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Abstract: Diabetes mellitus is a metabolic disorder associated with various complications encompass-
ing male reproductive dysfunction. The present study aimed to investigate the therapeutic potential
of biologically active Lepidium sativum seed oil (LSO) against the testicular dysfunction associated with
streptozotocin (STZ)-induced diabetes. Male adults (n = 24) were divided into four groups: control,
LSO-administered, diabetic (D), and LSO-treated diabetic (D+LSO) groups. LSO was extracted from
L. sativum seeds, and its chemical composition was determined using GC-MS. Serum testosterone
levels, testicular enzymatic antioxidants (catalase (CAT) and superoxide dismutase (SOD)), an oxida-
tive stress (OS) biomarker, malondialdehyde (MDA), pro-inflammatory markers (NF-kB, IL-1, IL-6,
and TNF-α), and the expression level of NF-kB were assessed. In addition, histopathological changes
were evaluated in testicular tissues. The results obtained showed that the chemical composition of
LSO indicated its enrichment mainly with γ-tocopherol (62.1%), followed by 2-methylhexacosane
(8.12%), butylated hydroxytoluene (8.04%), 10-Methylnonadecane (4.81%), and δ-tocopherol (3.91%).
Moreover, LSO administration in the D+LSO mice significantly increased testosterone levels and
ameliorated the observed testicular oxidative damage, inflammatory response, and reduced NF-kB
expression compared to the diabetic mice. Biochemical and molecular analyses confirmed the histo-
logical results. In conclusion, LSO may prevent the progression of diabetes-induced impairment in
the testes through inhibition of the OS- and NF-kB-mediated inflammatory response.

Keywords: Lepidium sativum L. seed oil; diabetes mellitus; testis; oxidative stress; inflammation;
histopathology

1. Introduction

Diabetes mellitus (DM) is an intricate metabolic disorder that results in persistent high
blood glucose levels or hyperglycemia [1]. Being linked to an increased risk of micro- and
macrovascular diabetic complications, prolonged hyperglycemia is generally associated
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with lower quality of life and responsible for the morbidity and mortality assigned to
diabetes [2,3]. Multiple body organs are affected by micro- and/or macrovascular diabetic
complications, resulting in their damage, dysfunction, and eventual failure [4,5]. Repro-
ductive dysfunction is one of the adverse effects of diabetes in both humans and animal
models [6–9]. Recently, it was reported that type 1 and type 2 diabetes (T1DM and T2DM,
respectively) adversely affected the sperm quality and histopathology of reproductive
organs in T1DM and T2DM mice with a great extent of similarity. However, the severity
of reduced sperm concentration and precocious acrosome exocytosis were significant in
T1DM compared to T2DM animals [10]. A substantial number of male diabetic subjects
of reproductive age experience infertility, where the prevalence of infertility in diabetic
men ranges from 35% to 51% [11–13]. In DM patients, various mechanisms are involved
in the etiology of male infertility, including pre-, testicular, and post-testicular ones. The
involvement of such mechanisms may differ depending on the type of diabetes (T1DM
or T2DM), disease duration, and metabolic compensation of glycemic impairment [6].
Pre-testicular mechanisms involve central as well as peripheral hypogonadism, leading
to decreased serum levels of gonadotropins, including follicle-stimulating hormone (FSH)
and luteinizing hormone (LH), and testosterone (T) [14,15]. Indeed, high incidence of
hypogonadism has been previously reported among type 2 diabetic men [16–19]. Moreover,
a large amount of pre-clinical and clinical evidence supports substantial association be-
tween DM-related metabolic derangements and reduced serum testosterone levels [20,21].
At the testicular level, changes resulting from DM encompass increased OS consequent
to overproduction of ROS and eventual lipid peroxidation (LPO) in seminal fluid, DNA
fragmented sperms, altered mitochondrial bioenergetics, and the formation of advanced
glycated end-products (AGEs) [22–25]. Moreover, plausible post-testicular mechanisms
associated with DM include male accessory gland infection/inflammation (MAGI) and erec-
tile and/or ejaculatory dysfunction. These pathogenic mechanisms result in altered sperm
parameters, damaged sperms, and/or premature or delayed ejaculation, anejaculation, or
retro-ejaculation [26–28].

