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Abstract: The nuclear membrane serves a critical role in protecting the contents of the nucleus
and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive
research has been dedicated to topics such as nuclear membrane assembly and disassembly during
cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal
and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation
of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral
proteins, which also function as transcription factors, within the nuclear membrane remains an area
of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only
during cell division but also in the regulation of gene expression and the communication between the
nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases.
This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of
the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity
and provide insights into the role of type II membrane protein transcription factors in this context.
Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate
processes governing nuclear membrane integrity. Such insights have broad-reaching implications for
cellular function and our understanding of disease pathogenesis.

Keywords: inner nuclear membrane; type II membrane protein transcription factor; integral proteins
in INM; INM integrity; nuclear morphology

1. Introduction

The nuclear envelope (NE), composed of inner and outer nuclear membranes, plays
a vital role in maintaining the integrity of genetic material and shielding it from various
harmful molecules. It also provides structural support to the nucleus, primarily mediated
by intermediate filament proteins like lamins located within the inner nuclear membrane
(INM) [1]. The INM contains specific integral membrane proteins that contribute to its
functions. The outer nuclear membrane (ONM) is continuous with the endoplasmic
reticulum (ER) and houses ribosomes, while the INM is specialized for nuclear functions.
Dysregulation of the integrity of the inner nuclear membrane, often caused by mutations
or alterations in genes encoding INM-associated proteins, has been linked to several
human diseases [2]. These diseases encompass a wide range of conditions, including
muscular dystrophies, premature aging syndromes, lipodystrophies, cardiomyopathies,
cancer, neurological disorders, and neuromuscular disease [3,4]. The commonality among
these diseases is the disruption of NE structure and function, which significantly influences
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cellular homeostasis and contributes to tissue-specific pathologies. Despite the pivotal
role played by the NE in determining cellular fate, the regulation of nuclear membrane
integrity has not been comprehensively studied until now. This review addresses the
molecular mechanisms and key molecules involved in regulating inner nuclear membrane
integrity. Furthermore, it explores the potential role of type II integral proteins located at
the nuclear inner membrane. Understanding these regulatory mechanisms is crucial for
gaining insights into various disease processes and cellular homeostasis.

2. Structure of Nuclear Membrane

The NE comprises two closely juxtaposed lipid bilayers, forming a double-membrane
structure known as the INM and the ONM. It encloses the nucleus in eukaryotic cells and
consists of several distinct components, including the outer and inner membranes, nuclear
pore complexes, nuclear lamina, and perinuclear space [5]. This complex structure serves as
a critical barrier and regulator of molecular traffic between the nucleus and the cytoplasm,
facilitating the passage of molecules in and out of the nucleus [6].

Beyond its role in molecular traffic, the NE acts as a physical barrier that segregates the
genetic material (DNA) within the nucleus from the cytoplasm of the cell [7,8]. Additionally,
it plays a vital role in gene regulation and nuclear organization, making it a fundamental
component of eukaryotic cell biology [7,8].

The NE not only controls molecular movement but also provides mechanical support
and helps maintain the structural integrity of the nucleus. This mechanical support is
achieved through the interconnection of cytoskeletal elements on its nuclear and cyto-
plasmic sides, forming an intricate membrane–protein–chromatin network [9–11]. Key
proteins found within the inner nuclear membrane, including lamins, various nuclear
pore complex components, nucleoskeletal and cytoskeletal proteins (collectively known
as the LINC complex), lamin B receptor (LBR), lamina-associated polypeptide (LAP) 1,
LAP2, emerin, and MAN1, are well-known for their roles in preserving nuclear morphol-
ogy [12–14]. Figure 1 summarizes the structure of NE and constituents contributing nuclear
morphology maintenance.
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straining force of the nuclear membrane. Additionally, the outward-directed tension is reinforced 
by the cytoskeletal elements, contributing to the extension of the nuclear shape. To sustain this force 
equilibrium, integral proteins residing in the INM, including LEM, LAP, emerin, SUN, HP1, and 
lamin B, interact either directly or indirectly with chromatin DNA through specialized regions 
known as LAD via the indirect interaction. These proteins are closely associated with both the nu-
clear lamina and the BAF. In the cytoplasm, interactions between nesprins and actin filaments, in-
termediate filaments, or microtubules provide further support for the outward-directed pulling 
force, ultimately determining the nuclear positioning and maintaining proper nuclear shape. 
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lear side, forms a mesh network composed of nuclear lamins that serve as a structural framework.
Integral membrane proteins within the INM provide mechanical support, maintaining nuclear
morphology by regulating the balance of forces. This equilibrium involves counteracting the outward
expansive force exerted by densely packed DNA within the nucleus and the inward restraining force
of the nuclear membrane. Additionally, the outward-directed tension is reinforced by the cytoskeletal
elements, contributing to the extension of the nuclear shape. To sustain this force equilibrium, integral
proteins residing in the INM, including LEM, LAP, emerin, SUN, HP1, and lamin B, interact either
directly or indirectly with chromatin DNA through specialized regions known as LAD via the indirect
interaction. These proteins are closely associated with both the nuclear lamina and the BAF. In the
cytoplasm, interactions between nesprins and actin filaments, intermediate filaments, or microtubules
provide further support for the outward-directed pulling force, ultimately determining the nuclear
positioning and maintaining proper nuclear shape.

Moreover, it is now widely recognized that the NE and its associated proteins have
crucial roles in a range of cellular processes. These processes encompass cell division, cell
signaling, transcription, cell cycle progression, chromosome tethering, cytoplasmic–nuclear
transport, and cell migration [10,15,16]. However, the molecular mechanisms governing
nuclear membrane integrity during apoptosis and necroptosis remain an area of active
research, with much to be elucidated.

2.1. Outer Nuclear Membrane

The outer nuclear membrane is continuous with the ER membrane, forming a physical
connection due to their shared phospholipid bilayer. This connection allows for the ex-
change of lipids and proteins and enables the ER to play a role in the synthesis and transport
of these molecules. Maintaining the shape of the nucleus relies on a protein meshwork
called the nuclear lamina. While the nuclear lamina primarily associates with the inner
nuclear membrane, the outer nuclear membrane indirectly contributes to nuclear shape
maintenance. It does so through interactions with the nuclear lamina, thereby reinforcing
the structural integrity of the NE [17–19].

The nuclear lamina, situated just beneath the inner nuclear membrane, acts as a
scaffold, providing mechanical support to the nucleus. It achieves this by interacting
with the inner nuclear membrane, genomic DNA (chromatin), and nuclear pore com-
plexes [6,11]. These interactions occur through integral membrane proteins known as LINC
complexes. LINC complexes span both the inner and outer nuclear membranes, enabling
the transmission of pulling forces from the nuclear lamina to the cytoskeleton in the cell’s
cytoplasm [20–22]. This interplay between the nuclear lamina, LINC complexes, and the
cytoskeleton ensures the mechanical stability of the nucleus. Such stability is essential for
preserving the overall shape of the nucleus, preventing deformation or collapse in response
to mechanical forces within the cell [14,22].

