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Abstract: Ovarian cancers encompass a group of neoplasms originating from germinal tissues and
exhibiting distinct clinical, pathological, and molecular features. Among these, epithelial ovarian
cancers (EOCs) are the most prevalent, comprising five distinct tumor histotypes. Notably, high-grade
serous ovarian cancers (HGSOCs) represent the majority, accounting for over 70% of EOC cases. Due
to their silent and asymptomatic behavior, HGSOCs are generally diagnosed in advanced stages with
an evolved and complex genomic state, characterized by high intratumor heterogeneity (ITH) due to
chromosomal instability that distinguishes HGSOCs. Histologically, these cancers exhibit significant
morphological diversity both within and between tumors. The histologic patterns associated with
solid, endometrioid, and transitional (SET) and classic subtypes of HGSOCs offer prognostic insights
and may indicate specific molecular profiles. The evolution of HGSOC from primary to metastasis
is typically characterized by clonal ITH, involving shared or divergent mutations in neoplastic sub-
clones within primary and metastatic sites. Disease progression and therapy resistance are also
influenced by non-clonal ITH, related to interactions with the tumor microenvironment and further
genomic changes. Notably, significant alterations occur in nonmalignant cells, including cancer-
associated fibroblast and immune cells, during tumor progression. This review provides an overview
of the complex nature of HGSOC, encompassing its various aspects of intratumor heterogeneity,
histological patterns, and its dynamic evolution during progression and therapy resistance.

Keywords: HGSOC; intratumor heterogeneity; SET; classic; clonal evolution; TME; CIN

1. Introduction

Ovarian cancer encompasses a diverse group of neoplasms characterized by distinct
clinicopathological and molecular features, each with varying prognoses. Current classi-
fication categorizes ovarian tumors based on their anatomical origin: epithelial tumors
(EOC) arising from the ovarian surface epithelium (OSE) or extra-ovarian epithelia, sex
cord–stromal ovary tumors (SC-SOC) originating from gonadal stromal cells, and germ
cell ovary tumors (GOC) developing from primordial germ cells. These categories often
overlap, giving rise to mixed tumors [1].

Within ovarian cancers, epithelial ovarian carcinomas (EOCs) are the most preva-
lent. EOCs exhibit diverse histopathological, immunohistochemical, and genomic features,
with five primary types identified: high-grade serous carcinomas (70%), endometrioid
carcinomas (10%), clear-cell carcinomas (10%), mucinous carcinomas (3%), and low-grade
serous carcinomas (<5%) [2]. Despite sharing the ovarian epithelial origin, these subtypes
are distinct diseases in their appropriate settings [2]. This review centers its focus on
high-grade serous ovarian cancers (HGSOCs), the most common subtype of EOC. HGSOC
typically presents in advanced stages (FIGO III-IV) due to its asymptomatic nature, neces-
sitating primary surgical debulking followed by adjuvant chemotherapy or neoadjuvant
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chemotherapy with interval surgery. Most patients are initially responsive to platinum-
based chemotherapy; however, during recurrence, a relevant proportion of patients acquire
resistance [3]. HGSOCs are characterized by remarkable intratumor heterogeneity (ITH),
manifesting as different morphological patterns and tissue architectures within the same
tumor mass [4]. At the molecular level, TP53 mutations are prevalent (96%) in HGSOCs [2],
often accompanied by high chromosomal instability (CIN) [5,6]. Notably, a substantial
portion of these cases exhibit homologous recombination repair (HRR) pathway deficiency
(HRD) [7], which serves as a biomarker for platinum-based therapy or PARP inhibitors
(PARPi) response [8]. The progression, treatment resistance, and recurrence of HGSOC are
intimately linked to ITH within the primary tumor and across primary tumors and metastases.

In the subsequent sections, we will delve into various aspects of ITH in HGSOC,
encompassing morphological, clonal, and non-clonal ITH [9–11], and explore their implica-
tions for metastatic spread.