Glucose metabolism in Sertoli cells (SCs) is crucial for the normal development of
germ cells [29,30]. In addition, it is involved in maintaining fundamental cell activity
as well as the motility and fertilizing ability of mature sperms [31]. However, chronic
hyperglycemia triggers the activation of many pathological pathways associated with
the development of diabetic complications, including elevated production of advanced
glycated end-products (AGEs), the polyol pathway, the protein kinase C (PKC) pathway, the
hexosamine pathway, and mitochondrial damage [32,33]. Upregulation of these pathways
results in the overproduction of free radicals, including reactive oxygen species (ROS) and
the decreased efficiency of antioxidant defense systems, which eventually lead to oxidative
stress (OS) and increased cell death [34–36]. Indeed, increased OS is one of the major
sources of the hyperglycemia-induced triggers of diabetic complications [37–39]. In this
regard, it has been reported that many of the diabetes-induced molecular changes, that
greatly influence sperm quality and function, are attributed to the increase in OS [40–42].
In fact, the male reproductive system is extremely vulnerable to OS mostly due to the
restricted antioxidant enzyme systems in spermatozoa as well as the enrichment of sperm
cell membranes with polyunsaturated fatty acids (PUFAs), rendering sperms extremely
sensitive to ROS assault which ultimately leads to lipid peroxidation [43]. Consequent
production of lipid peroxides and the disruption of membrane integrity extremely affect the
viability and function of sperm cells, resulting in impaired motility and reduced fertilization
capacity [44]. In addition to lipid peroxidation, sperm motility as well as fertilization
ability are adversely affected by the ROS-induced oxidative damage of the proteins and
nuclear DNA of sperm cells [45,46]. Moreover, hyperglycemia-induced overproduction
of ROS generation has the potential to exacerbate mitochondrial dysfunction, eventually
resulting in mitochondrial OS which ultimately leads to the apoptosis of spermatozoa
and reduced viability of sperms [47,48]. In addition to disruption of antioxidant and
mitochondrial mechanisms, hyperglycemia-induced ROS overproduction triggers the
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production of downstream inflammatory factors. OS is known to modulate NF-kB signaling
pathway, thus initiating the activation of downstream inflammatory signaling pathways,
resulting in the release of inflammatory factors such as IL-1, IL-6, and TNF-α [49,50]. Besides
OS, inflammation is one of the common influencing causes that trigger damage to the male
reproductive system as a result of diabetic complications [51,52]. Many studies have stated
that hyperglycemia-induced pro-inflammatory factors could influence testicular cells or
tissues [23,53]. Moreover, they can stimulate ROS generation, including nitric oxide (NO),
which prolongs inflammatory reactions and can affect spermatogenesis, sperm maturation,
and diminish semen quality [54–57].

