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Abstract: Alkaline aqueous zinc-ion batteries possess a wider potential window than those in mildly
acidic systems; they can achieve high energy density and are expected to become the next generation
of energy storage devices. In this paper, a hollow porous P-NiCo2O4@Co3O4 nanoarray is obtained
by ion etching and the calcination and phosphating of ZiF-67, which is directly grown on foam
nickel substrate, as a precursor. It exhibits excellent performance as a cathode material for alkaline
aqueous zinc-ion batteries. A high discharge specific capacity of 225.3 mAh g−1 is obtained at 1 A g−1

current density, and it remains 81.9% when the current density is increased to 10 A g−1. After one
thousand cycles of charging and discharging at 3 A g−1 current density, the capacity retention rate is
88.8%. Even at an excellent power density of 25.5 kW kg−1, it maintains a high energy density of
304.5 Wh kg−1. It is a vital, promising high-power energy storage device for large-scale applications.

Keywords: P-NiCo2O4@Co3O4; ion etching; alkaline aqueous; high-power energy; zinc-ion battery

1. Introduction

The redox potential of zinc metal in an alkaline aqueous is −1.44 V; therefore, zinc-
based batteries with alkaline electrolytes have a higher operating voltage and a higher
energy density. They have a lower redox potential than mildly acidic electrolytes (−0.763V),
which can expand the variety of active substances [1,2]. Therefore, they have great potential
to become an energy storage device for the next generation of grid-scale applications.
Different from the “rocking chair” mechanism of mildly acidic aqueous zinc-ion batteries
and the mechanism involving only surface/near surface reactions in supercapacitors, the
energy storage mechanism in alkaline aqueous zinc-based batteries mainly originates from
conversion reactions [3,4]. The metal cations in the cathode material and the OH− in the
electrolyte undergo a redox reaction, and the low-valence transition metals are oxidized
to a high-valence state to release electrons during the charging process, and reduced
to a low-valence state during the discharge process. Due to the inability to maintain a
constant and uniform environment on the electrode surface and the electrolyte during the
dissolution and deposition process of zinc in alkaline aqueous solutions, it is inevitable
that zinc dendrites will form, accompanied by side reactions, which have adverse effects
on the capacity, Coulombic efficiency, and cycle life of the battery [5,6]. Obtaining high-
performance alkaline zinc-ion battery cathode materials remains a challenge.

Transition metal phosphides exhibit better electrochemical activity because they have
better conductivity than transition metal oxides. Low-temperature phosphating can intro-
duce oxygen vacancies and phosphates into transition metal oxides, effectively improving
the electrochemical performance [7]. However, due to the susceptibility of the structure
of transition metal phosphating materials to corrosion by alkaline electrolytes, their cyclic
stability and rate performance are relatively poor. Metal phosphides are encapsulated in a
carbon matrix by using carbon derived from metal–organic frameworks (MOFs), which
can improve the electrochemical activity of electrode materials while maintaining their
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structural framework during charging and discharging, and improve the cycle stability of
the battery [8]. Most MOF derivatives have the problem of structural collapse and material
agglomeration, which reduces the number of effective active site, blocks ion diffusion
channels, and reduces mass transfer kinetics [9]. Direct growth of MOFs on conductive sub-
strates is an effective measure to solve this problem. Using the Co MOF directly grown on
foam nickel as a template, we obtained a self-supporting hollow nano-sheet array structure
through ion exchange, etching and calcination of NiCo2O4@Co3O4. Subsequently, by con-
trolling the amount of NaH2PO2 used during phosphating treatment, a P-NiCo2O4@Co3O4
with rich oxygen vacancy and phosphate solution was obtained. The hollow and porous
structure provided a good pathway for electron transfer and electrolyte diffusion. The
introduction of oxygen vacancies and phosphates further improved the conductivity of
electrons/ions and redox kinetics. Using it as a positive electrode material for alkaline
zinc-based batteries has achieved excellent electrochemical performance making it a highly
promising candidate material for positive electrodes.

2. Results and Discussion

The design strategy of p-NiCo2O4@Co3O4 is shown in Figure 1. First, ZIF-67 was
deposited on the surface of foam nickel. Then we used Ni(NO3)2 solution for ion etching.
This process was mainly controlled by the hydrolysis of Ni(NO3)2. Due to the weak
alkalinity of the ligand, ZIF-67 reacted with the H+ produced by hydrolysis, releasing Co2+.
The generated Co2+ was partially oxidized by NO3

− to Co3+. Then, Co2+/Co3+ diffused
outward and co precipitated with Ni2+ on the ZIF-67 surface to form NiCo-LDH, thereby
forming NiCo-LDH@ZIF-67 core shell structure.

