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Abstract: Psoriatic arthritis (PsA) is a chronic, systemic, immune-mediated inflammatory disease
causing cutaneous and musculoskeletal inflammation that affects 25% of patients with psoriasis.
Current methods for evaluating PsA disease activity are not accurate enough for precision medicine.
A metabolomics-based approach can elucidate psoriatic disease pathogenesis, providing potential
objective biomarkers. With the hypothesis that serum metabolites are associated with skin disease
activity, we aimed to identify serum metabolites associated with skin activity in PsA patients. We
obtained serum samples from patients with PsA (n = 150) who were classified into mild, moderate
and high disease activity groups based on the Psoriasis Area Severity Index. We used solid-phase
microextraction (SPME) for sample preparation, followed by data acquisition via an untargeted liquid
chromatography—mass spectrometry (LC-MS) approach. Disease activity levels were predicted using
identified metabolites and machine learning algorithms. Some metabolites tentatively identified
include eicosanoids with anti- or pro-inflammatory properties, like 12-Hydroxyeicosatetraenoic
acid, which was previously implicated in joint disease activity in PsA. Other metabolites of interest
were associated with dysregulation of fatty acid metabolism and belonged to classes such as bile
acids, oxidized phospholipids, and long-chain fatty acids. We have identified potential metabolites
associated with skin disease activity in PsA patients.

Keywords: metabolomics; solid phase microextraction; liquid chromatography; mass spectrometry;
psoriatic arthritis; psoriasis area severity index; machine learning

1. Introduction

Psoriasis is a chronic, immune-mediated, systemic inflammatory disease that affects
over 2.5% of the global population, including 1.25 million Canadians [1,2]. It commonly
manifests as chronic plaque psoriasis, where red, itchy scaly plaques develop on the scalp,
elbows, and other parts of the body [2]. Approximately 25% of psoriasis patients also
carry the additional burden of inflammatory arthritis and have psoriatic arthritis (PsA) [3].
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Patients with PsA have cutaneous and musculoskeletal inflammation [2,4]. The progres-
sive joint damage, stiffness, pain, and disability associated with PsA is responsible for
numerous other comorbidities, especially those associated with high risk for cardiovascular
diseases [5,6], including diabetes [7,8], obesity [9,10], and lipidemia [11,12]. This leads
to a reduced overall quality of life and early mortality for these patients. While their
precise etiologies are unknown, psoriasis and psoriatic arthritis have complex pathogenesis
involving environmental, immunologic, and genetic factors [13].

Measuring and monitoring disease activity is critical to the management of PsA.
Assessing PsA activity involves evaluating multiple domains including skin and muscu-
loskeletal domains [14]. Skin lesions are usually assessed using the Psoriasis Area and
Severity Index (PASI) [15]. Despite skin plaques being a prominent feature of psoriatic
disease, current methods for evaluating skin disease activity, including PASI, body sur-
face area affected, and physician global assessments, are largely subjective, imprecise and
have high inter-rater variability [15,16]. As such, there is a tremendous clinical need for
identifying valid, objective, and reliable biomarkers for routine clinical assessment of PsA
disease activity.

Recently, there has been growing interest in performing mass spectrometry-based
metabolomics studies to discover such biomarkers and further elucidate disease pathogen-
esis [17]. Metabolomic analysis involves studying small molecule metabolites (<1500 Da)
present in biological cells, tissues, or fluids and includes compounds with diverse chem-
ical and physical properties like sugars, nucleotides, amino acids, and lipids to name a
few [17,18]. Positioned at the intersection between the genome, transcriptome and pro-
teome with environment, metabolomic analysis involves studying the interaction of real-life
end products of multiple biological processes with environmental stimuli [17,18]. It is a
powerful technique for biomarker discovery in a complex disease such as PsA that results
from the interaction between multiple biological and environmental factors.

The purpose of this study was to perform comprehensive metabolomic profiling of
serum samples from PsA patients with varying levels of psoriasis activity, as defined by
the PASI, to identify metabolomic biomarkers associated with skin disease activity. To
achieve this goal, we first used SPME to extract metabolites from 150 serum samples
from PsA patients. This was followed by metabolomic data acquisition using a fatty-
acid-focused high-performance liquid chromatography–mass spectrometry (HPLC-MS)
methodology [19]. We subsequently identified tentative biomarkers for PsA skin disease
activity via data analyses using multiple machine learning algorithms.

2. Results

Table 1 provides the demographic and disease characteristics of the study subjects.
Most patients had long-standing psoriasis and PsA and were on treatment.

2.1. Principal Component Analysis

MetaboAnalyst and Compound Discoverer 3.3 were both used to generate a visual
representation of the overall positive and negative mode dataset from all samples via
a principal component analysis (PCA) (Figures 1 and 2, respectively). Figure 1A was
created by importing positive mode data processed from Compound Discoverer 3.3 into
MetaboAnalyst. Figure 1B utilizes the same positive mode dataset, but was created within
Compound Discoverer 3.3. Figure 2 is analogous to Figure 1, but uses negative mode
data. The PCA was used to identify any differences between patients classified by PASI.
The quality of data were also assessed via the spread and location of pooled QCs in
the PCA plots. Their tight clustering indicates strong instrumental stability during data
acquisition. However, the low-, moderate-, and high-PASI groups were not separated in
Figures 1 and 2.
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Table 1. Summary of demographics and disease information of patients participating in study.