Previous research has shown that conventional treatment of diabetes, whether using
insulin or oral hypoglycemic medications, can have serious side effects and is ineffective in
preventing the onset of numerous complications related to diabetes [58]. Therefore, there
is an urgent need to implement safe compounds with plausible protective effects against
oxidative and inflammatory changes induced by diabetes. In this regard, several studies
have demonstrated the benefits of various medicinal plants and their derived bioactive
phytochemicals in the management of diabetes-induced male infertility [59–62]. Lepidium
sativum L., also known as Garden cress/Hab El Rashad, is a comparatively fast-growing
annual herb that belongs to the family Brassicaceae [63]. It is native to Southeast Asia
and Northeast Africa, and it is cultivated all over the world nowadays [64]. L. sativum
possesses numerous pharmacological effects, namely antioxidant and anti-inflammatory
activities; hence, it is commonly used in traditional medicine worldwide [65,66]. Secondary
metabolites such as flavonoids, tannins, glycosides, polyphenols, lectin, and the mucilage
were revealed by a phytochemical analysis of L. sativum extract [67–69]. The chemical
composition of the plant’s seeds encompasses, among others, essential oils, fatty oils,
fatty acids, carbohydrates, proteins, vitamins, flavonoids, alkaloids, isothiocyanate, and
glycosides [68,70]. Moreover, natural antioxidants, such as tochopherols, are enriched in
the seed extract [64]. In the field of folk medicine, the leaves and seed oil of L. sativum are
known for their role in the treatment of various inflammatory disorders, including diabetes
mellitus, asthma, and hepatitis [71–75]. Regarding diabetes-induced adverse effects on the
male reproductive system, it was shown that L. sativum seed extract, as an antioxidant,
played a beneficial protective role against the STZ-induced histopathological damage of the
prostate gland and epididymis by preventing OS [76,77]. Moreover, improvement of semen
parameters, sperm function, and sexual behavior have been observed in diabetic mice due
to the cooperative ameliorative effects of L. sativum and co-enzyme Q10 (CoQ10). Such
protective effects are partially mediated, at least, via their regulatory actions on the HPG
axis through the triggering of the overexpression of the gonadotropin-releasing hormone
(GnRH) gene and elevation in the production or secretion of LH, FSH, and testosterone [78].
Nevertheless, the preventive effect of L. sativum seed oil (LSO) on the basal cellular and
molecular parameters of the male reproductive system has not been demonstrated at
present. Hence, we hypothesize that L. sativum may be a plausible therapeutic alternative
to conventional therapy for male infertility. In fact, there are now no specific treatments for
diabetic testis lesions. The current study aimed to investigate the chemical compounds of
L. sativum seed oil (LSO) and its potential role in mitigating the progression of diabetes-
induced testicular impairment in a STZ-diabetes-induced mouse model.

2. Results
2.1. Identification of the Bioactive Compounds in LSO by GC-MS Analysis

Ten components representing 100% of the total fixed oil were identified in LSO. The
GC-MS chromatogram in Figure 1 depicts peaks based on retention time (RT) and area %.
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Figure 1. GC-MS spectral analysis of LSO.

The data revealed high percentage of two forms of vitamin E (66.01%), including γ

tocopherol (γT; 62.1%) and δ-tocopherol (δT; 3.91%) (Table 1). In addition, alkanes (24.22%),
antioxidant phenol derivatives (8.04%), and alcohol (1.73%) were also detected.

Table 1. Chemical components identified in LSO using GC-MS spectral analysis.

Peak No. Retention Time (RT) Area% Compound Name

1 14.72 8.04 Butylated Hydroxytoluene

2 17.032 1.82 Tridecane, 1-iodo-

3 18.153 2.72 2-methyloctacosane

4 19.142 3.91 δ-Tocopherol

5 20.123 4.81 10-Methylnonadecane

6 25.975 2.67 2-methyltetracosane

7 26.325 1.73 Z-6-Pentadecen-1-ol acetate

8 27.393 8.12 2-methylhexacosane

9 28.701 62.1 γ-Tocopherol

10 29.041 4.08 Tetracosane, 1-bromo-

2.2. Serum Testosterone Level in Diabetic Mice Treated with/without LSO

As shown in Figure 2, STZ-induced diabetes led to a significant decrease (−75%)
in serum testosterone (T) in the diabetic mice compared to the control group. Mean-
while, the administration of LSO to the diabetic mice produced a significant increase
(+128.5%) in serum testosterone levels compared to the diabetic mice group. However,
serum testosterone was not completely restored to normal levels, and a significant decrease
was observed in the D+LSO mice compared to the control and LSO groups.
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Figure 2. Effect of LSO on serum testosterone levels in diabetic mice with STZ-induced testicular
toxicity. Data are expressed as the mean ± SE (n = 6 per group). Bars with different letters are
significantly different from each other (p < 0.05).