2. Morpho-Histological ITH of HGSOC

High-grade serous ovarian carcinoma exhibits high morphological diversity at micro-
and macroscopic levels. At the microscale, a broad range of histomorphologies can be wit-
nessed due to the tumor’s metaplastic modifications and differentiation mechanisms. Until
now, the morphology of the tumor has been categorized by examining the hematoxylin
and eosin (H&E) morphologies alone or in harmony with molecular signatures. Soslow
et al. classified high-grade serous ovarian carcinoma based on the H&E appearance into the
following growth patterns: transitional, solid, pseudo-endometrioid, papillary, infiltrative
micropapilleae, and papillary infiltrative. These patterns are also divided into groups that
share classic features (papillary, infiltrative micropapillary, and papillary infiltrative) and
those without classic features represented by the SET group (solid, pseudo-endometrioid,
and transitional) [12] (Figure 1).
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Figure 1. Representative H&E images of HGSOCs with SET or classic features: micro-papillary (A),
pseudo-endometrioid (B), papillary (C), solid (D), transitional-like (E), and healthy peritoneal fibrous
tissue (F). This image has been already published by Azzalini et al. [13].

In another classification of HGSOCs, histo-morphologies are inferred from HGSOC
molecular subtypes, resulting in four types that partially overlap those of Soslow: the mes-
enchymal transition type (MT), the immune reactive type (IR), the solid and proliferative
type (SP), and the papilloglandular type (PG) [14].

Regardless of the morphological classification, HGSOC’s histo-morphologies are typi-
cally co-present in one sample, commonly with more than two architectures. Due to the
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intra-tissue heterogeneity, typically, only the prevalent morphology in the tumor slide is
considered, and hence, the reported frequency of each tumor pattern varies in the literature.
Papillary features, however, are usually the most widespread, followed by other archi-
tectures. Specific morphologies can imitate other EOC histotypes, such as endometrioid
and low-grade serous, making the differential diagnosis harder [15]. Recognizing the
morphological heterogeneity based on tumor histo-morphologies or SET/classic features
is clinically relevant in HGSOC for patient stratification and the selection of appropriate
therapy. Morphological traits have been used as a surrogate method to ascertain ho-
mologous recombination deficiency and identify patients who can benefit the most from
PARPi therapy. SET characteristics, along with a high mitotic index and increased levels
of tumor-infiltrating lymphocytes (TILs), showed a significant association with BRCA1
abnormalities [12]. According to Fujiwara et al., tumors with germline BRCA1 mutations
were also identifiable by the combination of serous or “undifferentiated” histology, high
mitotic index, giant atypical nuclei, and prominent lymphocytes infiltration [16]. Simi-
larly, the different types of metastatic invasion patterns (infiltrative vs. pushing border
metastases) were also predictive of BRCA deficiency [17] and patients’ survival [18]. Tumor
architectures and SET/classic groups, which are associated with specific clinical parameters
in chemotherapy-naive settings, have been shown to be independent prognostic factors
for patients’ survival [19,20]. Classic features, especially the infiltrative pattern, have been
identified as aggressive entities in the range of HGSOCs. They are characterized by sub-
optimal cytoreduction, low mitotic index, BRCA proficiency, omental localization, and
unfavorable prognoses. In contrast, SET features exhibit optimal debulking, high mitotic
index, high levels of TILs, ovarian localization, and a favorable prognosis. Regarding neoad-
juvant settings, although chemotherapy may impede reliable histological analysis due to
the cytological effects, the heterogeneity of tumor growth patterns, measured as Shan-
non’s index, has resulted in a prognostic biomarker for patients undergoing neoadjuvant
chemotherapy [4,21].