Ni2+ + 2H2O↔ Ni(OH)2 + 2H+
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Figure 1. The design strategy of p-NiCo2O4@Co3O4.

The morphology and composition of the products were characterized by SEM. The
prepared ZIF-67 formed an array structure on the surface of foam nickel (Figure 2A). The
magnified image in Figure 2E exhibits the ZIF-67 has a smooth surface. Figure 2B,F show
the morphologies of the sample after 5 min of Ni(NO3)2 etching, which indicate that the
array structure and sheet morphology of ZIF-67 were maintained, and the surface became
rough, indicating the growth of new substances. The etching time plays a crucial role
in controlling the morphology of ZIF-67. Extending the etching time to 10 min would
significantly increase the porosity (Figure 2C,G). A long etching time (15 min) leads to the
excessive growth of nanosheets and the destruction of the two-dimensional array. From the
broken array part, it can be seen that the material has a hollow structure (Figure 2D,H). After
being annealed in air, the array morphology remains intact, as shown in Figure 2I,J, and the
gaps between the arrays have increased. A clear hollow feature can be seen from the pores
at the top of the array, indicating the formation of hollow and porous NiCo2O4@Co3O4-2
array structures. The SEM images of the phosphated P-NiCo2O4@Co3O4-2 are shown in
Figure 2K,L; it has retained the original array structure of NiCo2O4@Co3O4, and the surface
has become smoother which indicates a reduction in porosity.
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Transmission electron microscopy (TEM) further reveals the evolution process from
solid ZIF-67 nanosheets to hollow nanosheets. As shown in Figure 3A, ZIF-67 exhibits
a nanosheet morphology, with a smooth surface and uniform internal structure. After
being etched in Ni(NO3)2 solution, the morphology is significant changed (Figure 3B),
retaining the original skeleton structure and presenting an uneven layered structure, with
the internal hollow structure clearly visible. As shown in Figure 3C, the enlarged image
shows that the uneven internal structure indicates an uneven etching process, which is
related to the microstructure orientation of ZIF-67. Figure 3D shows the P-NiCo2O4@Co3O4-
2 obtained after phosphating and calcination, which preserves the hollow and porous
structure of NiCo-LDH@CoMOF-10 well. An optimized etching structure results in a more
uniform distribution of elements. The formation of a hollow and porous structure is more
conducive to electrolyte impregnation and transport. The element distribution image of
NiCo2O4@Co3O4 is shown in Figure 3E. From the distribution of all elements in the upper
right corner, it can be seen that Ni element is distributed throughout the entire sample,
and its surface boundary exceeds that of Co element. This indicates that Ni ion gradually
penetrates into the interior of ZIF-67 and forms a new substance, NiCo-LDH, on the surface
during the etching process, which is consistent with our design strategy.
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The phase composition transformation during the preparation process was further
studied using X-ray diffraction (XRD). The diffraction peak of ZIF-67 in Figure 4A corre-
sponds to the characteristic peak of ZIF-67 reported in the literature [10], confirming the
successful synthesis of precursor templates. The ZIF-67 characteristic peaks are weak for
samples etched for 5 and 10 min, but completely disappeared after being etched for 15 min,
confirming the transformation of ZIF-67 into amorphous NiCo-LDH [11]. The XRD patterns
of NiCo2O4@Co3O4, P-NiCo2O4@Co3O4-1, P-NiCo2O4@Co3O4-2, and P-NiCo2O4@Co3O4-
3 in Figure 4B indicate that the diffraction peaks of NiCo2O4@Co3O4 are denoted to Co3O4
(PDF # 42-1467) and NiCo2O4 (PDF # 20-0781), respectively. No diffraction peaks related to
NiO or CoO are observed, indicating that the obtained sample is a composite of NiCo2O4
and Co3O4. The diffraction peak positions of the P-NiCo2O4@Co3O4-2 are the same as
NiCo2O4@Co3O4, indicating that no phase transition occurred during the phosphating
process. However, the peak intensity of the sample after phosphating decreased signifi-
cantly due to the presence of surface phosphate ions, indicating a decrease in crystallinity
of the sample after phosphating [12], and no diffraction peaks related to CoP were found.
In addition, it was found that with the increase in the amount of NaH2PO2, the diffraction
peak of the NiCo2O4@Co3O4 gradually weakened until it disappeared.
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The surface elemental composition and valence states of the NiCo2O4@Co3O4 and
P-NiCo2O4@Co3O4-2 are characterized by XPS. Figure 5A shows the XPS full spectra of
two samples; compared with NiCo2O4@Co3O4-2, the significant P 2s and P 2p peaks in P-
NiCo2O4@Co3O4-2 demonstrate the successful introduction of phosphorus element [13,14].
The O1s spectra of the two samples are shown in Figure 5B, and both contain three characteris-
tic peaks: O1 (532.4 eV), O2 (531.1 eV), and O3 (529.4 eV). O1 corresponds to hydroxyl oxygen
adsorbed on the surface of the material, O2 corresponds to oxygen defects, and O3 corresponds
to metal oxygen bonds [15–17]. Compared to NiCo2O4@Co3O4, P-NiCo2O4@Co3O4-2 exhibits
a significant increase in the peak area of O2, indicating an increase in oxygen defects. Oxygen
vacancies are effective to improve the conductivity of electrode materials to enhance the reac-
tion kinetics of electrode materials [18–20]. At the same time, the peak area of O3 significantly
decreases due to the increase in oxygen vacancy concentration and the weakening of metal
oxygen bonds after phosphating. Figure 5C shows the high-resolution Co 2p spectrum, with
spin orbitals splitting into Co 2p3/2 and Co 2p1/2. The characteristic peaks at 780.6 and 796.0 eV
are attributed to Co3+, and the characteristic peaks with a binding energy of 782.1 and 797.6 eV
belong to Co2+ [21,22]. The peaks located at 786.7 and 803.1 eV are related to two satellite
peaks. Compared to NiCo2O4@Co3O4, the Co3+ (2p) peaks of P-NiCo2O4@Co3O4-2 are shifted
to the direction of high-binding energy, indicating that some Co3+ ions are reduced to Co2+ [23]
during the phosphating treatment. The Ni2p spectrum is split into Ni2+ (872.0 and 854.6 eV)
and Ni3+ (873.3 and 856 eV), and the peaks at 861.7 and 879.9 eV belong to the satellite peak of
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Ni (Figure 5D). In addition, comparing P-NiCo2O4@Co3O4-2 with NiCo2O4@Co3O4-2, the Ni
2p peaks of Ni2+ are shifted to the direction of high-binding energy, indicating that some Ni2+

