sperm-associated antigen 6, using the SwissProt
database and Mascot search engine. However, according to the statistics (the Wilcoxon;
p-value ≤ 0.05), the four detected features fully differentiate patients with storage protein
allergy from the control group (Table 4).

Table 4. Identified proteins differentiating the study groups.

Precursor Ion m/z p-Value UniProtKB-ID Peptide Sequence Protein Name

1077.88 0.0158 CC50A_HUMAN R.NSSNTADITI.- Cell cycle control protein 50A

1419.92 0.0139 TX13B_HUMAN K.EACTWGSLALGVR.F Testis-expressed sequence 13B

2012.59 0.00467 DEN5A_HUMAN K.LNTGQIQESIGEAVNGIVK.H DENN domain-containing protein
5A

2601.66 0.00194 SKOR2_HUMAN K.AGGGSYHHSSAFRPVGGKDDAESLAK.L SKI family transcriptional
corepressor 2

2661.39 0.532 SPAG6_HUMAN R.LPGIMMLGYVAAHSENLAMAVIISK.G Sperm-associated antigen 6

Fragmentation of signal m/z 1077.88 allowed us to identify the peptide sequence
R.NSSNTADITI.- with a high score in the Mascot database assigned to cell cycle control
protein 50A (CC50A_HUMAN). Testis-expressed sequence 13B (TX13B_HUMAN) and
DENN domain-containing protein 5A (DEN5A_HUMAN) were other identified proteins
corresponding to peaks of m/z 1419.92 and 2012.59, respectively, with the peptide sequences
K.EACTWGSLALGVR.F and K.LNTGQIQESIGEAVNGIVK.H. The MS/MS analysis of
precursor ion m/z 2601.66 resulted in the identification of SKI family transcriptional core-
pressor 2 based on the peptide sequence K.AGGGSYHHSSAFRPVGGKDDAESLAK.L with
a significant hit in the Mascot search. The spectra were analysed in the reflector mode in
the mass range of 700–3500 Da. For this reason, discriminative peaks with mass of m/z
3689.35, 4151.16, 4287.68, 4396.62, 4645.8, 4964.58, 5004.83, 5017.61, 5044.33, 5352.47, 5905.01,
6065.66, 6221.79, 7922.04, 8126.66, 8601.73, 8866.89 and 9135.64 were not identified. The
identification of peaks m/z 1219.27, 1277.39, 1450.43, 1773.08, 1795.39, 1897.85, 1945.54,
2144.89, 2269.28, 2474.89, 2726.71, 3159.56 and 3198.01 also requires further analysis.

3. Discussion
3.1. Allergy to Plant Storage Proteins-Sensitisation Pattern in Atopic Children

2S albumins, 7S globulins, 11S globulins and cereal prolamins belong to the group
of storage proteins. They are the most clinically significant plant proteins, responsible for
primary allergies to legumes, nuts and seeds, often causing severe reactions. In a large
multicentre study including both children and adults, IgE specific to storage proteins was
found only in patients who developed allergy before the age of 14 [25]. We examined the
sensitisation to 26 plant storage proteins in a Polish population of atopic children aged



Int. J. Mol. Sci. 2023, 24, 1804 8 of 21

0–5 years using Allergy Explorer ALEX2. Macroarray nanotechnology-based immunoassay
ALEX2 is commercialized as quantitative in nature, and its specificity is improved by
inhibiting the reactivity of cross-reactive carbohydrate determinants (CCD) [26]. Studies
show a substantial agreement between the multiplex macroarray ALEX2 and the singleplex
test ImmunoCAP [26]. According to our results, 25% of children with chronic symptoms of
atopic dermatitis were allergic to 2S albumins, 19.7% to 7S globulins, 13.2% to 11S globulins
and 1.3% to the family of cereal prolamins.