2.3. Redox Status in the Testes of Diabetic Mice Treated with/without LSO

The activities of the testicular enzymatic antioxidants SOD and CAT in the diabetic
group demonstrated significant decreases of −71.2% and −55.9%, respectively, compared
to the control group (Figure 3A,B). Conversely, treatment of the diabetic mice with LSO
resulted in a significant increase in SOD (+108.4%) and CAT (+52.6%) activities compared to
the diabetic mice. Moreover, it was observed that the testicular MDA level was significantly
increased (+270.7%) in the diabetic mice compared to that of the control. On the other hand,
the MDA level in the D+LSO group was significantly decreased (−28.9%) compared to the
diabetic mice (Figure 3C).
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2.4. NF-kB and Pro-Inflammatory Cytokines in the Testes of Diabetic Mice Treated with/without LSO

To assess the anti-inflammatory role of LSO, the testicular protein level of the NF-kB
p65 subunit was determined using ELISA, as shown in Figure 4A. It was significantly
increased (+254.7%) in the diabetic mice compared to the control and LSO. However, it was
significantly decreased (−39.4%) in the D+LSO-treated group compared to the diabetic one.
In addition, the level of testicular pro-inflammatory cytokines, IL-1, IL-6, and TNF-α, was
also assessed. Our data showed a significant increase in the levels of IL-1 (+146.5%), IL-6
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(+139.1%), and TNF-α (+184.4%) in the diabetic mice compared to the control (Figure 4B–D).
Conversely, in the D+LSO mice, treatment of the diabetic mice with LSO significantly
reduced IL-1 by −40.5%, IL-6 by −37.4%, and TNF-α by −40.3% when compared to the
corresponding levels in the diabetic group.
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2.5. NF-kB p65 Subunit Expression in the Testes of Diabetic Mice Treated with/without LSO

To further confirm the involvement of NF-kB in the pathway via which LSO modu-
lates the inflammatory response, the expression of testicular NF-kB was assessed using
Western blot analysis (Figure 5A). NF-kB p65 subunit expression was notably upregulated
in the diabetic mice compared to the control and LSO groups (by +76.81% and +76.13%,
respectively). Whereas downregulation of NF-kB expression was observed upon LSO
administration in the D+LSO mice by −31.12% compared to the diabetic mice (Figure 5B).
The data suggested the impact of the NF-kB pathway on the LSO therapeutic action against
testicular damage in the diabetic mice model.
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2.6. Effect of LSO on Testicular Histoarchitecture in the Diabetic Mice Treated with/without LSO

Figure 6 shows the representative photomicrographs and histopathological scoring
of testes in all studied groups. Seminiferous tubules with normal spermatogenesis stages
were observed in the control group (Figure 6A). The LSO group revealed no changes
similar to the control (Figure 6B). STZ-induced diabetes resulted in marked damage in
the seminiferous epithelium, and empty/atrophied tubules were predominant in this
group. Germinal cell death was also notable. In addition, there was obvious edema in the
interstitial space and sloughing (detachment) in the germinal epithelial layer (Figure 6C).
Conversely, the testes of the D+LSO mice exhibited little degeneration in the interstitial
space and lesser detachment in the germinal layer, and the tubular lumen was filled
with spermatids, indicating improvement in spermatogenesis series. However, edema,
congestion, and few epithelial detachments were still found (Figure 6D). The mean JTBS
(Figure 6E) in the diabetic group (D) significantly decreased by −64.5% compared to the
control group, revealing atrophy and hypospermatogenesis. However, treatment of the
diabetic mice with LSO significantly increased the mean JTBS value by +63.85% in the
D+LSO group compared to that recorded in the diabetic (D) group alone.
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ing a normal spermatogenic pattern, the diabetic group (C) demonstrating marked tubular atrophy 

Figure 6. Light micrographs of testicular tissues of the experimental groups. Control group
(A) exhibiting a regular seminiferous tubule with complete spermatogenic series, the LSO group
(B) showing a normal spermatogenic pattern, the diabetic group (C) demonstrating marked tubular
atrophy and interstitial edema, the D+LSO group (D) indicating noticeable preservation in seminif-
erous tubule histoarchitecture, and (E) the JTBS score. Bars with different letters are significantly
different (p < 0.05) between groups. Hematoxylin and eosin (H, E) staining, original magnification
400×. Spermatozoa (SP), seminiferous tubules (arrows), interstitial tissue (IT), atrophic seminiferous
tubules (asterisks), desquamation (D), edema (E), and congestion (C).