Historically, the histo-cytological heterogeneity of HGSOC has been evaluated through
visual assessment, considering only selected parts of the tissue slide. However, it is im-
practical to track the morphological variation of each tumor cell and their interplay with
the surrounding microenvironment in the whole tissue by eye. Digital image analysis
has scrutinized the morphological intratumor heterogeneity in HGSOC, yielding note-
worthy results. By analyzing whole slide images, it has been demonstrated that various
morphological and textural features, alone or in combination with multi-omics data, can
predict molecular alterations, such as BRCA deficiency and microsatellite instability, as
well as the prognosis of HGSOC patients. Significantly, morphological regions associ-
ated with both favorable and unfavorable outcomes were found to be simultaneously
present in the tissue slide, reinforcing the concept of ovarian cancer heterogeneity [22,23].
The heterogeneity may arise due to the active shaping of cancer cell plasticity by the tu-
mor microenvironment. Previous research demonstrated that the layout and interaction
between tumor-infiltrating lymphocytes and cancer cells are related to patient survival
and progression [24]. Therefore, samples of HGSOC can be likened to a combination of
tumor-promoting and tumor-inhibiting habitats characterized by the number of immune
(lymphocytes) and stromal cells, which can be seen, respectively, as hazards or resources
for the tumor’s growth. Nawaz and colleagues discovered that a shift in ecological balance
towards resource-rich microenvironments for the tumor can lead to more aggressive HG-
SOC behavior and poor overall survival rates. Additionally, different habitats within the
tissue sample can selectively encourage clone development through point mutations or
aneuploidy [25].

Tumor chromosomal instability has been linked to aneuploidy and variations in
nuclear features across different types of cancers [26]. A single HGSOC tumor slide can
reveal an average of twenty spatial zones where cancer cell nuclei exhibit morphological
diversity. By integrating spatial analysis with -omics and clinical data, it is possible to
identify a link between zones of morphological diversity, BRCA1 expression, loss of nuclear
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integrity, and patient survival [27]. The relevant intra-tumoral heterogeneity in HGSOC
samples supports underlying molecular alterations. Several publications have focused
on HGSOC growth patterns to understand the relationship between genotype, clinical
outcome, and morphological phenotype. At the immunohistochemical level, there is
insufficient evidence to establish the relationship between the growth patterns of HGSOCs
and biomarker expression, possibly due to the limited number of antibodies tested to
date [28,29]. Furthermore, as intra-tumoral differentiation is frequently patchy, and there is
not always an overlap between morphological heterogeneity and clonal heterogeneity [30],
there is only occasional spatial correspondence between the immunohistochemical protein
expression and HGSOC pattern.

At the transcriptional level, HGSOC histo-morphologies correlate with varying gene
expression signatures which can predict the prognosis [14]. The pre-operative clinical
features are also associated with HGSOC histo-morphologies [31]. In particular, the MT
type, characterized by the infiltration and destruction of the stromal compartment, was
more common in the peritoneal sites of late-stage patients with worse prognoses. This
type was strictly related to signs of aggressiveness, including enrichment in epithelial–
mesenchymal transition gene sets, suboptimal cytoreduction, and higher ascites levels.
Conversely, the IR type, which was densely infiltrated with lymphocytes, was related to
gene sets associated with immune response, younger age, optimal cytoreduction, and
better outcomes. Miyagawa and colleagues confirmed these findings through digital image
analysis [32]. Other authors have attempted to identify particular molecular properties for
each type of HGSOC histo-morphology. Notably, an association between the architectural
patterns of HGSOCs and several molecular and biophysical features, including tumor
stiffness [13] and the differential expression of AKT isoform transcripts [33], has been shown.
Despite the interesting relationship between HGSOC architectural patterns and various
molecular profiles, it is worth noting how gene expression signatures obtained from bulk
tissue analysis can be influenced considerably by the contributions of stromal and immune
cells [34]. Therefore, MT type morphology possibly mirrors stromal cell gene expression,
while IR tumors are probably SP or PG tumors with a prominent immune response.