2.2. Inner Nuclear Membrane

The INM houses various integral proteins categorized into distinct groups. These
include proteins permanently embedded in the INM using single, double, or multiple trans-
membrane domains, such as emerin, SUNs, LEM, and LBR. Additionally, there are INM-
anchoring farnesylated proteins like B-type lamins and INM-interacting peripheral proteins
like A-type lamins [23,24]. One critical component of the INM is the trimeric Sad1/UNC-84
(SUN) domain-containing SUN1/2 proteins. These proteins span the INM and bind to the
tails of nesprins in the perinuclear space, forming the LINC complex [14,21,25]. Nesprin
1/2, found in the ONM, interacts with actin in the cytoplasm, while nesprin 3 interacts with
intermediate filaments through plectin or microtubules through Dynein [26]. The LINC
complex facilitates an outward pulling force via the cytoskeleton, helping to maintain the
round nuclear shape against the expansive force of densely packed genomic DNA [13,14,27].
Another group of INM proteins, exclusively localized within the INM, remains relatively
uncharacterized. This group, comprising approximately 60 integral membrane proteins
referred to as NE transmembrane proteins or NETs, includes LBR, LAP1, LAP2, emerin,
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and MAN1. Some of these INM proteins interact with lamins and chromatin, indicating
their involvement in various nuclear functions, including chromatin organization, gene
expression, and DNA metabolism [28–30].

The significance of INM proteins is underscored by their link to numerous human
diseases, sparking substantial interest in the field of NE biology. Improper localization and
function of INM proteins have been associated with a range of disorders [20]. Notably,
the LINC complex, particularly through SUN proteins, plays a role in influencing chro-
matin organization. SUN proteins have been implicated in tethering chromatin to the NE,
potentially contributing to the spatial arrangement of the genome and influencing gene
expression and regulation [10,31,32]. It is important to emphasize that the precise mecha-
nisms underlying the influence of the LINC complex on genomic DNA and gene expression
are ongoing areas of research. The interplay between nuclear positioning, chromatin organi-
zation, and gene regulation is intricate and context-dependent [14]. Nonetheless, the ability
of the LINC complex to bridge the NE and cytoskeleton positions it as a crucial player in
cellular processes that ultimately impact genomic function and gene expression [14,21,33].
In this section, we provide a summary of the characteristics and roles of integral membrane
proteins within the INM.

3. Equilibrium of the Physical Force for Nuclear Morphology

The tension of the nuclear membrane, comprising both the inner and outer nuclear
membranes, is subject to intricate cellular regulation. Precise control of nuclear membrane
tension is vital for maintaining the structural integrity of the nucleus and for governing
essential cellular processes, including nuclear positioning, cell division, and gene expres-
sion [34,35]. Several mechanisms regulate both inward and outward tension of the nuclear
membrane. One central player in this regulation is the Linker of the LINC complex. Com-
prising proteins like SUN and Klarsicht, ANC-1, and Syne homology (KASH) domain
proteins, the LINC complex connects the nuclear lamina on the inner nuclear membrane
to the cytoskeleton on the outer nuclear membrane [36,37]. This connection allows for the
transmission of forces from the cytoskeleton to the nuclear membrane, thereby regulating
tension. SUN proteins, for example, interact directly with the C-terminal tail domain of
Lamin A and Lamin C, influencing genomic DNA by tethering chromatin regions to the
inner nuclear membrane, contributing to the spatial organization of the genome [32,37,38].

The actin cytoskeleton, composed of actin filaments, can exert forces on the nuclear
membrane through actin-binding proteins and motor proteins like myosins [39]. These
proteins interact with the NE and generate tension by pulling on the outer nuclear mem-
brane [8,40]. The regulation of this tension involves controlling actin polymerization and
motor protein activity. Microtubules, another component of the cytoskeleton, also influence
nuclear membrane tension. Microtubule-associated motor proteins, such as dynein and
kinesin, interact with the NE. Dynein exerts an inward force on the nucleus, while kinesin
generates outward forces. The dynamic assembly and disassembly of microtubules play a
role in regulating these tensions [26,41].

The nuclear lamina, a protein meshwork lining the inner nuclear membrane, provides
structural support to the nucleus and contributes to tension regulation. Modifications of
lamin proteins, such as lamin A and lamin B, through processes like phosphorylation, can
alter their interactions with chromatin and the cytoskeleton, influencing tension [19,23,24].

The maintenance of nuclear membrane tension is critical because the tightly packed
genomic DNA within the nucleus exerts an inward pressure while the cytoskeleton in the cy-
toplasm applies an outward pulling force [42]. The balance between these forces is essential
for preserving nuclear morphology. However, in Progeria syndrome (Hutchinson–Gilford
Progeria Syndrome, HGPS), one of the key cellular abnormalities is the loss of nuclear
membrane tension [8,43–45]. This loss of tension is associated with the accumulation of
an abnormal protein called progerin, resulting from a mutation in the LMNA gene [43,44].
Progerin accumulates in the nucleus and disrupts the normal structure and function of
the NE [45,46]. This disruption leads to an irregular and distorted NE, a loss of structural
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stability, impaired gene regulation, DNA repair processes, and contributes to the premature
aging phenotype observed in Progeria. It manifests in various characteristic symptoms of
the syndrome. We summarize how physical forces can contribute to nuclear morphology
maintenance in Figure 2.
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Figure 2. Illustration concept of force equilibrium for nuclear morphology maintenance within
the nucleus. Inside the nucleus, the densely packed DNA causes it to exert an outward expansion
force. To counteract this force and prevent nuclear rupture, lamin proteins form a reinforcing mesh
network on the inner side of the INM, known as the nuclear lamina. Chromatin is anchored to
this mesh network through integral membrane proteins, effectively serving as tension wires. These
anchored chromatin regions exert an inward fastening force, reinforcing the lamina’s structural
integrity, resulting in the complementation of the lamina’s resistance against the nuclear expansion
force. In the cytoplasm, actin filaments, intermediate filaments, and microtubules are linked to the
nuclear membrane via membrane-spanning proteins. These cytoskeletal elements play a crucial role
in determining the nucleus’s position within the cell and provide the necessary force to pull the
nuclear membrane outward, ensuring its proper shape is maintained.

4. The Roles of Constituents in the NE Involved in Nuclear Morphology Maintenance
by Complex Formation

The ONM and INM are connected at nuclear pore complexes and form the NE. Integral
proteins in the INM play crucial roles in maintaining the structure and function of the
nucleus, including regulating nuclear–cytoplasmic transport, and connecting the nuclear
lamina to the cytoskeleton, contributing to various cellular processes and functions. Table 1
summarizes the role of each constituent in the NE involved in the nuclear morphology
maintenance by complex formation.
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Table 1. The role of each constituent involved in nuclear morphology maintenance.

Constituents Localization Role for the Nuclear Morphology
Maintenance

Euchromatin Inside of
nucleus

• Provide the force to pull the nuclear
membrane towards the nucleolus and
speckle regions.

Heterochromatin Juxtaposed
inside of the INM

• Working in conjunction with lamina.
• Offer binding sites for SUN via LAD,

ensuring the fixation of heterochromatin to
the NE by interaction with Lamin A/C.

• Bind to Lamin B, resulting in anchoring
chromatin to the NE.

• Provide an inward-pulling force against the
expansive force exerted by nuclear DNA.

• Counteract the expansion force of packed
DNA, preventing the nuclear membrane
from rupturing.