3. Discussion

Diabetes mellitus (DM) is a recognized cause of male sexual dysfunction, which may
lead ultimately to sub/infertility. Nearly half of diabetic men have reduced semen quality
and exhibit reproductive dysfunction [9]. The underlying mechanisms involve, among
others, chronic hyperglycemia-induced oxidative stress, inflammation, neuropathy, and
insulin resistance (IR), resulting in a reduction in the level of reproductive hormones
(FSH, LH, and testosterone) as well as structurally injured male reproductive organs [9,79].
Thus far, the treatment of DM-associated male reproductive dysfunction is challenging, as
no established medication that specifically addresses the reproductive health of diabetic
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patients is available [9]. Knowing that OS is a main cause of damaged reproductive
organs, natural products (NPs) with antioxidant capacity can thus be used as supplements
for the prevention and/or treatment of diabetic complications, including reproductive
dysfunction. To our knowledge, the current study is the first to demonstrate the protective
effect of L. sativum seed oil (LSO) against diabetic-induced male reproductive dysfunction.
LSO exhibited antioxidant activity as it restored normal levels of enzymatic antioxidants
and oxidative stress biomarkers. Moreover, LSO showed anti-inflammatory effects via
modulating the levels of inflammatory molecules, including NF-kB, IL-1, IL-6, and TNF-α.
In addition, LSO was able to restore normal levels of testosterone.

GC-MC spectral analysis revealed the presence of ten bioactive components in LSO,
the major of which were two forms of vitamin E, namely γ-tocopherol (62.1%) and δ-
tocopherol (3.91%), followed by six alkanes (24.22%), the antioxidant phenol derivative
butylated hydroxytoluene (BHT; 8.04%), and an alcoholic compound (1.73%). Many of these
bioactive components possess antioxidant and/or anti-inflammatory activities and hence a
wide range of applications, including potential therapeutic benefits. Our data are consistent
with those of Umesha and Naidu, who found that feeding rats on a diet with LSO increased
blood tocopherol levels and elevated the activity of antioxidant enzymes [80]. Indeed, forms
of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), and γ-tocotrienol (γ-T3) are strong
natural therapeutic antioxidants and known to possess anti-inflammatory effects against
various diseases with an underlying inflammatory, redox, or malignant component [81,82].
Furthermore, butylated hydroxytoluene (BHT) is a lipophilic organic substance widely
used to prevent free radical-mediated oxidation in organic fluids, and its therapeutic
implications have been previously suggested [83–85]. In addition to the above-mentioned
components, the 2-methyltetracosane alkane detected in the LSO extract is known to possess
free radical scavenging activity and proposed antibacterial activity [86,87]. Also, LSO
contains tetracosane which has previously been reported as an antioxidant and anticancer
alkane compound [88]. The presence of such bioactive compounds in LSO may be a key
factor in reducing the free radicals resulting from hyperglycemia in STZ-induced diabetic
mice. Oxidative stress is a key mechanism associated with the onset of diabetic issues. In
diabetes, hyperglycemia increases mitochondrial glucose oxidation which results in ROS
release into the cell cytoplasm, promoting pro-oxidants over antioxidants [35,89,90]. In the
present research, the administration of LSO to the STZ-induced diabetic mice impeded OS
in testicular tissues, as evidenced by the increase in the enzymatic activities of CAT and
SOD and the decrease in the levels of MDA. Similarly, other reports have shown the potent
antioxidant properties and improvement in testicular antioxidants exerted by other seed
oils via increasing the overall levels of endogenous antioxidants [91,92].