2S albumins belong to the prolamin superfamily. They are characterized by a high
content of proline and glutamine amino acids, and their structure is rich in alpha helices and
disulphide bridges connecting them, which ensures extraordinary durability in relation
to temperature and digestive enzymes. 2S albumins are mainly found in grains, and
their main role is to provide nitrogen and sulphur during the germination of the plant.
They are class I food allergens—primarily sensitising, and due to their stable structure,
2S albumins can cause systemic reactions. 2S albumin allergens cause the most severe
and common anaphylactic reactions of all allergens [27]. According to the literature, the
frequency of sensitization to 2S albumin allergens among Polish atopic children aged
0–18 years is high and amounts to 38%. 2S albumins were the cause of anaphylaxis in
32% of the 237 anaphylactic children [23]. This is consistent with our results. In the group
of 76 children aged 0–5 years with chronic symptoms of atopic dermatitis, allergy to 2S
albumin was the most common and amounted to 25%. In the 2S albumin family, Polish
children are most often allergic to the allergens Ara h 2 (59%) and Ara h 6 (50%) of peanut
and Ses i 2 of sesame (51%) [23]. Specific IgE against Ara h 2 and Ara h 6 was present in
76–96% of children suffering from peanut allergy in the USA and Central and Northern
Europe [28]. The most clinically significant allergen among the 2S albumins is Ara h 2, one
of the major peanut allergens [24,29]. In peanut allergy, approximately 90% of patients
sensitised to Ara h 2 suffer from a severe peanut allergy, while only 70% of patients with
IgE to peanut extract are truly allergic [11,30]. IgE to Ara h 2 ≥ 5 kU/L can classify Dutch
children as peanut allergic, while the absence of IgE to Ara h 2 can be used to rule out
class I peanut allergy [31]. In our study group, over 17% of individuals were sensitised to
Ara h 2 and they were truly allergic to peanut. Cross-reactions are possible both within 2S
albumin (Ana o 3 cashew and Pis v 1 pistachio; Act d 13 kiwi and Ara h 2 peanut; Jug r 1
walnut and Car i 1 pecan) and, less frequently, within the entire group of storage proteins
(Ara h 2 from Ara h 1 and Ara h 3 of peanut) [32–34]. Clinical cross-reactions between
the 2S albumin Ara h 2 and Cor a 14 of hazelnut and between Ara h 2 and Ana o 3 of
cashew are rare [35]. Sensitization to 2S cashew albumin (Ana o 3) increases the risk of a
severe anaphylactic reaction 15-fold. The endotype most at risk of severe anaphylaxis is
monovalent sensitisation to Ana o 3, without sensitisation to other components of food
allergens [27]. In three participants in the study group, we detected allergy to Ana o 3. One
patient experienced anaphylactic shock, but it was not a monovalent sensitization to the
cashew allergen Ana o 3. In a German multicentre study, all cashew-allergic children were
sensitised to Ana o 3 [36]. No patient without Ana o 3-sensitization was allergic. In receiver
operation curves, Ana o 3 discriminated between allergic and tolerant children with an
area under the curve of 0.94 [36]. IgE to cashew nut Ana o 3 is highly predictive for cashew
nut allergy and discriminated between allergic and tolerant children better than cashew
nut extract-specific IgE [11,34].

7S globulins (vicilins) are trimers with a molecular weight of 150–190 kDa composed
of three homogeneous polypeptide chains. These proteins fold to create stable pairs of
barrel-like structures formed from β-sheets. They are resistant to temperature and digestion,
and they can cause an anaphylactic reaction. According to literature data, the frequency
of sensitisation to 7S globulin allergens among Polish atopic children aged 0–18 is high—
34% [23]. In our group of children aged 0–5 years, the incidence of sensitisation to 7S
globulin was 19.7%. The most clinically significant allergen among the 7S globulins is Ara
h 1 of peanut. In allergic patients, the concentration of IgE specific to Ara h 1 was high and
amounted to 14.96 kUA/L. In the Polish population, sensitisation to the walnut allergen Jug
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r 2 is quite common. However, isolated sensitisation to nJug r 2 (natural purified allergen) in
many cases is due to the presence of antibodies against carbohydrate determinants (CCD),
because this allergen is glycosylated [37]. We did not report monovalent sensitisation to
nJug r 2. Population-based studies concerning nut allergy prevalence for Central Europe
in adults showed very few sensitisations (between 0 and 0.4%) for walnut Jug r 2 [10].
7S globulins are important allergens in infants and preschool children (especially Ara h
1 sensitisation), but systemic reactions are rare. In our study, 18.4% of participants were
allergic to Ara h 1, of which only one case was a monovalent sensitisation to 7S globulins.
This patient had no systemic reaction after peanut exposure. Cross-reactions with other
storage proteins are rare and occur mainly within the 7S globulins, e.g., Pis v 3 (pistachio)
and Ana o 1 (cashew), and Jug r 2 (walnut) and Car i 2 (pecan) [34,38,39]. On the other hand,
despite the lack of structural similarity, cross-reactions between the peanut storage proteins
Ara h 1, Ara h 2 and Ara h 3 are observed [28,29,40]. Thus, in our study, as many as 9 out
of 17 patients allergic to peanut had an increased concentration of IgE antibodies specific
to Ara h 1, Ara h 2 and Ara h 3. It was shown that the cross-reactive IgE antibodies bind
to unstructured loops, which are exposed at the allergen’s surface and whose sequences
exhibit similarities between these unrelated proteins [40,41]. This observation also explains
why the majority of peanut allergic individuals showed sensitization to all three major
allergens (Table 5).