ions are oxidized to Ni3+ after the phosphating treatment.
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Figure 5. XPS spectrum of P-NiCo2O4@Co3O4-2 and NiCo2O4@Co3O4: (A) survey spectrum; (B) Ni
2p; (C) Co 1s; (D) O 1s; and (E) P 2p.

The CV curves of NiCo2O4@Co3O4, P-NiCo2O4@Co3O4-1, P-NiCo2O4@Co3O4-2, and
P-NiCo2O4@Co3O4-3 in a three electrode system in 5 M KOH solution at a scanning rate of
10 mV s−1 are shown in Figure 6A, and all samples exhibit a pair of redox peaks, which can
be attributed to the reversible Faraday conversion process of MO and MOOH (M=Co, Ni) in
an alkaline electrolyte [24]. The GCD curves (Figure 6B) of four samples at a current density
of 2 A g−1 all exhibit a charge–discharge plateau at the corresponding potential windows,
which is consistent with the CV curve [25]. The peak current and integral area of the CV
curves of the three phosphating treated samples are greater than that of the untreated
sample NiCo2O4@Co3O4, which is consistent with the capacity relationship of the GCD
curves, indicating that phosphating treatment greatly improves the electrochemical activity
of the electrode material [26]. Among them, the integrated area of P-NiCo2O4@Co3O4-2 is
the largest, and the maximum specific capacity reaches 209 mAh g−1. The CV curve shapes
(Figure 6C) of P-NiCo2O4@Co3O4-2 at different scan rates (1–30 mV s−1) remain almost
unchanged as the scan rate increases, indicating that the material possesses excellent rate
performance and reversibility.