Changes in morphology have also been linked to the spatial and temporal evolution
of HGSOC. Lahtinen et al. deduced the temporal evolution of HGSOC by recording the
clonal complexity and divergence of 55 HGSOC patients through multisampling whole
genome sequencing (WGS). They identified three cancer evolutionary trajectories, named
“evolving” (early state), “maintaining” (intermediate state), and “adapting” (late state),
which were connected to specific histo-morphologies and other features such as fibroblast
content and genomic and transcriptomic profiles. Tumors in the adaptive state, with low
fibroblast content, were mostly SET and rich in NOTCH and WNT signaling, while tumors
in the maintaining state were mostly micropapillary and rich in AKT signaling. In contrast,
tumors in the evolving state with a high composition of fibroblasts were mostly infiltrative
and enriched in the MAPK and ERBB2 pathways. It is noteworthy that, according to the
authors, HGSOC tumors can evolve from an evolving state to an adaptive state, either
directly or through a maintaining state [35].

Although morphological ITH has mainly been studied at the microscopic level, re-
cently, HGSOCs have been classified according to gross morphology by using pre-operative
laparoscopic images into two subtypes: type 1, characterized by a deep and invasive ap-
pearance with distortion or retraction of surrounding tissues, and type 2, with a superficial
appearance with exophytic nodules typically outlined by normal tissue. The multi-omics
analysis conducted on the two subtypes showed distinct surgical outcomes and molecular
signatures. Specifically, type 1 was enriched in angiogenic, Hedgehog, and epithelial–
mesenchymal transition signaling, whereas type 2 displayed an altered lipid signature and
was enriched in cell cycle and MYC signaling. It is interesting to note that the histological
analysis did not show any significant microscopic pattern in the two subtypes, although
a papillary architecture was present in 50% of type 1 and only 5% of type 2 tumors [36].
Supporting these results, Foster et al. demonstrated in a recent study that these subtypes
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were also associated with distinct radiographic features [37]. Further studies are needed
to identify a set of consensus biomarkers and morphological features enabling a clear
distinction of phenotypic subgroups, although evaluating the morphological heterogeneity
of HGSOCs can assist with clinical trial design and clinical practice. Additionally, the
presence of several growth architectures in the same tumor slide limits the feasibility of
morphological analysis and makes it less reproducible.

3. Clonal ITH of HGSOC

Genetic clonal evolution of cancer is related to genomic instability as a major feature of
the carcinogenetic process [9]. In this regard, HGSOC is a “genetically unstable” cancer with
complex genomes characterized by frequent chromosome/gene copy number alterations
and/or structural changes [6]. Every patient is usually characterized by different genomic
variations supporting HGSOC as a very heterogeneous disease not easily defined by a
specific mutational change. The absence of significant alterations between anatomic sites
within a single patient suggests that the biological processes underlying genomic instability
seem to be established early on during disease progression [38]. At the genomic level,
HGSOCs are characterized by near ubiquitous TP53 loss-of-function mutations as an early
driver event [39] and the leading cause of chromosomal instability [40]. HGSOCs exhibit
CIN in 100% of solid tumors regardless of age, stage, chemotherapy, or BRCA status, but in
91% of ascites supporting a dynamic process [6].

Deficiency in the homologous recombination repair and extensive copy number aber-
rations are other genomic features characterizing HGSOCs. About 25% of patients have
germline, somatic, or epigenetic alterations in BRCA1 and BRCA2 [5,41]. Due to deficien-
cies in homologous recombination and other DNA mismatch repair pathways [5], ITH
in HGSOCs arises from the dysregulation of apoptosis and DNA repair processes [42].
Point mutations at tumor suppressor genes or oncogenes are pretty unusual in HGSOC.
In less than 10% of cases, mutations at CDK12, KRAS, PTEN, RB1, EFEMP1, and NF1
have been reported [43]. Deficiency in the catalytic activity of CDK12 due to mutations
has been demonstrated to disrupt homologous recombination in HGSOCs, with benefits
from PARPi [44]. The landscape of genomic alterations in HGSOC referring to the inter-
tumor heterogeneity seems age-related. HGSOC patients diagnosed at an older age less
frequently harbor pathogenic BRCA1 germline mutations and genomic features of HRD
than younger women but display more frequently CCNE1 amplification as part of the
aging signature [45].