11S globulins (legumins) are hexamers composed of three double polypeptide chains
connected by disulphide bridges. They belong to storage proteins, so they are thermostable
and resistant to heat and can cause an anaphylactic reaction. The frequency of sensitisation
to 11S globulin allergens among Polish atopic children aged 0–18 is 25%. In children aged
0–5 with chronic symptoms of atopic dermatitis, we obtained 13.2%. The most clinically
significant allergen among 11S globulins in Poland is the main hazelnut protein Cor a
9 [23]. Sensitisation to Cor a 9 increases the risk of severe anaphylactic reaction by more
than 6-fold [27,42]. In our group, three of six patients allergic to Cor a 9 had a systemic
reaction in the form of dyspnoea and angioedema. The parents of the patients were able to
relate the allergic reaction to the consumption of products containing hazelnuts. According
to population-based study conducted by Burney et al., the highest sensitisation rate was
shown against Cor a 9 in Sofia, with 3%, and the lowest was 0% in Utrecht [10]. Cross-
reactions among 11S globulins occur rarely, but much more often than in the case of other
storage proteins, i.e., 2S albumins or 7S globulins [43,44]. The best-known cross-reactions
are Sin a 2 (mustard) and Ara h 3 (peanut); Act d 12 (kiwi seeds) and Ara h 3; Fag e 1
(buckwheat) and Ses i 6 (sesame); Pap s 11S (poppy seed) and Cor a 9 (hazelnut); Ana o 2
(cashew nut) and Pis v 5 (pistachio); and Jug r 4 (walnut) and Car i 4 (pecan) [44,45]. Linear
IgE epitopes of Ara h 3, Cor a 9, Jug r 4 and Ana o 2 were observed to be exposed to the
surface and to exhibit similar conformations [46].

The biomarker for cereal prolamins is Tria 19 (gliadin), the main wheat allergen, which
has mostly linear epitopes resistant to temperature and digestion [47]. Tria 19 is often
responsible for food-dependent exercise-induced anaphylaxis (FDEIA). According to the
literature, the frequency of sensitisation to cereal prolamin allergens among Polish atopic
children is low and amounts to 3.4%. However, the clinical significance of cereal prolamins
is extremely important because they cause severe systemic reactions, also in infants [11,23].
In our study group, the child allergic to Tria 19 was 14 months old.

IgE specific to seed storage proteins generally has a high predictive value in diagnosing
food allergies. The measurement of IgE specific to seed storage proteins is a useful tool in
the diagnostic process of peanut, tree nut and seed allergy and it has a higher diagnostic
value than measurement of IgE to whole allergen extracts [11]. However, the problem is
that not all relevant allergenic seed storage proteins are available for routine diagnosis.
Moreover, the clinical relevance of IgE co-sensitisation and the effects of cross-reactivity are
largely unknown and still need to be investigated. The obtained results indicated that the
IgE-mediated allergy to storage proteins is a huge problem in a group of atopic children
aged 0–5 years. Despite the small number of participants, our results are in line with the
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literature data. The analysis of the sensitisation profile introduces the study of changes in
protein–peptide patterns in our patients.