The discharge specific capacities of the four samples at current densities of 1, 2, 3, 4, 6,
8, and 10 A g−1 are shown in Figure 6D, where those of NiCo2O4@Co3O4 are the lowest,
that is 68.8, 66.3, 64.4, 62.9, 60.2, 58.5, and 56.5 mAh g−1, respectively. The discharge specific
capacities of P-NiCo2O4@Co3O4-1, P-NiCo2O4@Co3O4-3, and P-NiCo2O4 @Co3O4-2 are
116.5, 110.7, 88.1, 85.5, 81.5, 78.3, and 75.9 mAh g−1; 190.8, 172.2, 159.6, 150.7, 138.3, 129.1;
and 119.1 mAh g−1; 220.6, 208.4, 199.6, 192.3, 182.4, 174.5, and 167.3 mAh g−1, respectively.
When the current density returns to 1 A g−1, the discharge specific capacity of all samples
can return to its original value (Figure 6E), indicating that they possess excellent rate
performance. Among them, P-NiCo2O4@Co3O4-2 is the best, and can work reversibly with
satisfied specific capacity at the high current density.
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Figure 6. (A) CV curves at 10 mV s−1; (B) GCD curves at 2 A g−1; (D,E) rate performance of
NiCo2O4@Co3O4, P-NiCo2O4@Co3O4-1, P-NiCo2O4@Co3O4-2, and P-NiCo2O4@Co3O4-3 with cur-
rent density from 1 to 10 A g−1; (C) CV curves of P-NiCo2O4@Co3O4-2 at various scan rates; and
(F) GCD curves of P-NiCo2O4@Co3O4-2 with current density from 1 to 10 A g−1.

Using a zinc plate as the anode and a mixture solution of 5 M KOH and 0.3 M Zn(Ac)2
as the electrolyte, the P-NiCo2O4@Co3O4-2//Zn battery is assembled. Simultaneously, the
NiCo2O4@Co3O4//Zn battery is set as a comparison. Figure 7A shows the CV curves of
P-NiCo2O4@Co3O4-2//Zn and NiCo2O4@Co3O4//Zn at a scan rate of 15 mV s−1. The
redox peak can be attributed to the reversible conversion of Ni3+/Ni2+, Co3+/Co2+, and
even Co3+/Co4+ in alkaline electrolytes [27]. The reaction mechanism can be described by
the following equation [28]:

Co3O4 + OH− + H2O↔ 3 CoOOH + 3 e− (1)

NiCo2O4 + OH− + H2O↔ NiOOH + 2 CoOOH + 3 e− (2)

CoOOH + OH− ↔ CoO2 + H2O + e− (3)

2 NiCo2O4 + 3 Zn(OH)4
2− ↔ 2 NiOOH +4 CoO2 + 3 Zn + 6 OH− + 2 H2O (4)

Co3O4 + 2 Zn(OH)4
2− ↔ 3 CoO2 + 2 Zn + 4 OH− + 2 H2O (5)
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NiCo2O4@Co3O4//Zn; (C) rate performance; (D) GCD curves of P-NiCo2O4@Co3O4-2//Zn with
current density from 1 to 10 A g−1; and (E) Cycling performance of P-NiCo2O4@Co3O4-2//Zn and
NiCo2O4@Co3O4//Zn at 3A g−1, the interwoven blue and red lines in the upper part of the figure is
the Coulomb efficiency curve.

During the charging process, Zn(OH)4
2− is reduced to Zn, releasing OH− into the

electrolyte. At the same time, NiCo2O4 and Co3O4 react with OH− in the electrolyte and
convert into NiOOH and CoO2. During the discharge process, Zn reacts with OH− in the
electrolyte to convert into Zn(OH)4

2−. At the same time, NiOOH and CoO2 are reduced to
corresponding low-valent oxides, releasing OH− [29,30].