Group Sex (No. of
Patients)

Mean Age
Standard Deviation

(Age Range)

Mean BMI
Standard Deviation

(BMI Range)

PASI Score Mean
Standard Deviation

(Range)

Dur. Psoriasis Mean
Standard Deviation

(Range) (Years)

Dur. PsA Mean
Standard Deviation

(Range) (Years)

Treatment (No.
Patients)

Comorbidities (No.
Patients in Group)

PsA M (28) 44.4 27.6 2.0 17.6 9.3 NSAIDs (17) Hypertension (5)
(Low) 15.4 5.4 1.3 11.5 9.1 DMARDs (9) Depression (1)

(18.1–74.6) (16.2–42.6) (0.3–4.8) (0.5–53.6) (0.0–25.9) Steroids (1) Hyperlipidemia (6)
Diabetes (3)

F (28) 47.9 28.5 1.8 22.1 9.5 NSAIDs (19) Hypertension (2)
10.0 7.4 1.4 13.6 8.5 DMARDs (10) Depression (3)

(30.6–67.6) (19.8–49.3) (0.1–4.8) (0.5–46.8) (0.5–28.8) Steroids (1) Hyperlipidemia (6)

PsA M (27) 51.0 28.5 6.4 22.5 13.6 NSAIDs (19) Hypertension (1)
(Moderate) 10.1 6.9 1.4 12.7 10.5 DMARDs (11) Depression (2)

(28.9–73.7) (19.8–52.1) (5.0–9.8) (3.1–50.1) (0.6–34.7) Hyperlipidemia (3)
Diabetes (1)

F (27) 47.1 29.1 7.2 23.7 10.2 NSAIDs (15) Hypertension (1)
12.1 6.6 1.4 11.0 10.0 DMARDs (14) Depression (3)

(19.3–71.6) (18.2–41.7) (5.1–9.4) (3.3–44.6) (0.2–37.1) Steroids (1) Hyperlipidemia (3)

PsA M (28) 46.5 27.7 21.1 18.8 7.9 NSAIDs (15) Hypertension (3)
(High) 13.5 4.6 9.6 11.0 9.7 DMARDs (11) Depression (2)

(22.5–81.2) (18.8–34.3) (10.1–40.7) (5.5–45.2) (0.0–37.3) Steroids (1) Diabetes (3)
Hyperlipidemia (5)

F (12) 48.0 31.0 22.5 19.4 14.0 NSAIDs (3) Hyperlipidemia (2)
12.7 6.6 13.3 11.4 12.6 DMARDs (7) Diabetes (3)

(27.2–71.7) (19.1–40.1) (10.2–54.6) (0.4–36.5) (0.2–32.2) Steroids (2)

F: female. M: male. BMI: body mass index, NSAID: non-steroidal anti-inflammatory drugs, DMARD: disease-modifying anti-rheumatic drugs. low, moderate and high indicate low,
moderate and high skin disease activity based on PASI.
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Figure 1. Principal component analysis (PCA) of metabolite data from psoriatic arthritis (PsA) 
patients from positive mode data acquisition. (A) PCA—PC1: 32.9%, PC2: 6.4%, PC3: 5.6% of 
patients with PsA, and pooled quality control (PooledQC). High-skin-disease-activity PsA, low-
disease-activity PsA, moderate-disease-activity PsA, and PooledQC are represented in green, dark 
blue, light blue, and red, respectively. Data shown was processed via Compound Discoverer 3.3 
then exported to MetaboAnalyst. (B) PCA—PC1: 28.9%, PC2: 7.6% of PsA patients, and pooled QCs. 
High-skin-disease-activity PsA, low-disease-activity PsA, moderate-disease-activity PsA, and 
PooledQC are represented in orange, teal, brown, and green, respectively. The data shown were 
obtained using Compound Discoverer 3.3. 

 
Figure 2. Principal component analysis (PCA) of metabolite data from PsA patients from negative 
mode data acquisition. (A) PCA—PC1: 52.1%, PC2: 5.4%, PC3: 3.9% of patients with psoriatic 
arthritis (PsA) and pooled quality control (PooledQC). High-skin-disease-activity PsA, low-disease-
activity PsA, moderate-disease-activity PsA, and PooledQC are represented in green, dark blue, 
light blue, and red, respectively. The data shown were processed via Compound Discoverer 3.3 then 
exported to MetaboAnalyst. (B) PCA—PC1: 34.7%, PC2: 8.9%—of PsA patients and pooled QCs. 
High-skin-disease-activity PsA, low-disease-activity PsA, moderate-disease-activity PsA, and 

Figure 1. Principal component analysis (PCA) of metabolite data from psoriatic arthritis (PsA) patients
from positive mode data acquisition. (A) PCA—PC1: 32.9%, PC2: 6.4%, PC3: 5.6% of patients with
PsA, and pooled quality control (PooledQC). High-skin-disease-activity PsA, low-disease-activity PsA,
moderate-disease-activity PsA, and PooledQC are represented in green, dark blue, light blue, and red,
respectively. Data shown was processed via Compound Discoverer 3.3 then exported to MetaboAnalyst.
(B) PCA—PC1: 28.9%, PC2: 7.6% of PsA patients, and pooled QCs. High-skin-disease-activity PsA,
low-disease-activity PsA, moderate-disease-activity PsA, and PooledQC are represented in orange, teal,
brown, and green, respectively. The data shown were obtained using Compound Discoverer 3.3.
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mode data acquisition. (A) PCA—PC1: 52.1%, PC2: 5.4%, PC3: 3.9% of patients with psoriatic 
arthritis (PsA) and pooled quality control (PooledQC). High-skin-disease-activity PsA, low-disease-
activity PsA, moderate-disease-activity PsA, and PooledQC are represented in green, dark blue, 
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Figure 2. Principal component analysis (PCA) of metabolite data from PsA patients from negative
mode data acquisition. (A) PCA—PC1: 52.1%, PC2: 5.4%, PC3: 3.9% of patients with psoriatic arthritis
(PsA) and pooled quality control (PooledQC). High-skin-disease-activity PsA, low-disease-activity PsA,
moderate-disease-activity PsA, and PooledQC are represented in green, dark blue, light blue, and
red, respectively. The data shown were processed via Compound Discoverer 3.3 then exported to
MetaboAnalyst. (B) PCA—PC1: 34.7%, PC2: 8.9%—of PsA patients and pooled QCs. High-skin-disease-
activity PsA, low-disease-activity PsA, moderate-disease-activity PsA, and PooledQC are represented in
orange, teal, brown, and green, respectively. Data shown was obtained on Compound Discoverer 3.3.
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2.2. Machine Learning Models