Table 5. Comparison of major peanut allergen Ara h 1, Ara 2 and Ara h 3 belonging to different
protein families (https://www.uniprot.org/ (accessed on 23 December 2022)).

Allergen Characteristics Ara h 1 Ara h 2 Ara h 3

Source peanut peanut peanut

Protein family 7S globulins 2S albumins 11S globulins

% allergy suffers in the study
group 18.4% 17.1% 11.8%

Biological function seed storage protein seed storage protein seed storage protein

Molecular structure

2 β-barrels surrounded by
α-helical and unstructured

loops
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3.2. Proteomic Features Characterization of Allergy to Plant Storage Proteins

In Europe and in North America, most primary allergies to nuts, legumes and seeds
involving systemic, severe reactions are caused by storage proteins. We discussed earlier
that storage proteins exhibit strong allergenic properties and immunogenicity. In this
study, apart from the analysis of sensitisation profiles, we aimed to discover changes

https://www.uniprot.org/
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in serum protein–peptide patterns in atopic children allergic to plant storage proteins.
As we previously reported, analysis of serum protein–peptide patterns derived from
allergic patients revealed changes in expressed proteins involving fibrinogen alpha chain,
coagulation factor XIII chain A, complement C4-A and inter-alpha-trypsin inhibitor heavy
chain H4 [48]. On the other hand, Pavel et al. demonstrated changes in the skin proteome
of patients suffer from atopic dermatitis [49]. They showed significant upregulation in
inflammatory markers, i.e., matrix metalloproteinase 12, Th1/C-X-C motif chemokine
10, Th17/Th22/PI3, CCL20 and S100A12, and in cardiovascular-associated proteins, i.e.,
matrix metalloproteinases, E-selectin, platelet growth factor, fatty acid binding protein
4, myeloperoxidase and vascular endothelial growth factor A. In atopic children who
suffer from primary allergy to plant foods compared to the other patients (allergic and
non-allergic), the cell cycle control protein 50A, testis-expressed sequence 13B, DENN
domain-containing protein 5A and SKI family transcriptional corepressor 2 were altered.

In the present study, we identified cell cycle control protein 50A (CDC50A) as a feature
differentiating patients allergic to plant storage proteins and the control group. Fragment
of this protein was identified for the peak of m/z 1077.88 classified as discriminative in
genetic algorithm. CDC50A (alternative names: P4-ATPase flippase complex beta subunit
TMEM30A, transmembrane protein 30A) belongs to the CDC50 family of membrane
proteins, which contain two transmembrane segments with short N- and C-cytoplasmic
regions and a large extracellular loop [50,51]. It is a β-subunit of the fippase complex.
CDC50 combined with P4-ATPase catalyses the hydrolysis of ATP coupled to the transport
of aminophospholipids from the outer to the inner leaflet of various membranes and
ensures the maintenance of asymmetric distribution of phospholipids [52]. The biological
function of cell cycle control protein 50A is largely unexplored. It has been reported that
CDC50A may be associated with the process of angiogenesis [53] and may also play an
important role in cell migration. According to literature data, overexpression of CDC50A
induced extensive cell spreading and markedly increased cell migration [54]. CDC50A has
also been reported to play a critical role in the survival of hematopoietic stem cells [55].
CDC50A has previously been detected in immune cells; however, we discovered for the
first time that CDC50A may be altered in a severe allergic reaction related to plant storage
proteins.

DENN domain-containing protein 5A (DENND5A), another protein identified in this
study, acts as a RAB-activating guanine nucleotide exchange factor (GEF) [56]. The main
function of DENND5A is to catalyse the conversion of GDP to GTP. It changes inactive
GDP-bound Rab proteins to their active GTP-bound form. DENN domain-containing
protein 5A is recruited by RAB6/RAB39 onto the Golgi apparatus [57]. There are reports
that mutations in the gene encoding the DENND5A protein are associated with early
childhood epileptic encephalopathy [58]. To date, DENN domain-containing protein 5A
has been detected in all immune cell lineage (Figure 5). Based on the Human Protein Atlas
(HPA) dataset, DENND5A transcript expression in neutrophils, monocytes, eosinophils,
basophils and naive CD4 T-cells were higher than in total peripheral blood mononuclear
cells.