Lamin A/C Juxtaposed
inside of the INM

• Interacting with heterochromatin.
• Acting as the reinforcing bars inside

the NE.
• Forms nuclear lamina mesh network.

Lamin B Juxtaposed
inside of INM

• Interaction of heterochromatin and
anchoring heterochromatin into the INM.

LEM Juxtaposed
inside of the INM

• Provide binding sites for specific DNA
sequences in heterochromatin to attach to
the NE, anchoring chromatin in place.

LBR Juxtaposed
inside of the INM

• Facilitate the interaction between
post-translationally modified histones and
heterochromatin, assisting in the
positioning of heterochromatin at the INM.

LAD
Specific

Genomic
region

• Provide binding sites for SUN.
• Anchoring heterochromatin to the NE.
• Recognized by lamin and CTCF, which play

a role in forming heterochromatin.
• Characterized by strong H3K4 methylation.

SUN Integral
protein in the INM

• Bind to heterochromatin’s LAD.
• Formation of LINC complex by interacting

with proteins like nesprin in the
perinuclear space.

• Provide binding sites for heterochromatin
to attach to the NE.

Nesprin Integral
protein in the ONM

• Connect SUN with cytoskeletons, including
actin, intermediate filaments,
or microtubules.
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Table 1. Cont.

Constituents Localization Role for the Nuclear Morphology
Maintenance

Plectin Cytosol

• Mediate the interaction between nesprin
and intermediate filaments at
the cytoplasm.

Dynein Cytosol
• Facilitate the interaction between nesprin

and microtubules at the cytoplasm.

Actin,
Intermediate

filaments
,Microtubules

Cytosol

• Interaction with nesprin, plectin,
and Dynein

• Determine the position of the nucleus
within the cell

• Assist to pull the nuclear membrane
outward to maintain the normal
nuclear shape.

4.1. Constituents Tethered in the INM
4.1.1. Lamins

Lamins are a group of proteins that constitute a fundamental component of the nuclear
lamina, a network of filaments situated within the nucleus of eukaryotic cells. The nuclear
lamina serves to provide structural support to the nucleus and plays a pivotal role in
various nuclear functions, including DNA replication, transcription, and the maintenance
of nuclear shape [24,47]. Two primary types of lamins exist: A-type lamins, represented
by lamin A and lamin C, and B-type lamins, which encompass lamin B1 and lamin B2.
Lamin A, a major constituent of the nuclear lamina, is initially synthesized as prelamin
A [24,48,49]. This precursor undergoes several post-translational modifications, including
farnesylation and cleavage, to attain its mature lamin A form. Lamin C, a splice variant
of the LMNA gene, shares structural similarities with lamin A [50]. Mutations in the
LMNA gene are associated with a group of genetic disorders known as laminopathies.
Notable examples include Hutchinson–Gilford Progeria syndrome (HGPS), characterized
by accelerated aging, and Emery–Dreifuss muscular dystrophy [44,51].

Lamin B1, another significant component of the nuclear lamina, is indispensable for
preserving the structural integrity of the NE. It interacts with chromatin and contributes
to genome organization within the nucleus [17,47]. Mutations in the LMNB1 gene can
result in conditions such as autosomal dominant Emery–Dreifuss muscular dystrophy and
certain leukodystrophies, primarily affecting muscle and nervous tissues [52]. Lamin B2,
also classified as a B-type lamin, plays a similar role to lamin B1. It contributes to NE
integrity, chromatin organization, and overall nuclear stability. Mutations in the LMNB2
gene can lead to diseases affecting the NE and cellular function [19,53,54].

The interaction between lamins and chromatin plays a crucial role in maintaining
nuclear membrane integrity. This interaction helps provide structural stability to the
nucleus and regulates various nuclear processes [55]. Since the chromatin is anchored to the
INM via lamins, this attachment contributes mechanical forces evenly across the nucleus
and prevents excessive deformation of the nuclear envelope during cellular activities [56].
In summary, lamins are crucial for providing mechanical stability to the nucleus and
maintaining its morphology.

4.1.2. Chromatin

The terms heterochromatin and euchromatin refer to two distinct structural states
of chromatin, the complex of DNA and proteins found in the nucleus of eukaryotic
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cells [57,58]. Heterochromatin is a tightly packed form of chromatin that is transcrip-
tionally inactive [59,60]. It consists of highly condensed DNA, making it less accessible
to the transcriptional machinery [60]. Heterochromatin is associated with regions of the
genome that are typically silenced or not actively transcribed, appearing as dark, dense
regions under a microscope [61–63]. In contrast, euchromatin is a loosely packed form
of chromatin that is transcriptionally active [57,61,64]. It contains open and accessible
DNA, making it available for transcription by RNA polymerase and other transcription
factors [61,65]. Euchromatin appears as a more extended and less dense region under a
microscope [66].

The INM is one of the two lipid bilayers that make up the NE, the boundary separating
the nucleus from the cytoplasm [5,10,67]. The organization of chromatin within the nucleus
is not uniform, and heterochromatin and euchromatin can be found at specific locations
within the nuclear space [5,67]. Heterochromatin is often associated with the nuclear
periphery, including the inner nuclear membrane [16]. This association is important for
maintaining the stability and integrity of the genome [68,69]. Heterochromatin at the
INM can be involved in functions such as gene silencing, DNA repair, and chromosome
organization [69,70].

Euchromatin is generally found more centrally within the nucleus, away from the
nuclear periphery [63,69,71]. This positioning allows active genes to be closer to the
transcriptional machinery, facilitating gene expression [57,72]. While euchromatin may
not be directly associated with the INM, it can interact with the nuclear lamina, a protein
meshwork lining the inner nuclear membrane, which plays a role in regulating gene
expression [18,67,73].

Heterochromatin and euchromatin play significant roles in maintaining nuclear mor-
phology, primarily through their impact on the organization and structural components of
the nucleus [74,75]. Heterochromatin influences nuclear shape and compaction, typically
associated with regions of tightly condensed DNA [57,61,76]. Its presence at the nuclear
periphery and interaction with the nuclear lamina help maintain the overall shape and
structural integrity of the nucleus [77]. Heterochromatin compaction contributes to the
flattening or indentation of the NE, which can affect nuclear morphology [74,78]. In cases of
laminopathies or mutations in nuclear lamina proteins, abnormal heterochromatin organi-
zation can lead to alterations in nuclear shape, contributing to diseases characterized by NE
defects [79]. Moreover, during mechanical stress, such as cell migration or changes in cell
shape [80], the interaction between lamins and chromatin helps protect the nuclear enve-
lope [81]. It prevents excessive stretching or rupture of the envelope, which could otherwise
lead to DNA damage and cellular dysfunction and regulates gene expression [81].

Heterochromatin also plays a crucial role in genome stability by silencing repetitive
DNA elements like transposons and satellite repeats, thus preventing genome instability
and aberrant recombination events [82]. This stability contributes to the overall structural
integrity of the nucleus. Heterochromatin can interact with the nuclear lamina, a protein
meshwork lining the inner nuclear membrane, anchoring heterochromatic regions to the
NE [49,83]. This interaction is essential for maintaining the structural integrity of the
NE [56].