HGSOC is mainly characterized by copy number alterations due to CIN. This leads to
genomic structural variations, with frequent DNA gains and losses [3]. Loss of heterozygos-
ity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions are responsible
for tumor suppressor gene inactivation [46] and/or oncogene amplification [47]. PTEN,
RB1, NF1, and RAD51B inactivation by gene breakage are shared genomic aberrations in
HGSOC [41,48]. PTEN loss has been detected across all HGSOC stages, supporting an early
step in the progression of HGSOC [49]. Recently, RB1 mutations were identified exclusively
in patients surviving more than 5 years as a marker of long survivorship [50]. Concerning
oncogenes, CCNE1, MYC, and MECOM genes have been found amplified in at least 20%
of cases [44]. CCNE1 amplification, which seems mutually exclusive with BRCA muta-
tions, was also correlated with poor survival and primary resistance to platinum-based
chemotherapy in HGSOC [48,51]. MYC amplification in HGSOC was associated with an
increased prevalence of somatic copy number alterations in genes from the PI3K pathway.
MYC and PIK3CA gain and amplification are amongst the most frequent clonal alterations
in HGSOC progression, with possible implications for therapy decision/response [52].

Quantifying ITH in HGSOC has been challenging because, as a cancer characterized
by CNAs, it is difficult to infer phylogenetic trees because of the unknown phasing of
parental alleles and the horizontal dependencies between adjacent genomic loci [53]. In
studying clonal ITH of HGSOC, most authors focused on spatial and temporal ITH by
analyzing differences between primary tumors and metastases. Contrarily, no studies have
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investigated clonal ITH by multiple sampling of primary HGSOCs, with a consequent
lack of information on the possible monoclonal/polyclonal origin of HGSOC. This is
even stressed by the relatively low frequency of early-stage HGSOC, where this specific
analysis would be more resolutive. However, CIN is central to cell-to-cell heterogeneity [54].
Based on this observation and the tumor evolution in the progression of the disease, it
is feasible to consider HGSOCs as polyclonal tumors. Schwarz and coworkers showed
that spatial ITH in HGSOC arose mainly from metastasis to metastasis spread rather than
successive metastases from primary cancer [53]. Clonal evolution (branching) between
diagnosis (primary tumor) and recurrences in a spatial-temporal scenario is documented
in HGSOC [55]. As a measure of ITH, high clonal expansion, which is related to genetic
diversity and favors the emergence of drug-resistant clones, has been shown to affect
survival in HGSOC patients [53].

In a recent study, Sun and colleagues proposed an evolutionary model for HGSOCs,
dichotomizing HGSOCs into two topologies, one referring to a polyclonal origin and
monophyletic/monoclonal spreading (star topology) with high genomic heterogeneity
and the other monoclonal with polyphyletic or polyclonal spreading and low genetic
heterogeneity (tree topology) [56]. Compared with star topology, in tree topology, a higher
frequency of somatic abnormalities, higher ITH, and more driver events were detected in the
spatiotemporal evolution of HGSOCs [56]. Multiple driving mutated events continuously
stimulated original monoclonal origins and promoted tumor metastasis in the tree topology
group. In contrast, in the star topology group, the tumor metastasis seems to be promoted
by clustering of original polyclonal origins, supporting a parallel progression model of
metastasis [56]. Most HGSOCs have Darwinian-based branching evolutionary patterns
during tumorigenesis, with the divergence of subclones from a common ancestral clone [42].
HGSOCs are diagnosed at advanced stages, therefore, in a higher evolutional phase. In
a recent model, HGSOCs are seen as an evolution from a largely intact genome in early
differentiated tumors towards a comprehensive loss of genome integrity in late proliferative
tumors [57]. The heterogeneity seems to be driven by stochastic and individually different
genomic alterations from a constrained set of evolutionary moves that increase genomic
instability and subclonal expansion [57]. Overall, the extensive spatial and temporal tumor
heterogeneity found in HGSOC with multiple pathways leading to tumor relapse calls for
multiple-site biopsy to guide clinical treatment [41,56].

