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Abstract: Bioinformatics tools are used to estimate in vivo protein turnover rates from the LC-MS data
of heavy water labeled samples in high throughput. The quantification includes peak detection and
integration in the LC-MS domain of complex input data of the mammalian proteome, which requires
the integration of results from different experiments. The existing software tools for the estimation
of turnover rate use predefined, built-in, stringent filtering criteria to select well-fitted peptides
and determine turnover rates for proteins. The flexible control of filtering and quality measures
will help to reduce the effects of fluctuations and interferences to the signals from target peptides
while retaining an adequate number of peptides. This work describes an approach for flexible error
control and filtering measures implemented in the computational tool d2ome for automating protein
turnover rates. The error control measures (based on spectral properties and signal features) reduced
the standard deviation and tightened the confidence intervals of the estimated turnover rates.

Keywords: protein turnover; heavy water metabolic labeling; label incorporation; isotope profiles;
retention time alignment

1. Introduction

Heavy water metabolic labeling followed by liquid chromatography coupled with
mass spectrometry (LC-MS) is a powerful and high throughput technique for in vivo
protein turnover studies [1–5]. The turnover rates for proteins and peptides are determined
using the exponential decay modeling of the time course depletion of the monoisotopic
relative isotope abundances (RIAs) obtained from the LC-MS data of heavy water labeled
peptides [6–9].

Several software tools [1,8,10,11] have been developed to automate the estimation
of protein turnover rate from LC-MS experiments, including d2ome [9,12]. d2ome is a
powerful tool for protein turnover estimation from deuterium-labeled LC-MS experiments.
The software uses nonlinear least squares regression on the time course (along with the
labeling duration) of monoisotopic RIAs to determine turnover rates for proteins and
peptides. The inputs for the software are the mass spectral data in the mzML [13] file format
and database search results in the mzIdentML [14] format at every time point of labeling.
User-specified parameters (e.g., mass accuracy) provide flexibility for the adaptation to
specific experimental conditions. The outputs of the software are quantification results of
turnover rates for proteins and peptides. This software has several components, including
peak detection and integration, the alignment of retention time [3], isotope incorporation
and label enrichment estimation [15,16], and protein turnover computation [9].

The protein turnover rate in heavy water metabolic labeling experiments is estimated
as the median of the turnover rates of its constituent peptides. However, not all peptide
quantifications are reliable, due to, for example, fluctuations in mass spectral intensity mea-
surements, overlapping isotope profiles, and the co-elution of contaminants. The existing
turnover rate estimation software tool, d2ome (version v1.05.5), uses a predefined built-in
stringent peptide half-life filtering criteria to select well-fitted peptides and determine
turnover rates for proteins. However, the predefined criteria for selecting peptides that are
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incorporated into the software cannot be customized by users, and at times, these criteria
may not fully meet their requirements.

In this work, we present a bioinformatics tool for determining protein turnover rates
based on user-customizable GOF measurements. The tool uses d2ome software quantifica-
tion outputs to determine new protein turnover rates and their corresponding confidence
intervals. The filtering parameters incorporated in this tool are the coefficient of determina-
tion (R2), the Pearson correlation coefficient (r), the root mean squared error (RMSE), the
peptide abundance, the isotope deviation, and the number of experiments in which the
peptide is identified and quantified. The tool enables users to visually inspect and validate
the filtered peptides by providing the time-course plot of the experimental RIA values and
their comparison with the theoretical ones. Furthermore, it generates a comma-separated
output file, called Analyzed_Proteins_and_Their_Rates.csv, which contains the newly com-
puted turnover rate, the number of peptides used in the computation, the 95% confidence
interval, and the standard deviation of the protein turnover rates quantified from the
LC-MS experiment. This tool is incorporated into d2ome software and is available on
GitHub. Furthermore, we also report on the recent developments that are incorporated into
d2ome software. The latest features include options to determine the protein turnover rates
from partial isotope profiles [15], the retention time alignment [3], and the two-parameter
data modeling. Figure 1 presents the overall workflow of LC-MS data processing using
d2ome software. The data processing steps indicated with the red box in Figure 1 are the
new features in d2ome software.
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Figure 1. Workflow of protein turnover estimation using d2ome software. The steps indicated with
the red rectangles, i.e., chromatographic alignment, the quantification of label enrichment from the
partial isotope profile, two-parameter protein turnover computation, and graphical user interface
(GUI) for advanced filters, are new developments in the d2ome software.
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2. Results
2.1. Advanced Filters to Facilitate Protein Turnover Rate Analysis