In contrast to heterochromatin, euchromatin, being transcriptionally active, contains
genes that need to be transcribed [57,84]. Typically, euchromatin is positioned closer to
nuclear pores, which are openings in the NE for the export and import of molecules. This
proximity facilitates the efficient export of mRNA and other gene products, contributing
to nuclear morphology by ensuring the flow of genetic information between the nucleus
and cytoplasm. This flow of genetic information regulates gene expression involved in
NE remodeling and cytoskeletal dynamics, resulting in dynamic changes in nuclear shape
depending on the cellular context [85]. Therefore, these two chromatin states, heterochro-
matin and euchromatin, play critical roles in genome organization, gene regulation, and
overall cellular function. Their organization and regulation are essential for maintaining
cell viability and integrity [86]. Therefore, the interaction between chromatin and lamins is
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a fundamental aspect of nuclear biology that contributes to nuclear membrane integrity.
This interaction provides structural stability to the nucleus [47,55].

4.1.3. Lamina-Associated Domains (LADs)

Lamina-Associated Domains (LADs) are specific genomic regions in the nucleus of
eukaryotic cells that are in close proximity to the INM and interact with the nuclear lam-
ina [73,87]. LADs play a crucial role in nuclear architecture, gene regulation, and genome
organization [87]. LADs are composed of several components that collectively contribute to
their structure and function within the cell nucleus [73]. The primary structural component
of LADs is the nuclear lamina, which consists of lamin proteins [73,87,88]. Lamins are
intermediate filament proteins that form a meshwork on the inner surface of the INM [24].
LADs are also composed of chromatin, which includes DNA and associated histone pro-
teins (dimethylated lysine 9 of histone H3) [87,89]. In particular, LADs are enriched in
heterochromatin, a densely packed and transcriptionally inactive form of chromatin [73].
The presence of heterochromatin in LADs contributes to gene silencing and a repressive
chromatin environment [87,90]. Various protein complexes and factors are associated with
LADs to mediate their function. These may include chromatin-remodeling complexes,
transcriptional repressors (such as non-coding RNAs), and other regulatory proteins [91].
These complexes assist in maintaining the repressive environment of LADs and facilitate
interactions with other nuclear structures [91]. LADs often have boundary elements or insu-
lator sequences at their edges. Boundary elements or insulator sequences, DNA sequences
and associated proteins, demarcate the boundaries of LADs and prevent the spread of
heterochromatin into adjacent euchromatic regions and can regulate gene expression by
acting as insulators [73]. CCCTC-binding factor (CTCF) is a highly conserved DNA-binding
protein that plays a central role in chromatin organization [73,92,93]. It acts as an insulator
by binding to specific DNA sequences known as CTCF-binding sites or motifs [73,93]. The
canonical CTCF-binding motif is characterized by a 20-to-22-base-pair sequence that is rich
in CpG dinucleotides and exhibits a specific pattern of sequence conservation [94]. The core
sequence recognized by CTCF is often described as 5′-CC(N6)GG-3′. When CTCF binds
to these sites, it can create a physical barrier that prevents the spread of heterochromatin
and the formation of LADs or other repressive chromatin structures [94,95]. Boundary
elements are often enriched with CTCF-binding sites. Boundary elements play a crucial
role in maintaining the three-dimensional organization of the genome [96]. Moreover,
CTCF mediates long-range chromatin interactions through the assistance of cohesion and
other proteins, resulting in the formation of chromatin loops [73,94,95]. By tethering distant
genomic regions together, CTCF-mediated looping can facilitate gene regulation, insulate
regions from the spread of heterochromatin, and contribute to the organization of LADs
and other chromatin domains [97,98]. Frequently, insulator elements may be marked by
histone H3 lysine 4 (H3K4) methylation, which is typically associated with transcriptionally
active chromatin [99]. The involvement of the LAD in the nuclear membrane integrity
is caused by which dysregulation of LAD interactions can be associated with various
diseases, including laminopathies [73]. Although the mutations at the LAD have not been
identified, aberrant interaction by lamins induces large-scale disruptions in chromatin
organization and nuclear shape [73,87]. Therefore, without proper LAD interactions, the
nuclear envelope might become more fragile and prone to damage.

4.1.4. Barrier-to-Autointegration Factor (BAF)

BAF, Barrier-to-Autointegration Factor, is a protein that plays a crucial role in main-
taining the structural integrity and organization of the cell nucleus [100]. It is primarily
associated with the INM and has several important functions, including NE integrity,
chromatin organization, DNA replication and repair, nuclear lamina interaction, and cell
division [101,102]. BAF interaction with lamins assists in anchoring chromatin to the in-
ner nuclear membrane, which is essential for maintaining the structural integrity of the
NE [102,103]. This interaction stabilizes the NE and contributes to its overall architec-
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ture [102–104]. BAF directly interacts with lamins, particularly lamin A/C [105]. This
interaction is mediated through N-terminal domain of BAF and C-terminal tail domain of
lamin A/C [105,106]. Moreover, the BAF protein contains a DNA-binding domain. Both
domains of BAF are involved in binding to lamins [106]. This direct binding between BAF
and lamin A/C is a key component of their interaction [106,107].

BAF has DNA-binding activity. It can directly bind to DNA sequences, including
AT-rich regions [100,104,108]. When BAF binds to DNA, it can induce a conformational
change in the DNA molecule, leading to compaction [109]. This property is important in
various cellular processes, such as chromatin organization and the formation of higher-order
chromatin structures [108,109]. By binding to specific DNA sequences within the chromatin,
BAF plays a role in tethering chromatin to the INM by binding to specific DNA sequences
within the chromatin [109,110]. This tethering is important for maintaining the structural
integrity of the NE and organizing chromatin into distinct nuclear domains [102,109]. BAF
is involved in organizing and positioning chromatin within the nucleus. It contributes to the
formation of distinct nuclear domains and the regulation of gene expression by anchoring
specific genomic regions to the INM [97,104]. BAF plays a role in DNA replication and
repair processes by tethering DNA to the NE [111]. This facilitates proper DNA replication
and ensures efficient DNA damage response and repair [109,111]. During cell division,
BAF is involved in the reassembly of the NE around daughter nuclei [103,112,113]. It aids
in the proper segregation of chromosomes and the reformation of the NE after mitosis [113].
Therefore, the N-terminal domain of BAF and the C-terminal tail domain of lamin A/C are
key players in this interaction, which is essential for maintaining nuclear envelope integrity,
chromatin organization, and other nuclear functions [114].