Machine learning (ML) models were used to predict PsA patients with low, moderate,
and high skin disease activity using metabolomic data. The top-performing predictive
models using individual and combinations of features are summarized in Figures 3 and 4.
Features for model building were ranked and selected based on their individual area under
the curve (AUC) scores for predicting class labels. Models shown in Figures 3 and 4 were
built using various algorithms and features, and only models with an AUC equal to or
greater than 0.7 were considered to include potential metabolite markers of disease activity.
Features in these models were tentatively identified. Many features from the positive
mode dataset can be used to predict between low disease activity and moderate disease
activity, low disease activity and high disease activity, and between moderate disease
activity and high disease activity. Figure 3A shows the ten best models for predicting
low and high disease activity, with the worst-performing model having an AUC of 0.742,
and the best-performing model having an AUC of 0.813. Figure 3B shows the ten best
models for predicting moderate and high disease activity. However, only LogRegL2, with
80 features, has an AUC of 0.7. Figure 3C shows the ten best models for predicting low
and moderate disease activity, with the best five having AUC scores between 0.715 and
0.862. Figure 4C contains a single negative mode model with AUC > 0.7, predicting low
and moderate disease activity.
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Figure 3. Top-performing models according to the receiver operating characteristic (ROC) curve for
predicting skin disease activity in PsA patients based on positive mode data. Models include support
vector machine (SVM), logistic regression (LogReg), LogitBoost, Naïve Bayes, Random Forest, Ridge
Regression (LogRegL2), J48 Decision Tree, and Adaptive Boosting (AdaBoost). (A) Best ROC curves
of predictive single or combinations of features for low vs. high disease activity. (B) Best ROC curves
of predictive single or combinations of features for moderate vs. high disease activity. (C) Best ROC
curves of predictive single or combination of features for low vs. moderate disease activity. AUC:
Area under the receiver operating characteristic curve.

2.3. Tentative Metabolite Identification

Features used in the models were tentatively identified using the Human Metabolome
Database (HMDB). Other databases, MS-DIAL and Global Natural Product Social (GNPS),
were used to identify MS level 2 matches, but no matches for statistically significant features
were found. Below are Tables 2–5, containing a summary of the top 10 predictive features
with tentatively identified endogenous metabolites. Positive and negative mode features in
Tables 2–5 are shown as images of peak shape and quality in Tables S1 and S2, respectively.
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See Tables S3–S10 for a complete list of tentatively identified compounds in positive and
negative mode, respectively.

2.4. Overlapping Features

Table 6 is a list of overlapping features from different models that classify between two
different disease severity groups. Eight features are shared between models that predict
low vs. high skin disease activity and moderate vs. high skin disease activity groups.
Three features are shared between models that predict moderate vs. high and low vs.
moderate disease activity groups. One feature is shared between models that predict low
vs. moderate or high disease activity groups. One feature is shared between all disease
activity groups. The corresponding peak images can be found in Table S11.
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496.3397 12.95 [M + Na]+ 473.3505 0.57 
Clupanodonyl carnitine; 5 other 
hits 

373.2735 9.79 [M + H]+ 372.2664 0.57 Cervonoyl ethanolamide 
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hit 
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289.1409 5.12 [M + Na]+ 266.1518 0.57 
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356.2793 7.49 [M + NH4]+ 338.2457 0.57 11,12-DiHETrE; 8 other hits 
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Figure 4. Top-performing models according to the receiver operating characteristic (ROC) curve
for predicting skin disease activity in PsA based on negative mode data. Models include: support
vector machine (SVM), logistic regression (LogReg), Random Forest, Lasso Regression (LogRegL1),
Adaptive Boosting (AdaBoost), LogitBoost, Ridge Regression (LogRegL2), Naïve Bayes, and J48
Decision Tree. (A) ROC curves of predictive single or combinations of features for low vs. high
disease activity. (B) ROC curves of predictive single or combinations of features for moderate vs.
high disease activity. (C) ROC curves of predictive single or combinations of features for low vs.
moderate disease activity. AUC: Area under the receiver operating characteristic curve.

Table 2. Top 10 tentatively identified endogenous metabolites for low vs. high skin disease activity.

m/z Retention Time
(min) Adduct Monoisotopic

Mass AUC Tentative Identification

546.3528 14.59 [M + Na]+ 523.3638 0.59 Platelet-activating factor; 6 other hits

544.3373 13.35 [M + Na]+ 521.3481 0.58 LysoPC(0:0/18:1(9Z)); 5 other hits

116.0708 0.60 [M + H]+ 115.0633 0.58 Proline

427.1938 5.74 [M + NH4]+ 409.1584 0.58 dermatan L-iduronate; 1 other hit

496.3397 12.95 [M + Na]+ 473.3505 0.57 Clupanodonyl carnitine; 5 other hits

373.2735 9.79 [M + H]+ 372.2664 0.57 Cervonoyl ethanolamide

520.3398 12.33 [M + H]+ 519.3325 0.57 LysoPC(0:0/18:2(9Z,12Z)); 1 other hit

370.2950 8.20 [M + NH4]+ 352.2614 0.57 MG(18:3(6Z,9Z,12Z)/0:0/0:0); 8 other hits

289.1409 5.12 [M + Na]+ 266.1518 0.57 pentadeca-5,7,9-trienedioic acid; 8 other hits *

356.2793 7.49 [M + NH4]+ 338.2457 0.57 11,12-DiHETrE; 8 other hits

* Clear peak, but insufficient quality; AUC: Area under the receiver operating characteristic curve.
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Table 3. Top 10 tentatively identified endogenous metabolites for moderate vs. high skin disease activity.

m/z Retention Time
(min) Adduct Monoisotopic

Mass AUC Tentative Identification

211.1441 3.90 [M + NH4]+ 193.1103 0.60 (R)-N-Methylsalsolinol; 3 other hits

215.1279 4.78 [M + H]+ 214.1205 0.58 undec-3-enedioic acid; 3 other hits *

769.4224 21.08 [M + Na]+ 746.4370 0.57 PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-12:0);
5 other hits

760.5845 20.22 [M + H]+ 759.5778 0.57 Pe-NMe2(20:1(11Z)/15:0); 26 other hits

802.5350 19.32 [M + Na]+ 779.5465 0.57 PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/P-16:0);
89 other hits

496.3397 12.95 [M + Na]+ 473.3505 0.57 Clupanodonyl carnitine; 5 other hits

544.3373 13.35 [M + Na]+ 521.3481 0.56 LysoPC(18:1(9Z)/0:0); 5 other hits

518.3215 12.95 [M + Na]+ 495.3325 0.56 LysoPC(16:0/0:0); 2 other hits

351.2504 12.67 [M + Na]+ 328.2614 0.56 MG(0:0/16:1(9Z)/0:0); 1 other hit

828.5507 19.67 [M + Na]+ 805.5621555 0.56 PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/P-18:1(9Z));
107 other hits

* Clear peak, but insufficient quality; AUC: Area under the receiver operating characteristic curve.