Precursor ion m/z 1419.92 has been identified as part of SKI family transcriptional
corepressor 2 (SKOR2). SKOR2 is a protein of approximately 30 kDa and 297 amino acids,
characterized by a SKI homologue domain and a SAND domain [59]. It is expressed both
inside and outside of the nucleus [60]. SKOR2 exhibits transcriptional repressor activity.
This protein inhibits transforming growth factor β (TGF-β), which regulates cell growth [59].
SKOR2 is mainly expressed in the cerebellum, spinal cord and testis. According to the
literature data, in the physiological state, SKOR2 is present in cells at low levels, but
overexpression of this protein is characteristic of tumour cells [61].

In this study, testis-expressed sequence 13B (TX13B) was the last identified feature dif-
ferentiating the studied groups. TX13B is about 35 kDa and 312 amino acids in length. The
molecular properties and biological function of this protein have not yet been determined.
There are two conserved sequence motifs: FIN and LAL [62,63]. TX13B interacts with two
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proteins, hippocalcin-like protein 4 and visinin-like protein 1, which are involved in the
calcium-dependent regulation of rhodopsin phosphorylation [64].
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These results confirm that primary plant allergy triggers biochemical processes, as
exemplified by measurable modifications in the expressed proteome (Figure 6). All of the
identified proteins may be associated with the inflammatory response in a course of allergy
to storage proteins. However, many functions of the mentioned proteins are still unknown.
This is only the first study aimed to discover and identify peptides with discriminatory
power between patients allergic to storage proteins and other allergy suffers and healthy
individuals. It is a crucial step for understanding the mechanism of pathological processes
and the molecular consequences of allergy to storage proteins. Peaks of m/z 1219.27, 1277.39,
1450.43, 1773.08, 1795.39, 1897.85, 1945.54, 2144.89, 2269.28, 2474.89, 2726.71, 3159.56 and
3198.01 have remained unidentified and require further study. The possible reason is the
presence of adjacent peaks or reduced fragmentation of the peptide [28]. Intact peptides
detected in linear mode and statistically classified as discriminating between study groups
must be identified in their undigested form.

Nowadays, the greatest potential for component-resolved diagnostics lies in distin-
guishing primary food allergies from pollen-associated food allergies, especially in case of
legumes, tree nuts, cereal grains vegetables and fruits [11]. So far, the clinical significance of
serological cross-reactivity between different seeds, legumes and nuts has not been deduced
with certainty, even on the basis of molecular allergy diagnostics [30]. New diagnostic
tools may be offered by proteomics, which is one of the most promising strategies for
searching for potential biomarkers and assessing differences between people with different
health statuses [65]. The results of this study indicate the potential of proteomic analysis
in the prediction of primary allergy to plant foods. Visible changes in the proteome may
contribute to the early diagnosis of allergy, the assessment of the severity of an allergic
reaction, the prediction of anaphylaxis and, most importantly, they can act as markers for
primary genuine IgE sensitisation.

https://www.proteinatlas.org/
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(CDC50A); DENND5A-DENN domain-containing protein 5A.

4. Materials and Methods
4.1. Study Group and Sample Collection

The study was approved by the Bioethical Commission of Poznan University of
Medical Sciences. The parents of participants signed informed consent. They were given
an explanation of the main objectives and possible benefits of the study.

A total of 76 children aged 0 to 5 years with chronic symptoms of AD (L20) participated
in the study. Some patients developed acute symptoms, i.e., urticaria (L50), angioedema
(T78.3) and/or anaphylaxis (T78.0) following food exposure. The parents of the patients
carefully completed the questionnaire, and then all participants underwent a detailed
medical examination. The demographic profiles of participants are shown in Table 6.

Venous blood samples obtained from study participants were incubated and cen-
trifuged. Collected sera were stored in −80 ◦C until analysis.
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Table 6. Characteristics of the subjects.