Indeed, inflammation is known to play an emerging role in the pathophysiology
of diabetes, whereby various inflammatory pathways and biomarkers of inflammation
are involved [93]. Moreover, it has been previously reported that the innate immune
and inflammatory responses are involved in the progression of hyperglycemia-induced
secondary diabetic complications [94]. The transcription factor nuclear factor kappa B
(NF-kB) plays a major role in innate immunity and inflammatory responses. Moreover, it
is also involved in the modulation of responses to various stimuli, including free radicals
and cytokines [95,96]. Remarkably, chronic hyperglycemia and the concurrent increased
levels of advanced glycation end products (AGEs) and their receptors (RAGE) as well as
OS activate NF-kB by various pathways that subsequently trigger the expression of various
pro-inflammatory cytokines, including IL-1, IL-6, and TNF-α, which are crucial for the
development of inflammation in diabetes and other chronic diseases [97–99]. Our data
revealed a substantial increase in the levels of testicular inflammatory markers, NF-kB,
IL-1, IL-6, and TNF-α, in the diabetic mice compared to the control. In accordance with
our findings, previous studies have reported high levels of inflammation in diabetic rat
testes [100–102]. Notably, the administration of LSO to the diabetic mice resulted in anti-
inflammatory effects, as indicated by reduction in the elevated pro-inflammatory cytokines
in the D+LSO mice, a modulatory effect associated with decline in NF-kB expression.
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Previous studies have reported the anti-inflammatory effects of LSO [73,103,104],
which is probably attributed to the inhibition of the NF-kB signaling pathway. Moreover,
vitamin E forms, representing the major components in LSO extracted in the current
study, scavenge reactive nitrogen species (RNS) and suppress pro-inflammatory signaling
such as NF-kB [105,106]. In addition, it has been reported that butylated hydroxytoluene
(BHT) and γ-tocopherol (γT) contribute to L. sativum’s anti-inflammatory, antioxidant, and
immunomodulatory properties [65].

It has been demonstrated that spermatogenesis and steroidogenesis are inhibited by
hyperglycemia-induced OS and increased levels of pro-inflammatory markers, IL-1 and
TNF-α [56,107,108]. Moreover, previous in vitro and in vivo studies have revealed the
inhibition of testosterone (T) production induced by LH consequent to the inhibitory effect
exerted by IL-1 and TNF-α on Leydig cells [109,110]. In line with these findings, a significant
decrease in serum testosterone levels in the STZ-induced diabetic mice was observed
compared to the control. Treatment with LSO markedly restored testosterone levels in the
D+LSO mice compared to the diabetic group. Comparably, improvement in testosterone
levels in diabetic animal models has been previously reported upon treatment with seed oil
extracted from various medicinal plants [91,92]. The restoration of the serum testosterone
levels in the diabetic mice treated with LSO (D+LSO) when compared to the STZ-induced
diabetic mice affirms the therapeutic potential of LSO on testicular tissues in diabetic mice.
Owing to the reported antioxidant and anti-inflammatory effects of LSO [73,80,111], the
protective effect of LSO on testicular tissues is attained via the reduction of oxidative
damage and suppression of inflammation induced by hyperglycemia. Moreover, STZ
induction of diabetes resulted in damaged testicular tissue and hypospermatogenesis
as indicated by JTBS. This may be explained by the hyperglycemia-induced increased
generation of free radicals and the reduced activity of antioxidant enzymes in the testicular
tissues, the elevated levels of pro-inflammatory markers, the suppression of gonadotropin
and testosterone release, and the inhibition of steroidogenesis [91,112,113].

4. Materials and Methods
4.1. Plant Material

The Lepidium sativum L. seeds were purchased from a local market in Hofuf city,
Al-Ahsa, Saudi Arabia.

4.2. Extraction of Fixed Oil

The Lepidium sativum L. seeds were ground using an electrical grinder to a fine powder;
then, 470 g of the seed powder was extracted with petroleum ether (40–60 ◦C):diethyl ether
(1:1 v/v) until it was clear using the soxhlet apparatus at 40 ◦C. The solvent was removed
under reduced pressure. The total fixed oil was quantified as previously described [114]
and kept at 4 ◦C for further analysis.