Table 4. Top 10 tentatively identified endogenous metabolites for low vs. moderate skin disease activity.

m/z Retention Time
(min) Adduct Monoisotopic

Mass AUC Tentative Identification

311.1464 3.40 [M + NH4]+ 293.1111 0.75 4-Hydroxyproline galactoside; 3 other hits

524.3710 14.21 [M + H]+ 523.3638 0.72 Platelet-activating factor; 4 other hits

263.0887 6.70 [M + Na]+ 240.0998 0.72 3-Carboxy-4-methyl-5-propyl-2-furanpropionic
acid; 4 other hits

641.5110 20.65 [M + NH4]+ 623.4761 0.71 Cer(d16:1/6 keto-PGF1alpha); 58 other hits

830.5664 19.88 [M + Na]+ 807.5778 0.71 PC(20:4(5Z,7E,11Z,14Z)-OH(9)/P-18:1(9Z));
151 other hits

769.4224 21.08 [M + Na]+ 746.4370 0.70 PG(i-12:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R));
5 other hits

188.0707 2.35 [M + H]+ 187.0633 0.70 Indoleacrylic acid

813.6839 21.40 [M + H]+ 812.6771 0.68 SM(d18:2(4E,14Z)/24:0); 1 other hit

377.2659 13.29 [M + Na]+ 354.2770 0.68 Glyceryl monolinoleate

343.2241 11.17 [M + Na]+ 320.2351 0.67 12-HETE; 39 other hits

AUC: Area under the receiver operating characteristic curve.

Table 5. Tentatively identified negative mode metabolites in low vs. moderate skin disease activity,
using the SVM 10 model.

m/z Retention Time
(min) Adduct Monoisotopic

Mass AUC Tentative ID

212.0026 3.97 [M − H]− 213.0096 0.72 Indoxyl sulfate; 3 other hits

729.1788 11.02 [M + Cl]− 694.2109 0.69 Neocuscutoside C; 3 other hits

464.3020 7.39 [M − H]− 465.3090 0.67 Glyco-beta-muricholic acid; 5 other hits

802.5614 13.14 [M − H]− 803.5676 0.67 PE(PGF1alpha/P-18:0); 38 other hits

343.1707 8.15 [M − H]− 344.1776 0.64 Tamoxifen-ol
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Table 5. Cont.

m/z Retention Time
(min) Adduct Monoisotopic

Mass AUC Tentative ID

667.1419 11.98 [M − H]− 668.1506 0.63 Etoposide Phosphate; 1 other hit

448.3073 8.18 [M − H]− 449.3141 0.63 Glycohyodeoxycholic acid; 7 other hits

388.1559 8.00 [M + Cl]− 353.1852 0.63 Epiroprim

203.08299 3.58 [M − H]− 204.0899 0.63 L-Tryptophan; 13 other hits

AUC: Area under the receiver operating characteristic curve.

Table 6. Tentative identifications of overlapping features between machine learning model groups.

Moderate vs. High
(m/z)

Low vs. Moderate
(m/z)

Low vs. High
(m/z) Tentative Identification

736.2599 736.2599 N/A
215.1279 215.1279 Medium chain fatty acids
680.3549 680.3549 N/A
496.3397 496.3397 Phospholipid, Acylcarnitine
159.1168 159.1168 Exposome—Benzene and derivatives
544.3373 544.3373 Lysophosphatidylcholine
688.3047 688.3047 N/A
116.0708 116.0708 Proline; Exposome-related Metabolites

415.2536 415.2536 Exposome—Peptides
769.4224 769.4224 Oxidized phospholipid
646.2575 646.2575 Exposome—Drug for increasing blood glucose concentration

668.5443 668.5443 DAGs

549.1857 549.1857 549.1857 Exposome—Neoacrimarine I/F

N/A: No tentative identification available for this feature.

3. Discussion

There are two aims in this study: (1) to determine if there are metabolome differences
between PsA patients of low, moderate, and high skin disease activity based on PASI; and
(2) to identify candidate metabolomic markers associated with skin disease activity.

3.1. Models

The serum metabolome differences between PASI classifications were initially assessed
with PCA plots. PCA clusters patients or samples by grouping them based on their similar-
ities, correlations and covariances with each other. However, PCAs in Figures 2 and 3 do
not demonstrate meaningful and visible separation between PASI classes based on metabo-
lite features gathered in this study. Considering that the existing literature has shown
metabolome differences between PsA disease activity, the lack of separation suggests that
PASI scores may not reflect subclinical metabolome differences between PsA patients of
varying disease activity. On the other hand, in Figures 3 and 4, ML models built with select
features were able to determine PASI disease activity classes with good predictability. This
is likely due to PCA and ML models being designed for different functions. PCA models are
generally designed as a dimensionality reduction method wherein features or metabolites
in the samples are linearly combined into new variables called ‘principal components’
based on their covariance [20]. This approach is good for visualizing an otherwise complex
dataset, but original variables (features) may lose meaning because of their transformation
into derived variables (principal components) [20]. However, the ML models selected in
this study are generally applied as methods of classification to identify the features most
important for identifying differences in the sample groups (i.e., classes) [21]. Furthermore,
the features selected for the models were selected based on how informative these features
are for predicting class labels, and non-informative features are removed [21]. Using the
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AUC to measure the performance of these classification models, it is concluded that the
Naïve Bayes (with 40 features), LogRegL (with 80 features), and SVM (with 10 features)
model in Figure 3 has the best performance when predicting low vs. high, moderate vs.
high, and low vs. moderate disease activity, respectively, in positive mode. However, only
the SVM 10-feature model was able to exceed the minimum standard for acceptable perfor-
mance, with an of AUC > 0.7, and only when predicting low and moderate skin disease
activity (Figure 4C). Overall, there are metabolome differences between PsA patients of
varying skin disease severity.