Characteristics of the Participants

No. of subjects 76
Sex

Male 44 (57.9%)
Female 32 (42.1%)

Age (months)
Median 19
Mean 23, 24
Range 2–60

Eczema (for the past 6 weeks or more) 76
Patient age on the onset of eczema (months)

Median 3
Mean 5, 12
Range 1–36

Atopic dermatitis (L20) 76
Association with foods:

Milk 51
Egg 16
Egg white 2
Egg yolk 1
Cocoa 8
Chocolate 2
Oatmeal 1
Flour 1
Wheat 5
Gluten 4
Rye bread 1
Ketchup 1
Sweets 1
Nuts 15
Coconut 2
Fruits 15
Banana 2
Strawberry 5
Apple 3
Peach 1
Citrus 3
Juice 2
Carrot 2
Tomato 1
Potato 1
Soy 1
Chickpeas 1
Silage 1

Allergic Urticaria (L50) 10
Angioedema (T78.3) 5
The causative food:

Hazelnut 1
Milk 2
Egg 3
Egg white 1
Peanut 2
White fish 1
Raisins 1
Gluten 1
Cauliflower 1
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Table 6. Cont.

Characteristics of the Participants

Anaphylactic shock (T78.0) 5
Symptoms of a generalized reaction:

Dyspnoea 5
Vascular oedema 2
Hives 1

Adrenaline 0
The causative food:

Hazelnut 1
Milk 1
Peanut 1
Egg 1
Fish (cod) 1

Chronic symptoms of the digestive system:
Colic 6
Abdominal pain 5
Abdominal gas 3
Vomiting, Downpouring 3
Diarrhoea 6
Constipation 3
Mucus in the stool 2
Blood in the stool 0

Chronic diseases:
Early childhood asthma 8
Recurrent bronchitis 0
Allergic rhinitis 20
Recurrent upper respiratory tract infections 1
Neurogenic bladder 1

4.2. Measurement of sIgE Serum Levels

We examined sensitisation to 26 plant storage proteins in the Polish population of
children aged 0–5 years with chronic symptoms of AD using Allergy Explorer ALEX2 test
(MacroArray Diagnostics, Wien, Austria). We investigated the concentration of IgE specific
to Ara h 1, Cor a 11, Jug r 6, Jug r 2, Pis v 3, Gly m 5, Ara h 3, Cor a 9, Jug r 4, Gly m 6, Ana
o 2, Pis v 2, Ara h 2, Ara h 6, Cor a 14, Ses i 1, Sin a 1, Jug r 1, Ana o 3, Mac i, Ber e 1, Pis v 1,
Pap s, Fag e 2, Gly m 8 and Tri a 19.

Allergy Explorer2 (ALEX2) is an in vitro quantitative diagnostic test for the determi-
nation of allergen-specific IgE (sIgE). Allergen extracts or molecular allergens, which are
conjugated with nanoparticles, are deposited systematically on the solid phase, forming
a macroscopic array. First, the cartridge chip is incubated with 0.5 mL of a 1:5 dilution
of serum with agitation. During this step, immobilized allergens react with specific IgE
present in the patient’s sample. The serum diluent contains a CCD inhibitor, which guaran-
tees 85% CCD inhibition. After incubation for two hours, non-specific IgE is washed away.
Anti-human IgE labelled with alkaline phosphatase is then added and incubated for 30 min.
After a second washing step, substrate is added. Finally, after eight minutes the reaction is
stopped by adding a blocking reagent. The membranes are dried, and the intensity of the
colour reaction for each allergen spot is measured. The results were analysed using MADx’s
Raptor Analysis Software and reported in IgE response units (kUA/L). We considered the
concentration ≥0.35 kUA/L to be positive [26].

Based on the results of the Allergy Explorer ALEX 2 test, medical history and oral
food challenge tests (OFC), the participants were divided into target groups. The study
group contained 22 young children suffering from AD and diagnosed with IgE-mediated
allergy to at least one plant storage protein belonging to the family of viscilins, legumins,
2S albumins or cereal prolamins. All patients sensitised to storage proteins exhibited the
full symptoms of primary allergy to plant foods. The control group consisted of 54 atopic
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patients without IgE-mediated allergy to storage proteins (27 patients without IgE-mediated
food and without inhalant allergy; 13 patients with only inhalant allergy; 6 patients with
only IgE-mediated food allergy other than plant storage proteins; 8 patients with both
inhalation and IgE-mediated food allergy other than plant storage proteins). The sera of all
patients were subjected to MALDI-TOF examination to characterize the proteomic profile
of patients suffering from allergy to proteins contained in plant foods.