4.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of LSO

The chemical composition of LSO was identified using a GCMS-QP2010 SE gas
chromatograph-mass spectrometer (SHIMADZU, Kyoto, Japan) with a direct capillary
column Rtx–5MS (30 m × 0.25 mm × 0.25 µm film thickness). The temperature of the
column oven was first maintained at 50 ◦C (2 min hold), then raised by 10 ◦C/min to
150 ◦C, and after that to 300 ◦C by 10 ◦C/min. The injector temperature was maintained at
250 ◦C. At a constant flow rate (1 mL/min), helium was employed as a carrier gas. Samples
of 1.0 µL were inoculated automatically by an AOC-20S Auto sampler attached with GC in
the splitless mode. Electron ionization (EI) mass spectra were obtained at 70 eV ionization
voltages over the range of m/z 20–500 in full scan mode. The temperatures of the ion
source and transfer line were set to 250 and 300 ◦C, respectively. The constituents were
recognized by comparing their retention times and mass spectra with those of the NIST 05
mass spectral database.
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4.4. Animals

Twenty-four adult (8 weeks old) male mice (25~28 g) obtained from an animal fa-
cility at King Faisal University, Saudi Arabia, were used in this study. The mice were
main-tained under standard conditions with a 12 h light/dark cycle, a temperature of
(~20–22 ◦C), and 40–60% relative humidity. The animals were given regular food with wa-
ter ad libitum. All experimental procedures were followed according to relevant guidelines
and regulations for experimental animal use in research established by the Deanship of
Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King
Faisal University (KFU-REC-2023-MAR-ETHICS734).

4.5. Induction of Diabetes

Overnight-fasted mice were induced by a single intraperitoneal (i.p.) injection of
50 mg/kg in 0.1 mol/L citric acid buffer, pH 4.5 streptozotocin (STZ; Sigma, St. Louis, MO,
USA). The diabetic state was confirmed within 7 days after STZ injection by determining
tail vein blood glucose levels. Mice with a non-fasting blood glucose concentration over
16.67 mmol/L for three consecutive days were diagnosed as diabetic models [115].

4.6. Experimental Design

After two weeks of diabetes induction, the experimental mice were separated into
four groups (6 mice in each).

• Control: The mice were injected intraperitoneally (i.p.) with citric acid–sodium citrate
buffer solution.

• Diabetic (D): Diabetes was induced by a single intraperitoneal (i.p.) injection of
streptozotocin (STZ; 50 mg/kg/day) for five consecutive days [115].

• Lepidium seed oil (LSO): The mice were administrated intragastrically with 0.5 mL/kg
LSO twice a week for four weeks.

• D+LSO: The diabetic mice administrated with LSO as mentioned in the LSO-alone group.

4.7. Tissue Sampling

The mice were euthanized under anesthesia and sacrificed to their collect blood.
The blood samples were collected and centrifuged at 5000× g for 10 min; the separated
sera were subjected to testosterone analysis. Immediately, the paired testes were excised.
The right testes were stored in 10% formaldehyde fixative fluid for histomorphology,
whereas the left testes were stored at −80 ◦C for biochemical and molecular (western
blotting) analyses.

4.8. Assay of Serum Testosterone

Serum samples were used to determine the levels of testosterone (T) using a mouse
testosterone enzyme-linked immunosorbent assay (ELISA) kit (Cat. No. MBS494055; My-
BioSource, Inc., San Diego, CA, USA) according to manufacturer’s instructions. Spectropho-
tometric analysis was used to evaluate the optical density at 450 nm, and the testosterone
level (ng/mL) was evaluated against the reference stranded assessed in a similar manner.

4.9. Assessment of Redox Status

The colorimetric assay kits for determining the antioxidant enzymes catalase (CAT;
Cat. No. CA 2516) and superoxide dismutase (SOD; Cat. No. SD 2520) as well as the
LPO biomarker, malondialdehyde (MDA; Cat. No. MD 2528), were purchased from Bio
Diagnostic (Dokki, Giza, Egypt). The tissues from the left testes were homogenized in
0.1 M phosphate buffer (pH 7.4). The homogenates were centrifuged at 2800× g for 30 min
at 4 ◦C. The obtained supernatants were utilized for biochemical estimations of CAT, SOD,
and MDA as per the guidelines provided by the manufacturer. The protein content in the
testicular homogenates was determined as previously described [116], employing bovine
serum albumin (BSA) as the standard.
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4.10. Determination of NF-kB Factor and Pro-Inflammatory Cytokines

The testicular protein levels of nuclear factor-kappa B (NF-kB) p65 subunit, interleukin-
1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured using
ELISA kits (NF-kB, Cat. No.: orb409109; Biorbyt Ltd., Cambridge, UK) and (IL-1, Cat.
No.: MBS264984; IL-6, Cat. No., MBS843429; TNF-α, Cat. No.: MBS825002; My Bio-Source,
Inc., San Diego, CA, USA), respectively, in accordance with the manufacturer’s instructions.