3.2. Metabolite Identification and Biological Significance

Another aim of this study was to identify candidate metabolites that can predict PsA
skin disease activity. The features selected in building the ML models can be identified
to elucidate the specific pathways involved in PsA disease progression. Biologically in-
teresting features tentatively identified include acylcarnitines, oxylipins, lipids, and other
compound classes.

3.2.1. Overlapping Features

Table 6 shows the list of features that were used to create multiple model groups
that classify samples between 2 disease severity groups. It is likely that these overlapping
features are metabolites that are uniquely present for a specific disease severity group,
or their concentrations are noticeably different in that specific disease severity group
compared to other disease severity groups. Thus, the skin disease progression of PsA
could potentially be divided into stages wherein certain biochemical reactions are active
at a stage of the disease but are less active or inactive at another stage. However, given
the lack of information of these specific metabolites in the literature, it is hard to draw
conclusions about which biochemical reactions are of interest in different PsA skin disease
activity stages.

3.2.2. Positive Mode

One such tentatively identified metabolite is platelet-activating factor (PAF), a phos-
pholipid that mediates inflammation, immune responses, and platelet activation and
aggregation [22]. PAF has pro- or anti-inflammatory properties by influencing the produc-
tion of pro- or anti-inflammatory cytokines, regulates T cell activity, affects the endothelial
barrier between tissues and blood vessels, and has other mechanisms [22–24]. In addition,
platelet aggregation and activation, functions of PAF, have been positively correlated with
PASI and are increased in PsA patients [25]. PAF is a tentatively identified metabolite used
in models predicting low vs. high and low vs. moderate disease activity scored by PASI.

Phospholipids are a group of metabolites tentatively identified in features used to
build models predicting all three classes. The cell membrane is largely composed of
phospholipids, and is involved in processes such as cell metabolism, communication,
transport, and other cellular functions [26]. A disturbance in membrane phospholipid
homeostasis can result in the dysfunction of these cellular functions in many disease
states [26]. In patients with PsA or psoriasis, phospholipids experience greater reactive
oxidative species (ROS)-mediated metabolism compared to healthy individuals, leading
to greater amounts of phospholipid products, including oxidized phospholipids [23,26].
Alternatively, oxidized phospholipids can be generated through oxidation via enzymes
such as lipoxygenase [23,24].

Oxidized phospholipids (OxPLs) are another group of metabolites tentatively identi-
fied among features of models predicting all three classes. These metabolites facilitate a
wide range of functions via the activation of receptors, intracellular signaling, mediating
transcription factors, and activation of cell stress pathways [23]. OxPLs with a similar
structure to PAF can bind to PAF receptors to mediate inflammation and platelet aggrega-
tion [22,23]. OxPLs also bind to prostaglandin receptors to activate integrins, facilitating
leukocyte recruitment and inflammation [23]. STAT3, a transcription factor regulating the
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expression of genes for IL-8, a pro-inflammatory chemokine, can be activated by OxPLs [23].
STAT3 is also upregulated in both PsA and psoriasis patients [26]. Oxidized phospholipids
have been found to be elevated in psoriatic skin, and are also associated with cardiovascular
disease, a comorbidity of PsA [24].

Some features used in all three comparison type models were tentatively identified
as acylcarnitines. Acylcarnitines are metabolites involved in fatty acid metabolism and
energy production via beta-oxidation [27]. Psoriasis patients have been shown to exhibit
increased levels of acylcarnitine and carnitines in comparison to healthy individuals [27,28].
However, information on the roles of specific acylcarnitines is sparse in the literature.

Oxylipins and their subset, eicosanoids, were components in models predicting low
vs. high and low vs. moderate disease activity. Oxylipins are typically formed from poly-
unsaturated fatty acids via enzymatic reaction with cyclooxygenases, lipoxygenases, and
cytochrome p450s, or via non-enzymatic reactions [29,30]. Tentatively identified oxylipins
include 12-HETE, Leukotriene B4, and prostaglandins that are pro-inflammatory and are
positively correlated with joint disease activity in PsA patients [30–32]. Leukotriene B4 is a
lipid chemoattractant that recruits leukocytes to sites of inflammation, and 12-HETE can pro-
mote oxidative stress and impacts the signaling pathways involved in inflammation [31,32].

Proline is another tentatively identified metabolite involved in the prediction of high
disease activity vs. low or moderate disease activity. Proline is an important amino acid for
the synthesis of collagen, and may be associated with psoriasis and PsA skin lesions [33].
PsA patients have been found to exhibit increased amounts of degradation products of
collagen in the serum that may originate from cartilage destruction or skin lesions, and
high collagen turnover is suspected in the skin lesions of psoriasis patients [34]. In addition,
as shown in Table 6, proline is a metabolite that could be associated with high disease
activity. Given that the PASI was used to classify disease severity, it is likely that proline
concentration is abnormal due to high collagen turnover in the skin lesions, or joint cartilage
of high-disease-activity-PsA patients.

These models also identified diacylglycerols (DAGs) and monoacylglycerols (MAGs)
as contributors to disease severity. Although information about the role of the specific
DAGs and MAGs tentatively identified is very sparse in the literature, the compound
classes are involved in immune signaling, and regulation. DAGs can act as secondary
messengers and drive the activation, proliferation, and effector functions of several innate
and adaptive immune cells [35]. DAGs can indirectly activate the nuclear factor kappa
light chain enhancer of activated B cells (NF-KB) and extracellular regulated kinase (ERK)
pathways of T cells, B cells, macrophages, and more [35]. MAGs can activate immune
receptors including PPARs that regulate lipid metabolism and control energy production in
the mitochondria, inflammation, cytokine secretion, and more [36].

Many other tentatively identified metabolites in positive mode belong to lipid and
fatty acid compound classes, such as medium- and long-chain fatty acids. In general,
these compound classes are noted to be involved in inflammation and several diseases
with similar manifestations to PsA. Multiple long- and medium-chain fatty acids have
been found to be significantly different between PsA and healthy patients [37]. The roles
of fatty acids include being precursors to pro- and anti-inflammatory eicosanoids, and
regulating immune homeostasis via altering cytokine production, leukocyte recruitment,
and more [30,37,38]. Overall, the results highlight dyslipidemia among PsA patients,
and that lipids and fatty acids can play roles in immune-mediated inflammation and
PsA pathogenesis.