4.3. Pre-Treatment of the Serum Samples

In order to desalt and concentrate the samples, prior to the MALDI-TOF MS (matrix-
assisted laser desorption/ionization time of flight mass spectrometry) analysis, the solid
phase extraction method based on ZipTip C18 pipette tips was used in accordance with
the manufacturer’s instructions (Millipore, Bedford, MA, USA). First, serum samples were
diluted in 0.1% trifluoroacetic acid (TFA) in water (1:5 ratio). The tips were conditioned
with acetonitrile (ACN) and 0.1% TFA. The prepared samples were then loaded onto the
ZipTip pipette tips. After washing in 0.1% TFA, the bound peptides were eluted with 4 µL
of 50% ACN in 0.1% TFA.

4.4. MALDI-TOF-MS Protein and Peptide Profiling

After ZipTip purification and pre-concentration of samples, MALDI-TOF MS analysis
was performed as previously described [66]. Briefly, 1 µL of each eluent sample was
mixed with 10 µL of 0.3 g/L a-cyano-4-hydroxycinnamic acid (HCCA) matrix solution
in ethanol:acetone (2:1 ratio, v/v) and then the mixture was spotted onto AnchorChip
Standard 800 µm (Bruker Daltonics, Bremen, Germany) target plate in triplicate and allowed
to crystallize at room temperature. A MALDI-TOF/TOF UltrafleXtreme (Bruker Daltonics,
Bremen, Germany) mass spectrometer was used to perform MS analyses in the linear
positive mode. The spectra were acquired from an average of 2000 laser shots per sample in
the m/z range of 1000–10,000. The MS spectra were externally calibrated with the mixture
of Protein Calibration Standard I and Peptide Calibration Standard (BrukerDaltonics,
Bremen, Germany) (5:1, v/v). The average mass deviation from reference masses was
less than 100 ppm. The MS parameters for the analysis were as follows: ion source 1,
25.09 kV; ion source 2, 23.80 kV; matrix suppression mass cut-off m/z, 700 Da; pulsed
ion extraction, 260 ns; lens, 6.40 kV. FlexControl 3.4 software (Bruker Daltonics, Bremen,
Germany) was applied for the acquisition and processing of MS spectra. Inter-day and intra-
day reproducibility of the applied protocol were assessed previously [67]. The samples
were analysed in a random order.