Clonal cancer evolution can also be due to epigenetic mechanisms altering gene ex-
pression without changing the DNA sequence. Key epigenetic regulators include DNA
methylation, histone modifications, and microRNAs (miRNAs). Epigenetic reprogramming
is important in HGSOC etiology, is associated with tumor behavior, and contributes to
clinical outcomes through activating or repressing multiple signaling pathways [58,59].
HRD in HGSOC can result from DNA methylation in the promoter region of homologous
recombination repair-related genes, such as BRCA1 and BRCA2. Compared to genetic
HRD caused by mutations and deletions, epigenetic HRD cancers have a poor prognosis
and Pt-resistance comparable to proficient HR cancers [7]. DNA hypermethylation is
indeed a sign of aggressiveness and Pt-resistance in HGSOC, but using de-methylating
agents in those tumors could represent a therapeutical strategy to target them and reduce
Pt-resistance [58,60]. Dynamic changes in the methylation profile of specific genes, namely
PDCD1, NKAPL, and APOBEC3A, have also been detected in ccfDNA of relapsed HGSOC
patients [61]. Genome-wide DNA hypomethylation is another characteristic of cancer
cells, causing CIN, depression of imprinted genes and retrotransposons, and aberrant gene
expression [62]. Considering the global methylation status detected in CpG sites in both
island and open-sea regions, there is nearly universal hypomethylation in HGSOC com-
pared with normal controls [59]. However, DNA hypomethylation at specific chromosomal
sites distinguished three groups of patients with different prognoses and better survival
than hypermethylated HGSOC [63]. Of course, the variation of methylation profiles is
highly dependent on the genes’ functions; for instance, hypomethylation of APOBEC3A
but hypermethylation of NKAPL were associated with Pt-resistance in HGSOC [61]. Also,
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on the protein level, histone modification through methylation, deacetylation, phosphory-
lation, and ubiquitination can be involved in tumorigenesis and drug resistance. Increased
acetylation of histone H3 lysine 14 (H3K14ac) was found in PARPi-resistant HGSOC cells
compared to sensitive ones, but its pharmacologic depletion did not re-sensitize resistant
HGSOC cells, suggesting that histone readers and other accessory factors in histone acetyl-
transferases protein complexes seem to play a more direct role in PARPi resistance [64].
Furthermore, PARPi-resistant HGSOC cells had a global increase of histone H3 lysine
9 dimethylation (H3K9me2), euchromatic histone-lysine-N-methyltransferases 1 and 2
(EHMT1/2) catalyzing it [65], and histone methyltransferase SMYD2 methylating histone
protein H3 [66]. Although those epigenetic phenomena are not directly linked to ITH,
the fact that they are linked to drug resistance, which occurs during cancer progression,
strongly supports their implication in ITH.