3.2.3. Negative Mode

In negative mode, there was only one model created that had an AUC equal or greater
than 0.7, and this model predicts between low vs. moderate disease activity (Figure 4C).
The features used in that model were identified, and similarly to positive-mode models,
bile acids and phospholipids were tentatively identified.
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Bile acids (Table 5) include Glyco-beta-muricholic acid and Glycoursodeoxycholic
acid. Bile acids were tentatively identified in models distinguishing between moderate
disease activity and high disease activity. Bile acid metabolites in general are involved in
lipid absorption and can mediate immune signaling [39,40]. The receptors Farnesoid-X-
Receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1) are among multiple receptors
that can be activated by bile acids, and are present on many immune cells [39,40]. The
activation of these receptors on macrophages, dendritic cells, and natural killer T cells
can modulate immune response [40]. FXR activation can block NF-KB-mediated pro-
inflammatory responses [39,40]. GPBAR1 activation is also responsible for regulating
pro-inflammatory responses in innate immune cells [40]. Furthermore, these receptors
are involved in the regulation of the nucleotide-binding domain, leucine-rich-containing
family, and pyrin domain-containing-3 (NLPR3) inflammasome [40]. A study by Paine et al.
found ester versions of these bile acids were significantly lower in PsA patients compared
to psoriasis patients [39]. Phosphatidylcholine, phosphatidylethanolamine, their oxidized
versions, and methyl phosphatidylethanolamine are phospholipids that were tentatively
identified in negative mode.

Another interesting feature used in this model is Indoxyl sulfate (Table 5), a metabolite
of Tryptophan and a uremic toxin that accumulate in the body under chronic kidney dis-
ease [41–43]. This metabolite is associated with impairment of bone turnover via inhibition
of osteoblast and osteoclast maturation [43]. Furthermore, this metabolite has been shown
to enhance oxidative stress, thereby promoting pro-inflammatory cytokines [41,42]. Thus,
indoxyl sulfate could be a potential metabolite of PsA that exhibits inflammatory responses
and bone-related health effects.

3.2.4. Limitations

The results from this study agree with the literature examining metabolomic differ-
ences between PsA patients of varying disease activity, or that comparing PsA, psoriasis,
and healthy individuals. However, this study is limited by several factors. Although
all samples were sourced from patients suffering from PsA, the observed metabolome
differences could be confounded by comorbidities, diet, and pharmacotherapy (Table 1).
Some tentatively identified metabolites included unrelated drugs, food biomarkers, and
metabolites associated with other diseases that could influence the expression of other
metabolites. Comorbidities like hypertension, diabetes, and hyperlipidemia share common
inflammatory pathways involving inflammatory cytokines such as tumor necrosis factor
(TNF) [44]. Given these diseases share common pathways, they may also share common
metabolite expressions that could confound the results of our machine learning. According
to Tables S4 and S6, our method detected metabolites such as Hydroxyibuprofen, which is
associated with Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID). The presence
of NSAIDs and other drugs is known to alter the metabolomic profile of mouse serum,
especially for lipid and fatty acid compound classes [45]. In addition, there was a very wide
range in PASI scores for high disease activity, from approximately 10 to 55, whereas low
and moderate PASI scores approximately span a range of 5. Although this is the general
rule applied in a clinical setting, it is uncertain whether a patient with a PASI score of 10
and a PASI score of 55 will exhibit similar disease-related metabolomic markers. Ideally, a
control group of psoriasis patients classified into three groups based on PASI and who do
not have PsA would have helped us identify PsA-specific markers. However, we have not
included such a comparison, which is a significant limitation.

Another point of improvement for this study would be to use a multiple chromato-
graphic methodology and SPME coatings. Although this study used 1:1 HLB:PS-DVB
WAX, a coating that was evaluated to extract a wide range of compounds [46], using
multiple specialized coatings may greatly expand the metabolome coverage for analysis.
Similarly, this study used a chromatographic method developed for fatty acids, but use of
other methods such as an HILIC method for more polar metabolites could also expand the
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metabolome coverage for analysis. This expanded coverage could uncover other classes of
compounds that allow for insights into the disease state.

4. Materials and Methods
4.1. Patients

Serum samples of psoriatic arthritis (PsA) patients satisfying classification criteria
(CASPAR) [47] were obtained from the Schroeder Arthritis Institute Psoriatic Disease
Research Program Biobank. All samples were collected at Toronto Western Hospital
(2006–2021). The PASI of PsA patients was assessed by a trained rheumatologist during
their visit. Patients were further categorized into three subgroups based on skin disease
severity: mild (PASI: <5), moderate (PASI: 5–10), and high (PASI: >10) (Figure 5). Patients
with active infections (<3 months), recent cardiac events/heart disease (<6 months), re-
cent surgery (<6 months), and cancer were excluded from the study, along with patients
receiving any treatment with biologics or targeted synthetic drugs. Sub-groups were sex-
and age-balanced to the fullest possible extent. Full ethics approval was received through
the University Health Network Research Ethics Board. A summary of patient information
such as sex, age, duration of psoriasis, duration of PsA, treatment, and associated comor-
bidities per group can be found in Table 1. Individual patient information can be found in
Tables S12–S14.
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from patients with psoriatic arthritis (PsA; n = 150). PsA patients were classified, based on the
Psoriatic Area Severity Index (PASI), as low (n = 56), moderate (n = 54), or high disease activity
severity (n = 40). The samples were age-balanced and sex-matched for PsA patients. However, due
to low numbers of patients in the high-PASI group, only 28 male and 12 female PsA patients were
included. M: Male. F: Female.