4.11. Western Blotting

Approximately 50 mg of testicular tissues were added to RIPA lysis buffer (Cat. No.:
PL005, BIO BASIC INC., Markham, ON, Canada). The tissue samples were homoge-
nized, and protein quantifications were carried out by a Bradford protein assay kit (Cat.
No.: SK304, BIO BASIC INC., Markham, ON, Canada). Equal quantities of protein per
specimen were exposed to 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE), and the resolved proteins were electrophoretically transmitted onto polyvinyli-
dene difluoride (PVDF) membranes using the Trans-Blot Turbo Transfer System (Bio-Rad
Laboratories, Inc., CA, USA). These membranes were blocked in tris-buffered saline with
0.1% Tween 20 (TBST) and 3% BSA for 60 min at room temperature. Subsequently, the
membranes were probed overnight at 4 ◦C with primary antibodies against NF-kB p65 (Cat.
No. ab31481, 1:1000) and β-actin as an internal loading control (Cat. No. ab8226, 1:10,000),
both purchased from Abcam (Cambridge, UK). After washing with TBST, the membranes
were incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG secondary
antibodies at room temperature for 1 h. The blots were washed three times between the
primary as well as secondary antibody incubations. Finally, the immunoreactive bands of
the NF-kB p65 subunit were imaged using the ChemiDoc MP imager with Image LabTM

software (version 6.1) (Bio-Rad Laboratories, Inc., Hercules, CA, USA) to validate the
Western blot data via total protein normalization by the β-actin housekeeping protein.

4.12. Histological Study on the Testes

The excised right testes were fixed in 10% formaldehyde solution at 28 ◦C for
24 h, dehydrated, and inserted in paraffin wax. Traditional H&E (hematoxylin and eosin)
dye was used to stain the thin sections (4 µm thick). A typical light microscope (Nikon
Corporation, Tokyo, Japan) was used for examining the slides. Twenty seminiferous tubules
from each sample were magnified at 400× to determine the testicular maturity and damage
using the Johnsen’s tubular biopsy score (JTBS) method [117]. Each seminiferous tubule
was given a score between 1 and 10 to indicate its level of germinal epithelial maturity
according to the following description: score (1), no cells appear in the tubular section;
score (2), no germ cells exist; score (3), just the spermatogonia can be seen; score (4), limited
primary spermatocytes; score (5), numerous primary spermatocytes but no spermatozoa or
spermatids; score (6), only a few spermatids; score (7), a large number of early spermatids
deprived of differentiation; score (8), a few differentiated spermatids; score (9), several
differentiated spermatids; and finally, score (10), regular tubules with lots of sperms.

4.13. Statistical Analyses

The results were expressed as the mean ± standard error (SE). The sample size
(n = 6) was identified using the G power program (version 3.1.9.7). Graph Pad prism
software(version 4.03, San Diego, CA, USA) was used for the statistical analysis. Using
the Shapiro–Wilk normality test, the data’s normality was evaluated. One-way ANOVA
was used to analyze the statistical variance between the groups, and Tukey’s post hoc
test was used to compare the groups. Statistics were determined to be significant for all
p values < 0.05.

5. Conclusions

The obtained results show, for the first time, the protective effect of LSO against male
reproductive dysfunction observed in diabetic mice. Alleviation of diabetic-induced repro-
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ductive dysfunction might be attributed to the improvement in the testicular antioxidant
defense system, lowering the levels of pro-inflammatory markers, and the restoration
of serum testosterone levels (Figure 7). The findings of the current study support the
previously reported antioxidant and anti-inflammatory activities of LSO and pave the
way for its therapeutic application in the management of diabetes-associated male repro-
ductive dysfunction. We believe that administering LSO to male diabetic patients will
effectively ameliorate the process of spermatogenesis and enhance the architecture of the
testicular tissue.
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