4.1.5. Heterochromatin Protein 1 (HP1)

Heterochromatin Protein 1 (HP1) is a pivotal contributor to the establishment and
upkeep of heterochromatin, a densely packed and transcriptionally silent genomic re-
gion in eukaryotes [115–117]. HP1′s engagement with heterochromatin is governed by a
complex interplay of molecular mechanisms encompassing protein–protein interactions,
post-translational modifications, and alterations in chromatin structure [115,116,118]. Cen-
tral to HP1′s function is its highly conserved chromodomain, which specifically recognizes
and binds to histone H3 trimethylated at lysine 9 (H3K9me3), a characteristic hallmark of
heterochromatin [119–121]. The chromodomain’s ability to create a stable complex with
H3K9me3 relies on hydrophobic interactions and hydrogen bonding [120,122]. HP1 has
the capacity to form homodimers or heterodimers due to a dimerization interface within
its chromodomain, enabling the establishment of an intricate network of HP1 proteins
within heterochromatin [121–123]. This network enhances the compaction and stability
of the heterochromatin structure [124]. HP1 further collaborates with various proteins
associated with heterochromatin assembly and maintenance [125]. For instance, its interac-
tion with HP2 or heterochromatin-associated proteins, including HP1-interacting proteins
and Swi6/HP1-interacting protein, reinforces and modulates heterochromatin structure
and function, respectively [125–127]. Notably, post-translational modifications of HP1,
such as phosphorylation and methylation, play a pivotal role in regulating its chromatin
binding [124,128,129]. Phosphorylation of HP1α at S10 by Aurora B kinase weakens its
association with H3K9me3, resulting in its dissociation from chromatin and subsequent
transcriptional activation at target loci [130]. Moreover, HP1α phosphorylation at Ser51 by
protein kinase CK2 is implicated in gene derepression and correlates with reduced levels
of H3K9me3 [131]. Additionally, HP1, by virtue of its binding to H3K9me3, recruits other
chromatin-modifying enzymes like histone methyltransferases and histone deacetylases
to heterochromatin, thereby promoting chromatin condensation and gene expression re-
pression [115,118,132]. Notably, once HP1 binds to H3K9me3, it can propagate along the
chromatin fiber, facilitating the extension of heterochromatin formation across an extended
genomic region [133]. Therefore, these interactions and modifications contribute to the com-
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paction and transcriptional silencing of heterochromatin, ultimately maintaining genome
stability, regulating gene expression, and nuclear membrane integrity in eukaryotic cells.

4.2. Integral Membrane Proteins in the INM

Integral proteins in the INM play crucial roles in maintaining the structure and function
of the nucleus. The NE consists of two membranes: the ONM and the INM, which are
connected at nuclear pore complexes [134,135]. While the ONM is continuous with the ER
and contains ribosomes, the INM is specialized for nuclear functions and contains specific
integral membrane proteins [136].

4.2.1. SUN

SUN proteins are a family of integral membrane proteins that are primarily found in
the INM of the NE [32]. They play a crucial role in various cellular processes, including
nuclear positioning, nuclear migration, meiosis, and maintaining the structural integrity of
the nucleus [32,137].

SUN proteins typically have a conserved domain structure that includes a single
transmembrane domain (TMD) near the C-terminus, anchoring them in the INM [138].
The N-terminal region of SUN proteins contains the SUN domain, which is essential for
their interactions with other proteins, including KASH domain-containing proteins in the
ONM [13,139,140]. SUN proteins are often classified into different subtypes based on the
presence of additional domains or variations in their sequence. The primary function of
SUN proteins is to interact with KASH domain-containing proteins in the ONM [140,141].
KASH proteins extend into the perinuclear space and connect with the cytoskeleton, in-
cluding microtubules and actin filaments [138]. The interaction between SUN and KASH
proteins forms a bridge known as the LINC complex [22,138]. This complex spans the NE
and connects the nucleoskeleton (formed by lamins and other nuclear components) to the
cytoskeleton, allowing for the transmission of mechanical forces and positional information
between the nucleus and the cytoplasm [14,21,142].

The LINC complex, facilitated by SUN-KASH interactions, plays a crucial role in
nuclear positioning within the cell [138]. It helps to anchor the nucleus in a specific location
within the cell, which is essential for various cellular processes, including cell migration,
division, and differentiation [22,143]. In migrating cells, the LINC complex is involved in
positioning the nucleus at the cell’s rear to allow for efficient migration [143]. SUN proteins
are involved in nuclear migration during various developmental processes, including
meiosis in certain cell types [144]. They help guide the movement of the nucleus to specific
cellular locations, which is vital for proper cell function and development [145]. SUN
proteins, through their connections with the nuclear lamina, contribute to maintaining
the shape and size of the nucleus [25,146]. Dysregulation can lead to abnormal nuclear
morphology [25,147]. Mutations or dysregulation of SUN proteins can lead to various
diseases and developmental disorders [147]. For example, mutations in the SUN1 gene have
been associated with meiotic defects and male infertility [148]. Aberrant LINC complex
function can also contribute to NE-related diseases, such as muscular dystrophies and
Progeria [149]. Therefore, the LINC complex-mediated connection between the INM and
ONM and the cytoskeleton provides structural stability to the nucleus, facilitates nuclear
positioning, regulates mechanotransduction, and maintains the composition and function
of the nuclear envelope and its associated components [21].

4.2.2. Emerin

Emerin is a key component of the NE [150,151]. Therefore, emerin participates as a
component of the nuclear lamina [150,151]. Emerin, a protein found in the inner nuclear
membrane of the cell’s nucleus, plays several important roles in maintaining nuclear struc-
ture and function [152,153]. Emerin involves maintaining the structural integrity of the NE
by interacting with lamins and other inner nuclear membrane proteins [153]. Emerin is in-
volved in regulating chromatin organization within the nucleus [154,155]. It interacts with



Int. J. Mol. Sci. 2023, 24, 15497 12 of 26

chromatin-associated proteins and helps anchor chromatin to the nuclear periphery [154].
This anchoring influences gene expression by modulating the accessibility of specific re-
gions of DNA [156,157]. Emerin has been shown to interact with transcription factors, such
as GATA1 (involved in hematopoiesis), LDB1 (involved in the regulation of muscle-specific
genes), and MyoD (involved in muscle development and differentiation) [158], and other
regulatory proteins, such as lamin A/C and Bcl-2 [153], suggesting that it may play a role
in gene expression regulation [150,151,157]. It can influence the localization of transcription
factors within the nucleus, potentially affecting their ability to activate or repress specific
genes [151,156,157]. Emerin interacts directly with components of the cytoskeleton, such as
actin filaments, via a conserved actin-binding domain by protein–protein interaction and
indirectly by the formation of the LINC complex, resulting in the participation of various
cellular processes, including nuclear positioning and migration [14,22,159]. Emerin’s role
in linking the nucleus to the cytoskeleton helps coordinate cellular responses to mechanical
forces and signaling cues [152,159]. Since emerin interacts with actin filaments through
direct binding and by forming a bridge with linker proteins like nesprins, emerin inter-
action as a part of the LINC complex plays a critical role in connecting the nucleus to the
cytoskeleton, facilitating nuclear movement, gene regulation, and signaling in response to
mechanical cues via the nuclear membrane integrity [160].

4.2.3. Lamin B Receptor (LBR)

Some studies suggest that lamin proteins may interact directly with specific DNA
sequences within LADs [73,87,161]. These sequences are often referred to as “lamin-
associated motifs” or “Lamin B receptor (LBR) recognition motifs”, generally consisting
of a DNA sequence rich in A and T [73,90]. LBR is a transmembrane protein found in the
inner nuclear membrane of the cell nucleus, and it plays a role in anchoring chromatin
to the NE [161–163]. LBR is a protein that interacts with lamin B1 and is involved in NE
assembly [161,164]. The binding of lamin proteins to these motifs within LADs may help
anchor chromatin to the nuclear periphery [73,87,90].