Figure 7B shows the GCD curves of P-NiCo2O4@Co3O4-2//Zn and NiCo2O4@Co3O4//Zn
at 3 A g−1 current density. The discharge platform of the P-NiCo2O4@Co3O4-2//Zn batteries
is significantly longer than that of the NiCo2O4@Co3O4//Zn batteries, exhibiting a higher
discharge specific capacity of 218 mAh g−1. The P-NiCo2O4@Co3O4-2//Zn batteries exhibit
excellent rate performance (Figure 7C). The discharge specific capacity of the battery is 225.3,
218.8, 213.5, 208.9, 200.6, 192.3, and 184.6 mAh g−1 at current densities 1, 2, 3, 4, 6, 8, and
10 A g−1, respectively. When the current density drops from 10 to 1 A g−1, the discharge specific
capacity of the P-NiCo2O4@Co3O4-2//Zn batteries reaches back to 226.5 mAh g−1, indicating
that P-NiCo2O4@Co3O4-2 possesses particularly excellent reversibility. Figure 7D shows the
GCD curves of the P-NiCo2O4@Co3O4-2//Zn batteries at the corresponding current density.
Each charging and discharging curve has a voltage platform, and the position of the platform
roughly matches the position of the redox peak in the CV curve. When the current density
changes from 1 to 10 A g−1, the corresponding voltage plateau does not change much, proving
that P-NiCo2O4@Co3O4-2//Zn batteries have excellent structural stability. Figure 7E shows the
cyclic stability of two batteries at 3 A g−1. The initial capacity of P-NiCo2O4@Co3O4-2//Zn is
217.1 mAh g−1, and after 1000 cycles of charging and discharging, the capacity is 193.3 mAh g−1,
with a retention rate of 89% and good stability. This is due to the direct growth of MOF precursor
on foam nickel substrate. During etching, phosphating, and calcination, MOF-derived carbon
materials have fixed P-NiCo2O4@Co3O4-2. Therefore, the structure of the electrode material is
maintained during the charging and discharging process, avoiding structural collapse.
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Figure 8A describes the relationship between power density and energy density
of P-NiCo2O4@Co3O4-2//Zn batteries at different current densities, with a maximum
energy density of 378.4 Wh kg−1 and a corresponding power density of 2.6 kW kg−1.
Even at the highest power density of 25.5kW kg−1, its energy density still reaches up to
304.5 Wh kg−1. Figure 8B shows the Ragon diagram of battery energy density and power
density. The energy density of P-NiCo2O4@Co3O4-2//Zn batteries is superior to many
reported aqueous zinc-based batteries, and the power density is also significantly better
than some supercapacitors (Table 1).
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Figure 8. (A) Power density(red star) and energy density(blue ball) of P-NiCo2O4@Co3O4-2//Zn at
different current densities and (B) Ragone plot of P-NiCo2O4@Co3O4-2//Zn, the details of a, b, c, d,
e, f, g, h, i and j are given in Table 1, respectively.

Table 1. Comparison of energy density and power density of P-NiCo2O4@Co3O4-2//Zn battery with
other materials in the literature.

Materials Energy Density (Wh kg−1) Power Density (kW kg−1) Literature

a, R-Co3O4//Zn 295.5 0.84 [31]
b, NiCo2O4//Zn 159.4 49 [32]

c, VS2//Zn 92 1.6 [33]
d, NaV2(PO4)2F3//Zn 44.7 4.47 [34]

e, MoS2//Zn 148.2 70.5 [35]
f, Co0.1Ni0.9P//AC 14 27 [36]

g, Ni-CoP/POx//RGO 5.7 19.9 [37]
h, NiMoP@CoCH//a-MEGO 14 11.9 [13]

i, NiCo2S4//AC 0.7935 47.29 [14]
j, ZnCo2O4//AC 0.7955 63 [38]

This work 304.5 25.5 This work

In order to investigate the electrochemical kinetics behavior of the P-NiCo2O4@Co3O4-
2//Zn battery, CV curves were obtained at 0.6, 1, 2, 4, 6, and 8 mV s−1 within the potential
window between 1.4 and 1.9 V. Figure 9A exhibits that the redox peaks shift but the CV
curves did not show significant deformation, remaining highly reversible with the increase
in scan rates. Normally, the Dunn power law relationship, i = avb, is used to analyze
the surface capacitive and diffusion-controlled processes of a battery, where i is the peak
current, v is the scan rate, and a and b are adjustable parameters. The b value of the
oxidation peak of the P-NiCo2O4@Co3O4-2//Zn battery is 0.983, and the reduction peak is
0.825, indicating that the charge storage process belongs to a mixed control process, which
includes both diffusion control behavior and capacitance control behavior. But the value of
b is closer to one, indicating that capacitor control dominates the charge storage process.
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Figure 9. (A) CV curves of P-NiCo2O4@Co3O4-2//Zn at various scan rates; (B) relationship between
log i and log v at specific peak currents; (C) the percentage of capacity contribution (red region)
at different scan rates; and (D) CV curve P-NiCo2O4@Co3O4-2//Zn electrode with the capacitive
contribution (red region) at 6 mV s−1.