4. Non-Clonal ITH of HGSOC

Cancer cells do not live in an isolated environment but interact with stromal and
immune cells in a specific ecosystem. Cancer cells sharing the same genetic features can
have different phenotypic cell states, enabling tumor progression by specific tumor char-
acteristics, such as invasion, metastasis, and resistance to chemotherapy. Therefore, the
cancer cells’ plasticity is a fundamental aspect of the disease progression and therapy
resistance. Based on RNAseq and epigenetic data, TCGA subdivided HGSOC into four
subgroups: immunoreactive, differentiated, proliferative, and mesenchymal [5] showing
different survivals [67]. Immunoreactive and differentiated phenotypes had the best sur-
vival outcome, while mesenchymal and proliferative had the poorest outcome [67]. Based
on transcriptomic signatures in paired adnexal and omentum samples, non-clonal ITH was
highlighted by different classifications in the two anatomical sites with a systematic shift to
mesenchymal phenotype at extra-adnexal sites [67]. Mesenchymal HGSOCs are charac-
terized by low genomic alteration, transcriptional activation of epithelial–mesenchymal
transition transcription factors (EMT-TFs), decreased epithelial cell marker expression,
increased mesenchymal cell marker expression, and diverse cell type composition [68].
Altogether, these aspects have been incorporated in an EMT index, which was significantly
associated with the prognosis of HGSOC patients [68].

Mesenchymal HGSOCs are indeed associated with platinum resistance and poor
prognosis [69]. Different tumor clusters characterized by different transcriptome signatures
were documented within a tumor tissue supporting high levels of ITH in HGSOC [70].
Taking this ITH, Geistlinger et al. proposed that the differentiated and the proliferative
subtypes represent the ends of an evolutionary timescale of tumor development, with
characteristics of differentiated tumors occurring earlier in malignancy and characteristics
of proliferative tumors occurring at a later time [57].

Non-genetic evolution of HGSOCs has been associated with a shift towards a high-
metabolism and proliferation state, with a concomitant decrease in the immune response
state as resistance is acquired to multiple lines of therapy [71]. In addition to cancer
cells, inter- and intra-variability of non-malignant cells have been documented in HGSOC,
indicating different functional subpopulations that may shape the HGSOC ecosystem [72].
The relationship between TME and tumors is dynamic, with relevant differences reported
between poor and excellent neoadjuvant chemotherapy responders [73]. Responders’
HGSOC tumors contain more immune-related areas supporting the well-established role
of cytotoxic immune cells in strengthening chemotherapy response, while poor responders’
tumors have mesenchymal-derived cells [73]. Immune cold HGSOCs, encountering the
majority of HGSOCs, exhibit low levels of immune infiltration and have been linked to
constitutive copy number alteration in chromosome arm 4q, proliferative subtype, and
proficient HR system [74]. On the contrary, immune hot HGSOCs, the less represented
type, have high immune infiltration and high tumor mutation burden, tend to be mostly
HRD, and have better prognoses [74]. This discrimination of HGSOC, in addition to
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prognostic consideration, can have therapeutical implications for possible response to
immune checkpoint inhibitors [74].

A decrement in CD3 expression was associated with higher HGSOC stages, likely
due to the induction of inhibitory immune checkpoints and T-cell exhaustion, and the
expression of EMT markers in HGSOC was related to shorter survival [75]. Regarding
spatial ITH, TME was markedly different in T cells in ovarian tumors compared to omental
metastases, with an immunosuppressive environment consisting of Tregs and exhausted
CD8+ T and CD4+ T cells in the local ovarian ecosystem and TILs composed of non-
tumor-specific bystander cells with little evidence for response to tumor-specific antigens
in omental lesions [76]. Immune cell composition varies indeed across anatomical sites
(adnexal vs. non-adnexal and ascites) within HGSOC patients as a result of the different
mutational processes in cancer cells, supporting that mechanism of immune resistance
cannot be universal in a given patient [77]. There is also a great spatial intra-lesion variation
of T-cell infiltration, greater than that observed across sites and patients [78]. Concerning
the TME heterogeneity, chemotherapy can induce local immune activation, potentiating, in
some cases, the immunogenicity of immune-excluded HGSOC tumors [78].