The LBR is a transmembrane protein found in the INM of the cell nucleus, and it
is involved in anchoring chromatin to the NE [161,162]. While LBR does interact with
DNA, it does not have a known sequence-specific DNA-binding domain like transcription
factors [165]. Instead, LBR’s DNA interactions are mediated through other proteins, such
as heterochromatin-associated proteins and lamina-associated factors [29,166,167].

LBR is believed to interact with specific chromatin regions, including LADs [29,166,167].
These interactions are thought to occur through protein–protein interactions rather than direct
DNA binding [161,167]. LBR may indirectly associate with specific DNA sequences through its
interactions with other nuclear components. The exact molecular details of how LBR associates
with chromatin and the specific sequences involved are still an active area of research. The
association between LBR and chromatin likely involves a combination of protein–protein
interactions with other NE proteins (such as emerin and lamins) and potentially interactions
with chromatin-associated factors [29,168]. It is important to note that LBR’s role in anchoring
chromatin to the NE contributes to the spatial organization of the genome, impacting gene
expression and genome architecture [38,161]. However, the exact mechanisms and sequences
involved in these interactions are complex and not fully understood.

4.2.4. MAN1

Membrane-anchored Nucleus Protein 1 (MAN1), a protein found in the inner nuclear
membrane (INM), plays pivotal roles in upholding the integrity of the INM and the overall
nuclear envelope structure [169]. MAN1 is among the integral membrane proteins that
contribute to anchoring the nuclear envelope to the nuclear lamina, thus preserving the
structural robustness of the nuclear envelope [169]. The interaction between MAN1 and
lamins, specifically lamin A and B, provides critical support to the nucleus, preventing
the collapse or deformation of the nuclear envelope [170]. The LAP2-Emerin-MAN1
(LEM) domain of MAN1 is instrumental in its interaction with lamin proteins [170]. The
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LEM domain encompasses a distinctive structural motif that facilitates its binding to the
C-terminal tail domains of lamins, particularly lamin A/C [171]. The interaction between
MAN1 and lamins is mediated by hydrophobic and electrostatic interactions involving
Leu, Ile, Phe, Arg, and Lys residues within the MAN1 LEM domain and the hydrophobic
regions of lamin A/C [171]. Furthermore, the interaction between MAN1 and lamins
frequently contributes to the formation of the LINC complex [147,172]. Consequently, this
interaction furnishes essential structural support to the nucleus, aiding in the maintenance
of nuclear shape and preventing deformation of the nuclear envelope during various
cellular processes, including cell movement, nuclear positioning, and mechanical stresses.
Despite its critical role in regulating nuclear membrane integrity, the precise molecular
mechanisms underlying MAN1′s involvement in nuclear membrane integrity have not yet
been fully elucidated.

4.2.5. Transcription Factors in the INM

Type II membrane proteins are a class of integral membrane proteins that have a
single transmembrane domain and are anchored to the membrane by this domain [173,174].
These proteins typically span the lipid bilayer once, with one end (the N-terminus) facing
the cytoplasm and the other end (the C-terminus) facing the extracellular space or an
organelle lumen [173,175]. In some cases, type II membrane proteins can contain tran-
scription factor activity or be associated with transcriptional regulation [176–179]. These
proteins, including steroid hormone receptors (estrogen and androgen receptors), generally
reside at the endoplasmic reticulum and are transported into the Golgi complex (Gc) by
appropriate stimuli [180]. At the Gc, these proteins are cleaved by S1P and S2P proteases,
resulting in the release and nuclear localization of the N-terminal domains, which contains
DNA-binding motifs at the specific DNA sequences [177,178,181]. Some proteins, such as
sterol regulatory element-binding proteins, Notch receptors, and activating transcription
factor 6, are activated by similar processing mechanisms and act as transcription factors
to respond depending on the cellular context [177,182]. Although Lamins and emerin are
type II membrane proteins that can be localized into the INM and bound with the genomic
DNA, these proteins do not act as transcription factors [183,184]. Recent results demon-
strated that CREB3-L1, OASIS, can be localized into the INM, especially new synthesizing
nuclear membrane [185]. However, CREB3-L1 acting as a transcription factor has not been
elucidated.

When unfolded proteins accumulate in the ER, ATF6α is transported to the Gc,
resulting in the release of an active cytoplasmic fragment of ATF6 (ATF6(N) by the
S1P/S2P-mediated cleavage. The ATF6(N) then translocates to the nucleus, where it acts as
a transcription factor. In the nucleus, ATF6(N) binds to specific DNA sequences known as
ER stress response elements (ERSEs) or ER stress response elements II (ERSE-II) [186,187]. It
then activates the transcription of target genes that play a role in alleviating ER stress, such
as chaperones and proteins involved in ER-associated degradation (ERAD) [188]. However,
immunocytofluorescence analysis of ATF6 using ATF6-GFP clearly showed that a strong
green fluorescence belt is detected surrounding the nucleus [177,189,190]. This fluorescence
belt is not overlapped with GM130, a Gc marker [189], and PDI, a ER marker [190]. Similar
observation by immunocytofluorescence assay using Flag-CREB3-L1 full length showed
that CREB3-L1 accumulates locally to the nuclear membrane [185]. Although all of these
reports showed that the full length of ATF6 and CREB3-L1 shows the ER localization, the
notable nuclear localization of ATF6 and CREB3-L1 suggests that there are unrevealed
functions at the nuclear membrane. Since CREB3 and CREB3 isotypes, including CREB3-L1,
-L2, -L3, and -L4, are type II membrane proteins harboring similar mechanisms with ATF6
for the activation [179,181], studies on the molecular mechanisms of these proteins for the
nuclear membrane localization and roles at the nuclear inner membrane are necessary.
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5. Nuclear Membrane Breakdown and Nuclear Morphology Change

Regulated cell death processes are characterized by distinctive alterations in nuclear
morphology that are tightly controlled and have functional consequences. These changes
not only serve as diagnostic markers but also have functional implications. Alterations in
nuclear morphology can influence the clearance of dying cells, the release of inflammatory
signals, and the immune response [8,191]. Understanding these nuclear morphology
changes is essential for elucidating the mechanisms and consequences of different forms of
regulated cell death in various physiological and pathological contexts [8]. Since nuclear
morphology change is triggered by the disruption of tension equilibrium as mentioned
in the introduction of this review, we now address the potential mechanism to induce the
nuclear morphology change via nuclear membrane destabilization processes.

5.1. Proteases Cleaving SUN and KASH Interaction

The precise identity of the proteases responsible for cleaving SUN and KASH proteins
localized within the INM remains elusive [37,143]. The existing literature suggests that
various proteases become activated and participate in cleaving these proteins, contingent
upon contextual factors such as cellular stressors, developmental stages, or specific cellular
signaling pathways [178,192]. Numerous proteases have been implicated in the cleavage of
components within the LINC complex.