4.2. Materials

We purchased stainless steel combs and the manual concept-96 unit from PAS technolo-
gies (Magdala, Germany), and the dip coater and lab oven from Ni-Lo Scientific (Ottawa,
ON, Canada) and Hogentogler (Columbia, MD, USA), respectively. Oasis hydrophilic–
lipophilic balanced (HLB) particles (45 µm) and polystyrene divinylbenzene with weak
anion exchanger (PS-DVB-WAX) particles (45–65 µm) were purchased from the Waters
Corporation (Milford, MA, USA). HPLC- and LC-MS-grade solvents (acetonitrile, methanol,
water, isopropanol, and acetone), concentrated hydrochloric acid, N,N-dimethylformamide
(DMF), formic acid, and L-ascorbic acid were purchased from Fisher Scientific (Waltham,
MA, USA). We purchased the following internal standards and chemicals: arachidonic
acid-d8, nordiazepam-d5, diazepam-d5, and polyacrylonitrile (Millipore Sigma [Burlington,
MA, USA]), dihomo-gamma-linolenic acid-d6, docosahexaenoic acid-d5, ketoconazole-d3,
lignoceric acid-d3, progesterone-d9, docosapentaenoic acid-d5, eicosapentaenoic acid-d5,
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itraconazole-d5, alpha-linolenic acid-d5, oxazepam-d5, palmitoleic acid-d13, and tauro-
cholic acid-d4 (Cayman Chemicals [Michigan, MI, USA]), and polyunsaturated fatty acid
LC-MS mixture, saturated/monounsaturated fatty acid LC-MS mixture, short-chain fatty
acid LC-MS mixture, and short-chain fatty acid mixture 2 (Cayman Chemicals, Ann Ar-
bor, MI, USA). Deep 1 mL 96-well plates were purchased from Canadian Life Science
(Peterborough, ON, Canada).

4.3. Quality Assurance and Quality Control

For quality assurance and quality control, the samples and desorption solution were
injected with isotopically labeled compounds as internal standards. The purpose of internal
standards within the desorption solution is to monitor the instrument stability during data
acquisition. The internal standards within the samples allow the monitoring of extraction
efficiency and technical variability during the sample preparation process in addition to
the instrument stability during data acquisition.

Briefly, 200 µL of each sample was diluted with 400 µL of phosphate-buffered saline
(PBS), which contained the following deuterated standards: docosapentaenoic acid-d5,
eicosapentaenoic acid-d5, itraconazole-d5, alpha-linolenic acid-d5, oxazepam-d5, palmi-
toleic acid-d13, taurocholic acid-d4, and nordiazepam-d5. The resulting concentration
of each internal standard prior to extraction was 250 ng/mL. The desorption solution
contained the following deuterated standards at a concentration of 250 ng/mL: dihomo-
gamma-linolenic acid-d6, ketoconazole-d3, diazepam-d5, progesterone-d9, lignoceric acid-
d3, docosahexaenoic acid-d3, and arachidonic acid-d8.

Internal standards oxazepam-d5, itraconazole-d5, taurocholic acid-d4, and nordiazepam-
d5 were recovered in the samples, while ketoconazole-d3, diazepam-d5, progesterone-
d9, docosahexaenoic acid-d5, and dihomo-gamma-linolenic acid-d6 were recovered in
desorption solution in positive mode, with a maximum variation of 34%. In negative
mode, internal standards oxazepam-d5, docosapentaenoic acid-d5, taurocholic acid-d4,
and eicosapentaenoic acid-d5 were recovered in the sample, while docosahexaenoic acid-
d5, dihomo-gamma-linolenic acid-d3, arachidonic acid-d8, and lignoceric acid-d3 were
recovered in desorption solution in negative mode, with a maximum variation of 35%.

Instrument stability during data acquisition was monitored via periodic injection of
instrumental quality controls (InstQCs) after every ten samples.

In positive mode, the following compounds were monitored: stearidonic acid, alpha-
linolenic acid, eicosapentaenoic acid, arachidonic acid, dihomo-gamma-linoleic acid, do-
cosahexaenoic acid, docosapentaenoic acid, adrenic acid, 18:1(d7) Monoacylglyceride,
18:1(d7) Lyso PE, 18:1(d7) Lyso PC, 15:0-18:1(d7) diacylglyceride, 18:1(d7) chol ester, 15:0-
18:1(d7) PE, d18:1-18:1(d9) SM, 15:0-18:1(d7) PC, trans-m-Coumaric acid, 18:1 monoacyl-
glyceride, 18:1 Lyso PE, C15 ceramide, 15:0-18:1 diacylgleride, 15:0-18:1 PE, d18:1-18:1 SM,
and 15:0-18:1 PC. The compounds were recovered with variations between 7–25%.

In negative mode, the following compounds were monitored: Hexanoic acid, Oc-
tanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, lauric acid, myristic acid,
palmitoleic acid, palmitic acid, stearidonic acid, alpha-linolenic acid, gamma-linolenic
acid, linoleic acid, stearic acid, eicosapentaenoic acid, arachidonic acid, dihomo-gamma-
linoleic acid, arachidic acid, docosahexaenoic acid, docosapentaenoic acid, adrenic acid,
nervonic acid, lignoceric acid, 15:0-18:1(d7) PE, 18:1(d7) Lyso PE, dodecanedioic acid, 1,11-
undecanedicarboxylic acid, 15:0-18:1 PE, 18:1 Lyso PE, and C15 ceramide. The compounds
were recovered with variations between 2–22%.

4.4. Preparation of Solid-Phase Microextraction (SPME) Devices

SPME devices were prepared using a dip-coating method optimized in the Schroeder
Arthritis Institute—Centre for Arthritis Diagnostic and Therapeutic Innovation: Metabolomics
Core Facility. Stainless steel blades were first cleaned with HPLC-grade IPA (sonicated,
30–45 min) followed by HPLC-grade water (sonicated, 10–15 min). The blades were then
etched in concentrated hydrochloric acid for 1 h in accordance with a previously well-
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established protocol [48]. After washing thoroughly with distilled water, blades were dried
in an oven overnight at 45 ◦C. A specialized software-operated dip-coating machine was
used to coat the stainless steel support with a slurry mixture consisting of 7% w/v 1:1 HLB
and PS-DVB-WAX particles in 7% polyacrylonitrile (PAN) solution. After each layer of
particles was applied, the freshly coated blades were placed in an oven to cure for 1 min at
150 ◦C. A total of 12 layers were applied to each blade, which resulted in a final coating
dimension that was 2 cm long with an average thickness of 0.3 mm. Blades were assembled
to form SPME brushes, which were capable of performing high-throughput extractions
in 1 mL deep well 96-well plates. Before use, the devices were cleaned with a solution
of 50:25:12.5:12.5 (v/v/v/v) water:methanol:acetonitrile:isopropanol using the concept-96
manual kit (20 min, 1500 rpm, 30 ◦C, repeat 3 times).