The EMT program in cancer cells seems to be also induced by cancer-associated
fibroblasts (CAF) in HGSOC [75]. Intrastromal and interstromal heterogeneity have been
documented in HGSOCs by spatial transcriptomics and discriminated long from short
HGSOC survivors, notably a higher density of CAF in stromal clusters as well as differences
in their location relative to the tumor [70,79]. Long survivors presented more immune
cell infiltration and a TME predominantly composed of stromal cells and myofibroblasts;
on the contrary, short-term survivors presented less immune cell infiltration and a higher
proportion of CAFs expressing elevated levels of POSTN near the stroma–tumor interface.
The analysis of region-specific ligand–receptor interactions highlighted that tumor-derived
LRP5 and CAF-derived APOE seem to confer a more aggressive phenotype to HGSOC,
which contributes to poorer patient survival rates [70].

The TME has a dynamic composition of extracellular matrix with several types of
cells that can interact with different clusters of cancer cells, promoting or suppressing
their progression. Accordingly, TME evolves during malignant progression. In serous
tubal intraepithelial carcinoma lesions, as HGSOC precursors, macrophages, by secreting
TGFBI, seem to favor an immunosuppressive microenvironment that persists in advanced
HGSOC [80]. In an in vitro system, tumor-associated macrophages have been reported to
release via exosomes GATA3, a developmental transcription factor, contributing to tumor
growth in the microenvironment in mutant TP53 HGSOC cell lines [81].

Overall, to better understand the progression of HGSOCs and identify therapeutical
strategies, it is pertinent to analyze and characterize not only the tumoral tissues but also
the TME with immune cells and fibroblasts, as tumor heterogeneity in both cancer and
stromal cells contributes to therapy resistance in HGSOC.

5. Conclusions

In conclusion, high-grade serous ovarian cancer stands as a profoundly intricate tumor
type, as depicted in Figure 2.

The past decade has witnessed substantial research endeavors aimed at unraveling
the complexities of HGSOC. However, despite these efforts, the translation of research
findings into practical clinical applications for patient care has remained somewhat lim-
ited. Currently, PARP inhibitors, Bevacizumab, and homologous recombination deficiency
testing have found their place in treatment protocols, but HRD testing remains an im-
perfect predictor of PARPi response. The ultimate litmus test for treatment effectiveness
continues to be the patient’s response to platinum-based chemotherapy [82]. Undoubtedly,
PARPi has shown promising enhancements in the overall survival of HGSOC patients [83].
However, these benefits are predominantly realized among patients with genomic HR
deficiency [7,83]. To bridge the gap between research discoveries and tangible improve-
ments in patient outcomes, it is imperative to revisit scientific findings and identify de-
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pendable biomarkers for prognosis and therapy decisions. Given the intricacy and vast
data surrounding HGSOC, the integration of artificial intelligence algorithms, as already
demonstrated in epithelial–mesenchymal transition (EMT) prognostic stratification [84],
can provide significant advances in knowledge. Additionally, lessons from morphological
analyses underscore the importance of comprehensive characterization of HGSOC sur-
gical specimens. This characterization should encompass architectural patterns not only
at the primary tumor site but also within metastases. Given the ITH, rigorous multiple
sampling analysis [9], as already proposed in Figure 2, becomes essential in HGSOC to
distinguish between SET and classic HGSOCs. Furthermore, recognizing the pivotal role
of the tumor microenvironment in disease progression, dedicated immunohistochemical
characterization of immune and stromal cells is crucial [85]. Such characterization could
assist in identifying patients who could benefit from immunotherapy (Figure 3).
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complexity and heterogeneity of HGSOC, spatial transcriptomics approaches, or in situ
multiplex analytes detection may be the most suitable methods for selecting candidate
biomarkers for extensive multicenter validation studies. However, the ultimate clinical
impact of any biomarker can only be established through rigorous validation in large
multicenter cohorts. Only through concerted efforts can we truly assess the genuine value
of candidate biomarkers and successfully integrate them into clinical practice for prognosis
and therapeutic strategies.
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