Caspases, a family of cysteine proteases renowned for their pivotal role in apoptosis
(programmed cell death), exhibit the ability to cleave a spectrum of NE proteins [8], includ-
ing SUN and KASH proteins. The molecular basis upon which SUN and KASH proteins
may be cleaved by Caspase-3 during apoptosis encompasses specific recognition motifs,
proteolytic cleavage events, and consequential functional alterations. The identification
of putative caspase cleavage sites within SUN and KASH proteins relies on the presence
of the consensus sequence (Asp-X-X-X). Upon activation, Caspase-3 translocates to the
nucleus, where it encounters its nuclear substrates [193,194], including SUN and KASH
proteins. Caspase-3 cleaves these proteins at specific aspartic acid residues within the
caspase recognition motifs, liberating N-terminal fragments from both SUN and KASH
proteins. This cleavage may disrupt the interaction between SUN and KASH proteins,
leading to the disassembly of the LINC complex. SUN protein cleavage releases their
N-terminal SUN domains from the INM, while KASH protein cleavage may result in the
release of their cytoplasmic tails. Consequently, this disassembly perturbs the normal
maintenance of nuclear–cytoskeletal connections by the LINC complex, thereby altering
nuclear morphology, including nuclear condensation and fragmentation. Additionally, it
disrupts nuclear and envelope integrity, contributing to the orchestrated dismantling of
cellular structures during programmed cell death (apoptosis).

Calpains, calcium-dependent proteases, exhibit the capability to cleave an array of
cellular substrates, including components of the NE, such as SUN and KASH proteins [195].
Calpains recognize specific peptide sequences within their target proteins. The determina-
tion of calpain cleavage sites is contingent upon the presence of distinct amino acid motifs,
typically characterized by hydrophobic or bulky residues at the P2 position (two amino
acids preceding the scissile bond) and basic residues at the P1 position (the position imme-
diately preceding the scissile bond). Calpain-mediated cleavage disrupts the interactions
between SUN and KASH proteins, culminating in the disassembly of the LINC complex
and subsequent loss of nuclear–cytoskeletal coupling. This disruption leads to abnormal
nuclear morphologies, as evidenced during programmed cell death.

5.2. Nuclar Membrane Dynamicity and Nuclear Membrane Integrity

The stiffness and softness of the nuclear membrane play key roles in various cellular
processes, including gene expression, nuclear transport, and cell division, and in deter-
mination of cell fate, including cell survival and death [1]. The stiffness of the nuclear
membrane provides mechanical support to protect the genetic materials from mechanical
stress and external forces. In contrast, the nuclear membrane also needs the softness to
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allow for nuclear envelope breakdown and reformation during cell division, such as mitosis
and meiosis [196,197]. Since chromatin remodeling refers to the alteration of chromatin
structure, which encompasses DNA and histones, to allow or restrict access to specific DNA
regions for transcription, replication, repair, and other cellular activities, the INM integrity
homeostasis in the dynamic nuclear environment is a key event to determine cell survival
and death [85]. Mechanosensory mechanisms in cells detect changes in nuclear envelope
stiffness or nuclear deformation and trigger signaling pathways that lead to chromatin
structure alteration [198]. For example, mechanosensors activate chromatin-modifying
enzymes that alter histone modifications or DNA methylation patterns, which are markers
for heterochromatin or euchromatin [198]. Therefore, controlling the nuclear membrane
stiffness and softness is linked to the contribution to various cellular and pathological
processes. For example, excessive stiffness of the nuclear membrane led to a loss of nuclear
envelope integrity, resulting in nuclear envelope ruptures, compromising the separation of
nuclear and cytoplasmic contents, and potentially leading to DNA damage and cell death.
Increased stiffness induces distortion of the nucleus, resulting in abnormal nuclear mor-
phology, as shown in laminopathies [199]. In contrast, if the nuclear membrane becomes
too soft, it loses its ability to maintain nuclear envelope integrity, resulting in not only
nuclear envelope deformations, compromising the separation of nuclear and cytoplasmic
contents, but also the positioning of chromatin within the nucleus, leading to errors in
chromosome segregation and aneuploidy. Conditions like laminopathies, muscular dys-
trophies, and some types of cancer are associated with abnormalities in NE structure and
mechanics [52,199,200].

5.3. Nuclear Membrane Breakdown and Nuclear Blebbing

Nuclear blebbing is the formation of membrane-bound, spherical protrusions or
bulges from the nuclear envelope by the disassembly of nuclear lamina. The actin–myosin
contractile forces generated by the cytoskeleton contribute to nuclear blebbing. In contrast,
nuclear membrane invagination is a cellular process formed by the inward folding or
involution of the nuclear envelope to create intranuclear membrane structures. In this
process, endosomal sorting complexes required for transport (ESCRT) play a key role in
nuclear membrane remodeling and invagination [201]. In particular, ESCRT-III subunits
polymerize into spirals or filaments on the inner surface of the membrane, causing it to bend
inward [201]. Eventually, the ESCRT machinery aids in the constriction and pinching off of
the invaginated membrane structure, leading to its separation. This nuclear invagination
occurs in cell division to segregate and protect the genetic material within the dividing cell
and respond to DNA damage to isolate damaged DNA.

With parallel, the breakdown of the NE, commonly referred to as nuclear membrane
breakdown or NE disassembly, represents a pivotal event in cell division (mitosis and
meiosis) and is crucial in specific cellular processes, such as the reformation of the NE
following mitosis [196]. This event facilitates the segregation and equitable distribution of
genetic material to the daughter cells [202]. On the other hand, nuclear membrane rupture
is a phenomenon that can transpire under diverse circumstances, encompassing specific
cellular processes and pathological conditions [19,35]. This process entails the breach or
disruption of the NE, which constitutes the double-membrane structure enveloping the
cell’s nucleus [35,203]. Therefore, the difference between nuclear membrane breakdown
and rupture is to be controlled or uncontrolled [7,204].

The molecular mechanisms of the nuclear membrane rupture and blebbing are main
topics in apoptosis and necroptosis [8,205,206]. Apoptosis is a tightly regulated process that
orchestrates the systematic dismantling of a cell, encompassing a sequence of events that
culminate in the fragmentation and disintegration of the cell nucleus [8,207–209]. LBR plays
a contributory role in this process by participating in the alteration of nuclear structure
during apoptosis [30]. In the course of apoptosis, there is a profound transformation in the
chromatin within the nucleus [210]. This transformation leads to the formation of densely
compacted structures, commonly referred to as apoptotic bodies [211,212].
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LBR plays a vital role in facilitating this condensation of chromatin by engaging with
specific chromatin regions [161]. The perturbation of the NE and the reorganization of
chromatin render DNA more susceptible to nucleases and other enzymes that mediate
DNA cleavage throughout apoptosis [8]. The release of nuclear contents into the cyto-
plasm exposes DNA to the action of these enzymes. DNA cleavage during apoptosis is
primarily orchestrated by endonucleases, including caspase-activated DNases (CADs) and
endonuclease G (EndoG) [213,214]. For instance, in the course of apoptosis, caspase-3 and
caspase-7 undergo activation through a series of proteolytic cleavage events initiated by the
apoptotic signaling cascade [212,215,216]. Once activated, these caspases become enzymat-
ically active [217]. Subsequently, caspase-3 and caspase-7 cleave an endogenous inhibitor
of CAD, known as inhibitor of CAD (ICAD), also referred to as DNA fragmentation factor
45 kDa (DFF45) [214,215,218]. This cleavage event results in the dissociation of CAD from
ICAD. The cleavage of ICAD by caspases reveals the active site of CAD [219]. The activated
CAD then serves as a nuclease, relocating to the nucleus and cleaving chromosomal DNA
at internucleosomal sites [220]. This cleavage process generates characteristic DNA frag-
ments that are typically multiples of approximately 180–200 base pairs. These enzymes are
activated during apoptosis and are responsible for the fragmentation of chromosomal DNA
into smaller, discrete fragments [221]. The accessibility of chromatin to these enzymes is
influenced by the structural modifications occurring within the nucleus, which encompass
the breakdown of the nuclear envelope and the condensation of chromatin [8,222,223].
However, how molecular processes enable the materials to be encapsulated into the vesicle
has not been clearly elucidated.