4.5. Solid-Phase Microextraction (SPME) for Sample Preparation

Serum sample extracts were prepared using SPME devices, which consisted of thin
stainless steel blades coated with a 1:1 mixture of HLB and PS-DVB-WAX particles. All
samples were block randomized across two 96-well plates, and 200 µL of each serum
sample was added to its respective well. After gentle agitation of the as-prepared samples
for 30 min at 500 rpm, samples were ready for SPME extraction. Prior to extraction, SPME
devices were mounted on the Concept-96 manual kit and conditioned in a mixture of 1:1
methanol:water (v/v) for 30 min at 1500 rpm. Following conditioning, the device was rinsed
in water for 15 min at 1500 rpm. Immediately after device pre-conditioning and rinsing,
agitated serum samples in PBS were exposed to the blades for 1 h at 1500 rpm for extraction
of metabolites onto the solid phase coating. After extraction, the device was rinsed in a
mixture of 90:5:5 (v/v/v) water:methanol:acetone for 10 s at 500 rpm to remove any loosely
attached matrix components. Metabolites extracted onto the devices were desorbed for 1 h
at 1500 rpm in 600 µL of 4:3:3 methanol:acetonitrile:water (v/v/v) + 0.1% ascorbic acid. For
optimal compatibility with the LC-MS methodology, the desorption solution was diluted
with 400 µL of 45:30:25 soproanol:acetonitrile:methanol (v/v/v) to produce a final extract
composed of 3:3:3:1 isopropanol:methanol:acetonitrile:water) (v/v/v/v). A pooled quality
control (QC) sample was prepared by combining 10 µL of each sample extract. The pooled
QC was injected approximately every 10 sample injections during instrumental acquisition.

4.6. Instrumental Analysis

A liquid chromatography–high-resolution mass spectrometry (LC-HRMS) method for
fatty acid analysis of serum samples was used to perform a discovery-based untargeted anal-
ysis in this study. The analysis was conducted at the Schroeder Arthritis Institute—Centre
for Arthritis Diagnostic and Therapeutic Innovation: Metabolomics Core Facility using
a Vanquish autosampler and pump coupled to a Q-Exactive Plus Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). An accucore
C30 HPLC column (100 mm × 2.1 mm, 2.6 µm) (Thermo Fisher Scientific, Waltham, MA,
USA) was used for chromatographic separation. For positive ion mode analysis, chromato-
graphic separation was achieved via gradient elution over 30 min using mobile phases
consisting of 99.9/0.1 water/formic acid (v/v) and 99.9/0.1 methanol/formic acid (v/v).
The mass spectrometer was run at high resolution (70,000), and data were acquired within
an m/z range of 75–1000 with an automatic gain control target of 1E6 and an injection time
of 50 ms. For negative ion mode analysis, chromatographic separation was achieved via
gradient elution over 20 min using mobile phases consisting of 99.9/0.1 water/formic acid
(v/v) and methanol. The mass spectrometer was run at high resolution (70,000), and data
were acquired within an m/z range of 75–1000 with an automatic gain control target of
1 × 106 and an injection time of 50 ms. Further details on the gradient elution used can be
found in Tables 7 and 8.
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Table 7. Liquid chromatographic gradient used for separation in positive mode with an accucore C30
HPLC column (100 mm × 2.1 mm, 2.6 µm).

Time (min) % Mobile Phase B
(Methanol + 0.1% Formic Acid)

0 5

1 5

20 100 (curve 3)

22.5 100

25 5

30 5

Table 8. Liquid chromatographic gradient used for separation in negative mode with an accucore
C30 HPLC column (100 mm × 2.1 mm, 2.6 µm).

Time (min) % Mobile Phase B (Methanol)

0 0

2 0

12 100 (curve 3)

15 100

18 0

20 0

4.7. Data Pre-Processing and Statistical Analyses

Acquired LC-MS data files were pre-processed using Compound Discoverer 3.3 [49],
proprietary data processing software developed by Thermo Fisher Scientific (Waltham,
USA). With Compound Discoverer 3.3 (Thermo Fisher Scientific [Waltham, MA, USA]),
the data were normalized via SERRF, a QC-based normalization method for large-scale
untargeted metabolomics data. Peak lists generated by both platforms were filtered to
meet the following conditions: (1) Positive mode: features with a pooled-QC: solvent-
blank or pooled-QC:fiber-blank peak intensity ratio of <5 were removed from further
statistical evaluation. (2) Negative mode: features with a pooled-QC: solvent-blank or
pooled-QC:fiber-blank peak intensity ratio of <5 were removed. All multivariate data
analysis was performed using MetaboAnalyst 5.0, wherein the data were subjected to a
generalized log-transformation and pareto scaling unless otherwise stated.

Predictive features were identified by first testing each feature individually with five
classifiers: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector machine
(SVM), logistic regression (LR) and random forest (RF). Each feature received an area under
the curve (AUC) score from each classifier, and then features were ranked by their best
AUC scores. The top k features were then used as an input for each classifier, where k was 1,
2, 5, 10, 20, 40, 80. Model testing was conducted using 10-fold cross-validation (10-fold CV).

5. Conclusions

In this study, sample preparation with Thin-Film SPME with LC-HRMS analysis
facilitated the untargeted metabolomics assessment of psoriasis disease activity in serum
samples obtained from PsA patients classified according to the PASI. The PCA did not
exhibit any clear separation between PASI-based disease activity groups, but machine
learning models were able to predict disease activity to an acceptable degree of success.
Features used in the creation of successful ML models were tentatively identified, and
commonly belong to compound classes like bile acids, lipoxins, and phospholipids. These
compounds have been found to be associated with pathways such as fatty acid metabolism
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and immune-mediated pathways that have been implicated in PsA. This opens a possible
direction for future research in metabolite differences based on disease severity in psoriatic
arthritis disease. A follow-up study using the same SPME-LC-MS method should be
conducted to confirm the results, but should include rigorous patient selection to account
for comorbidities, treatments, and should also include rigorous MS/MS spectral validation.
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