In order to further determine the contribution of these two different mechanisms to
capacity, the percentages of capacitance contribution and diffusion contribution at different
scanning rates were calculated (Figure 9C). It can be seen that the proportion of capacitance
contribution increases with the increase of scan rate, possibly due to slow charge transfer
during the diffusion process and the inability to respond quickly to potential changes at
high scan rates. Therefore, the current contributed by this part will sharply decrease as the
scanning rate increases. It is worth noting that pseudocapacitance has a large proportion at
different scan rates, reaching 94.1% at a scan rate of 6 mV s−1 (Figure 9D), indicating that
P-NiCo2O4@Co3O4-2//Zn batteries exhibit fast charge transfer kinetics, which is also why
they exhibit high rate performance.

The EIS curve and the fitted equivalent circuit model are shown in Figure 10A. The
high-frequency region is typical of a semicircle, while the low-frequency region is a diagonal
line. From the fitting results, the semicircle diameter of P-NiCo2O4@Co3O4-2 in the high-
frequency region is significantly smaller than that of NiCo2O4@Co3O4, indicating that
P-NiCo2O4@Co3O4-2 has a smaller charge transfer resistance; thus the conductivity of
P-NiCo2O4@Co3O4-2 is significantly increased. This is because the introduction of oxygen
vacancies and phosphate ions after phosphating increases conductivity and improves the
electrochemical reaction kinetics of the electrode material. In addition, the ion diffusion rate
is also an important factor affecting electrode performance. Generally, the slope σ of the
relationship curve between the impedance real part Z’ andω−1/2 is used to evaluate the
ion diffusion rate; the smaller the size, the greater the ion diffusion rate. The linear fitting
results of the values are shown in Figure 10B. The σ of P-NiCo2O4@Co3O4-2 is smaller than
that of NiCo2O4@Co3O4, i.e., P-NiCo2O4@Co3O4-2 has a higher ion diffusion coefficient.
According to the Randles–Sevcik Equation and the CV curve, it can be further obtained that
the diffusion coefficients of P-NiCo2O4@Co3O4-2 and NiCo2O4@Co3O4 are 6.35 × 10−14

and 1.65 × 10−14, respectively.
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3. Materials and Methods
3.1. Preparation of ZIF-67

2-Methylimidazole solution (20 mL, 0.40 M) was quickly added to Co (NO3)2 solution
(20 mL, 0.05 M). Then, clean foam nickel (NF) was vertically put into the mixed solution,
stood at room temperature for 4 h, taken out, clean with deionized water, and vacuumed
dry at 60 ◦C for 24 h to obtain ZIF-67@NF.

3.2. Preparation of NiCo-LDH@ZIF-67

ZIF-67@NF was added to Ni(NO3)2 solution (50 mL, 0.01 M), etched for 10 min, then
washed thoroughly, and dried at 60°C for 24 h. This was recorded as NiCo-LDH@ZIF-67-10.
At the same time, the etching time was changed to 5 min and 15 min, respectively, and the
corresponding etching products were denoted as NiCo-LDH@ZIF-67-5, NiCo-LDH@ZIF-67-15.

3.3. Preparation of P-NiCo2O4@Co3O4

The obtained NiCo-LDH@ZIF-67-10 was placed in a tubular furnace, heated up to
300 ◦C for 2 h; the heating rate is 1 ◦C min−1 to obtain NiCo2O4@Co3O4. The obtained
NiCo2O4@Co3O4 and 0.01 g of NaH2PO2 were placed in the upstream and downstream
positions of the porcelain boat, respectively, in a tubular furnace, and kept at 300 ◦C
for 2 h in a N2 atmosphere to obtain P-NiCo2O4@Co3O4-2. The loading capacity is ap-
proximately 1.2 mg. The dosage of NaH2PO2 was changed to 0.005 and 0.02 g to obtain
P-NiCo2O4@Co3O4-1 and P-NiCo2O4@Co3O4-3, respectively.

4. Conclusions

In this paper, the cathode material P-NiCo2O4@Co3O4 with excellent alkaline aque-
ous zinc-ion battery performance is obtained from the direct growth on the foam nickel in
combination with ion-etching technology. This method improves the structural stability of
P-NiCo2O4@Co3O4, creates more ion transmission channels, and highly enhances the ion
diffusion rate and conductivity. The capacitance contribution dominates the charging and
discharging process, which greatly improves the power density of the battery while maintain-
ing an excellent energy density. It obtains an excellent energy density of 304.5 Wh kg−1 at a
super-high power density of 25.5 kW kg−1, exhibiting excellent application potential.
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