5.4. The Contents Originated from the Nucleus in Apoptotic Bodies

Apoptotic bodies are membrane-bound vesicles that contain various cellular compo-
nents, including the contents of the nucleus [212,224]. The contents of the nucleus within
apoptotic bodies reflect the dramatic changes that occur during apoptosis, which is a pro-
grammed cell death process [212,224]. One of the most prominent features of the nucleus
in apoptotic bodies is fragmented chromatin [208]. Chromosomal DNA is cleaved into
smaller fragments by CAD and EndoG during apoptosis [208,225]. These DNA fragments
are tightly condensed and packaged into apoptotic bodies. In apoptosis progression, the NE
undergoes structural changes, including disassembly and fragmentation [212,226]. Compo-
nents of the NE, such as nuclear membrane proteins and lamins, are presented in apoptotic
bodies, reflecting the disruption of NE integrity [226,227]. Notably, various nuclear proteins
that are normally found within the nucleus, including transcription factors (p53; NF-κB;
signal transducer and activator of transcription, STAT; cAMP response element-binding
proteins, CREB proteins; forkhead box O proteins, FOXO proteins; and heat shock factor 1,
HSF1), DNA-binding proteins (histone proteins including γH2AX; high-mobility group
(HMG) proteins; poly(ADP-ribose) polymerase, PARP; nucleolin; Ku protein; and apoptotic
endonucleases including CAD and EndoG), and chromatin-associated protein, including
DNA repair factors, are included in apoptotic bodies.

During apoptosis, the formation of apoptotic bodies is a crucial step for the efficient
and controlled disposal of cellular debris without inducing inflammation [212]. Effector
caspases, particularly caspase-6 and caspase-3, target nuclear lamins [228,229]. Caspase-
mediated cleavage of lamins A and C contributes to the disintegration of the nuclear
lamina, a scaffold-like structure underlying the inner nuclear membrane [230]. The loss
of nuclear envelope integrity by lamin cleavage allows the nuclear membrane to become
permeable and flexible. This change in the hardness and softness may affect the equilibrium,
resulting in small vesicle formation by collapse of the tension. The nuclear components,
including fragmented DNA and other nuclear proteins, are encapsulated within these
apoptotic bodies. Apoptotic nuclear components are initially located within the nucleus of
the dying cell [212,221]. As the apoptotic process progresses, the cell undergoes membrane
blebbing, which includes the formation of membranous protrusions on the cell surface and
the NE [8,212]. These blebs encapsulate nuclear material, including fragmented DNA, as
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they pinch off from the dying cell. This process involves the caspase-mediated cleavage of
nuclear lamins. Caspase-6, one of the effector caspases activated during the execution phase
of apoptosis, is primarily responsible for the cleavage of nuclear lamins [230]. Caspase-
6 targets lamins A and C. In some cases, while caspase-3 is not the primary caspase
responsible for lamin cleavage, it can also cleave lamins, albeit to a lesser extent than
caspase-6. Therefore, caspase-6 and, to some extent, caspase-3 mediate the cleavage of
nuclear lamins, leading to the breakdown of the nuclear lamina and the disintegration of
the NE [228,230]. This disruption of NE integrity is a critical step in the process of apoptotic
body formation, as it allows nuclear material, including fragmented DNA, to mix with the
cytoplasmic contents of the dying cell and become encapsulated within apoptotic bodies
during membrane blebbing and pinch-off. The loss of NE integrity allows the nuclear
material to mix with the cytoplasmic content of the cell. In apoptosis processes, the DNA
within the nucleus becomes highly condensed and fragmented by hyperacetylation and
phosphorylation of histone proteins and the increase in DNA accessibility for cleavage
by endonucleases, such as CAD [231]. The condensed and fragmented DNA is more
likely to be retained within the apoptotic bodies as they form. Apoptotic bodies are
surrounded by a phospholipid bilayer membrane derived from the plasma membrane of
the dying cell. This membrane encapsulates the contents of the apoptotic body, including
nuclear material [208,212,224]. The encapsulation may prevent the release of potentially
immunostimulatory nuclear material into the extracellular environment. We summarized
the characteristics of cell death processes in apoptosis, necroptosis, and novel regulated cell
death (RCD), such as karyoptosis (Figure 3).
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Figure 3. Cell death processes can induce a wide array of morphological alterations within the nuclear
membrane. Apoptosis and necroptosis are two prominent forms of regulated cell death characterized
by significant morphological changes in both the nuclear and cellular membranes. In apoptosis, the
internal organelles within the nucleus and cytoplasm undergo encapsulation within vesicles enclosed
by membranes. Consequently, it acts as a deterrent against unnecessary inflammatory responses.
Conversely, necroptosis entails the formation of substantial pores in the cell membrane. Consequently,
the nuclear membrane experiences rupture, leading to the direct exposure of nuclear and cellular
contents to the extracellular matrix. This event triggers the release of damage-associated molecular
pattern signals to neighboring cells, thus provoking an excessive inflammatory response that can give
rise to inflammatory diseases.

6. Perspectives and Future Directions

The role of type II membrane proteins, which possess transcription factor activity, in
maintaining nuclear membrane integrity remains a largely unexplored area. It is crucial to
comprehend how these proteins contribute to the structural stability of the NE and their
impact on gene regulation. Mechanistic studies should encompass the identification of key
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proteins, post-translational modifications, and signaling pathways that participate in main-
taining the structural integrity of the NE. Subsequent research endeavors should prioritize
unraveling the specific functions of type II integral proteins concerning nuclear membrane
integrity. Gaining insight into how these mechanisms become dysregulated in diseases
like muscular dystrophies and premature aging syndromes can offer therapeutic avenues.
Furthermore, leveraging advancements in imaging technologies, such as super-resolution
microscopy and live-cell imaging, can provide a more profound understanding of nuclear
membrane dynamics and integrity. Investigating real-time interactions among nuclear
components and their responses to various cellular cues will yield valuable insights into
the preservation of nuclear morphology. To expedite progress in elucidating the molecular
mechanisms of nuclear membrane integrity regulation, collaborative efforts involving cell
biologists, geneticists, bioinformaticians, and clinicians are imperative. Such interdisci-
plinary collaborations can lead to a comprehensive comprehension of nuclear membrane
integrity. The integration of data from diverse fields will offer a holistic perspective on
the molecular mechanisms and clinical relevance of NE regulation. By pursuing these
perspectives and future directions, researchers can advance our knowledge of nuclear
membrane integrity and its significance in cellular function and disease. Ultimately, this
collaborative approach holds the potential to contribute to the development of innovative
treatments and therapies.
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