4.5. NanoLC-MALDI-TOF/TOF MS Identification of Discriminative Peaks

Identification of the discriminative peptides between the studied groups was per-
former using a nano-liquid chromatography–matrix-assisted laser desorption/ionisation–
time-of-flight/time-of-flight mass spectrometry (nanoLC-MALDI-TOF/TOF MS) system.
The sample was prepared with the ZipTip technique. The obtained eluent was further
subjected to nanoLC separation. The nanoLC set consisting of the EASY-nLC II nanoflow
HPLC system (Bruker Daltonics, Bremen, Germany) and the Proteineer-fc II fraction collec-
tion device (Bruker Daltonics, Bremen, Germany) was controlled with HyStar 3.2 software
(Bruker Daltonics, Bremen, Germany). The nanoLC system parts were the NS-MP-10
BioSphere C18 trap column for protein and peptide concentration (20 mm length, 100 µm
inner diameter, pore size 120 Å, particle size 5 µm) (NanoSeparations, Nieuwkoop, The
Netherlands) and the Thermo Scientific Acclaim PepMap 100 column (150 mm length,
75 µm inner diameter, pore size 100 Å, particle size 3 µm) (Thermo Scientific, Sunnyvale,
CA, USA) for separation. The flow rate for the separation was 300 nL/min, and the linear
gradient was 2–50% of ACN for 96 min (mobile phase A: 0.1% TFA in water, mobile phase
B: 0.1% TFA in ACN). Then, 22 min before the start of the gradient, 80 µL of each of the
384 nanoLC fractions was mixed with 420 µL of HCCA matrix solution (36 µL of saturated
HCCA solution in 0.1% TFA and acetonitrile (ratio 90:10, v/v), 748 µL of acetonitrile and
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0.1% TFA (95:5 ratio, v/v) mixture, 8 µL of 10% TFA and 8 µL of 100 mM ammonium
phosphate) and automatically spotted onto the AnchorChip Standard 800 µm target plate
(Bruker Daltonics, Bremen, Germany). The MALDI-TOF/TOF instrument (UltrafleXtreme,
Bruker Daltonics, Bremen, Germany) operating in the reflector mode in the mass range
m/z 700–3500 was used for the MS analysis. A total of 4000 spectra were collected per
spot. External calibration was performed using a mixture of Peptide Calibration Standard
(Bruker Daltonics, Bremen, Germany) with an average mass deviation of less than 1 ppm.
WARP-LC software (Bruker Daltonics, Bremen, Germany) was used to establish a list of
precursor ions for identification. Appointed m/z were analysed using the MS/MS mode.
Settings for MS and MS/MS mode were as follows: ion source 1, 7.50 kV; ion source 2,
6.75 kV; reflectron 1, 29.50 kV; reflectron 2, 14.00 kV; lens, 3.50 kV; lift 1, 19.00 kV; lift 2,
3.00 kV; pulsed ion extraction time, 80 ns. FlexControl 3.4, FlexAnalysis 3.4 and BioTools
3.2 software (Bruker Daltonics, Bremen, Germany) were used for spectra acquisition, data
processing and evaluation. The SwissProt database and Mascot 2.4.1 search engine with
taxonomic restriction to Homo sapiens (humans) were used to identify discriminatory pro-
teomic features. The following protein search parameters were used: precursor ion mass
tolerance ± 50 ppm; fragmentation mass tolerance m/z ± 0.7; no enzyme; monoisotopic
mass; peptide charge + 1.

4.6. Data Analysis

To calculate the allergen frequency, mean sIgE concentration, median and standard
deviation, Statistica 13.0 (StatSoft Inc., Tulsa, OK, USA) and MedCalc statistical Software
(MedCalc Software Ltd., Ostend, Belgium) were used.

Processing of the obtained MS data was performed using ClinProTools 3.0 chemomet-
ric software (Bruker Daltonics, Bremen, Germany). In order for the software to be able to
group all replicates of the analysed samples into one biological replica, the spectra grouping
function was used. Spectra processing consists of recalibration using the prominent com-
mon m/z values, normalization to the total ion current (TIC), smoothing, the signal-to-noise
ratio ≥ 5, baseline top hat subtraction (minimum baseline width: 10%), peak calculation
and peak picking procedure. In order to improve the signal-to-noise ratio during the peak
picking operation, the total mean spectrum was calculated. Spectra were smoothed and
processed in the mass range of 1000–10,000 Da. A comparison of atopic children allergic to
storage proteins with the control group was carried out using the Wilcoxon test. Statistical
significance was obtained when the p-value was ≤0.05. An assessment of the discrimination
ability of each peak was obtained by calculating the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC). Three mathematical algorithms, namely
genetic algorithm (GA), supervised neural network (SNN) and quick classifier (QC), were
used for the model analysis and the selection of peptide/protein peak clusters. Each model
showed a combination of differentiating peaks. A detailed description of all chemometric
algorithms is included in our previous publication [48]. For each algorithm, we calculated
cross-validation, recognition capability and external validation to determine the reliability
of the models. Due to the number of samples, “Leave One Out” mode was used to calculate
cross-validation.

5. Conclusions

Our results show that the IgE-mediated allergy to plant storage proteins (2S albumins,
7S globulins, 11S globulins and cereal prolamins) is a significant problem in atopic chil-
dren aged 0–5 years. We clearly emphasized that especially in this group of patients, it
is important to distinguish primary food allergies from pollen-associated food allergies.
Identification of peptides (cell cycle control protein 50A, testis-expressed sequence 13B,
DENN domain-containing protein 5A and SKI family transcriptional corepressor 2) with
discriminatory power between patients allergic to storage proteins and other allergy suf-
ferers and healthy individuals is the next crucial step for understanding the molecular
consequences of allergy to storage proteins. In the future, MALDI-TOF MS analysis should
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be complemented with a quantitative approach in a larger set of samples to confirm the
results of protein–peptide profiling.
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