In heavy water metabolic labeling experiments, the incorporation of 2H atoms into
amino acids during labeling remodels the distribution of mass isotopomers. These changes
were recorded in the LC-MS profiles of peptides and used to determine turnover rates for
proteins and peptides. Exponential decay functions were used to model the time-course
depletion of the monoisotopic RIA [17,18], Equation (1):

I10(t) = Iasymp
0 +

(
I0(0)− Iasymp

0

)
e−kt (1)

I0(t) =
A0(t)

∑5
i=0 Ai(t)

(2)

where I0(0) is the monoisotopic RIA of the unlabeled (natural) peptide determined as
the normalized abundance of the monoisotope from the complete isotope profile of a
peptide [16,19] (Equation (2)); I0

asymp is the monoisotopic RIA at the plateau of labeling;
t is the labeling duration; and k is the turnover rate. Ai(t) is the raw abundance of the ith

mass isotopomer at the labeling time point t.
d2ome software utilizes Equation (1) to determine the turnover rates for peptides from

time-course LC-MS data of heavy water labeled samples. The accuracy of the peptide’s
turnover rate is evaluated by comparing the experimental monoisotopic RIAs quantified
from the LC-MS data with the theoretical values computed for each labeling duration using
Equation (1). The coefficient of determination (R2), Pearson correlation coefficient (r), and
RMSE values are used to measure GOF.

The estimated turnover rate for peptides of the same protein may vary due to fluctua-
tions in mass spectral intensity measurements and overlapping isotope profiles caused by
co-eluting contaminants in complex proteome mixtures. For the accurate determination of
protein turnover rates, peptides are filtered based on their GOF characteristics. To be eligible
for the estimation of protein turnover rate, peptides must meet one of two filtering criteria
based on their rate constant values. If the peptide has a rate constant of less than 0.01 day−1

(k < 0.01 day−1) (slow turnover proteins), it must satisfy the threshold of RMSE < 0.01.
Otherwise (k ≥ 0.01 day−1), it must have R2 > 0.9, r > 0.9, and RMSE < 0.05. To exclude
any aberration from the peptides that passed the GOF threshold, Grubbs’ outlier-detection
algorithm [20] is applied. The protein turnover rate is computed as the median of the
turnover rates of peptides that meet the filtering criteria. For the majority of the peptides,
the second filtering criteria is used. However, for the peptides with slow turnover, the R2

value is not a good quality measure due to the small differences in monoisotopic RIAs in
labeled and unlabeled samples.

Originally, in d2ome, the thresholds described above were used as GOF cutoff mea-
sures for peptides to achieve robust protein turnover estimation using a heuristic approach.
These values are not user-customizable and, on some occasions, may come short of sat-
isfying a user’s specific expectations. Thus, we developed a GUI application to enable
users to input the GOF characters that fit their expected criteria. The user-customizable
GOF parameters incorporated in the software include RMSE, R2, r, standard deviation
(SD), the number of experiments that the peptide is identified in, isotope deviation, and the
abundance of the peptide.

The input for the advanced filtering tool is the rate-constant-quantification outputs
from the d2ome software, called “ProteinName.RateConst.csv”. These files are generated
for each identified protein in the LC-MS dataset and contain detailed information about the
computed peptides’ turnover rate and the corresponding GOF characteristics. Each file con-
tains the peptide’s sequence, its charge and rate constant, and the corresponding lower and
upper bounds of the confidence interval (CI), the GOF measures between theoretical fit and
experimental RIAs, the absolute deviation between the theoretical and experimental isotope
profiles of the unlabeled peptide, the sequence mass-to-charge ratio (m/z), the number of
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accessible hydrogens (NEH), the number of data points (NDP), and the average abundance
of the monoisotope. The GOF measures included in the “ProteinName.RateConst.csv” file
are the Pearson correlation coefficient (r), the coefficient of determination (R2), the root
mean squared error (RMSE), and the standard deviation (SD).

The software uses the GOF thresholds set by the users to filter peptides and compute a
new turnover rate and 95% CI for proteins. The output of the software is a comprehensive
new “Analyzed_Proteins_and_Their_Rates.csv” file that contains the newly computed
turnover rates of proteins and their corresponding CIs. In accordance with the user GOF
parameter, the filters lower the standard deviation of the turnover rate and result in a
tighter CI.

Figure 2 presents a sample screenshot of the advanced peptide-filtering tool. The
window has three main sections. The first section, located at the top of the window,
contains the input controls to enter the GOF thresholds. The left side of the window
shows protein peptides and their corresponding turnover rates with GOF measures in a
tabular format. The right side of the window presents a graphical visualization for the
comparison of the time-course monoisotopic RIAs estimated from the isotope profiles with
the theoretical fit.
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Figure 2. The graphical user interface (GUI) for advanced tool for protein peptide filtering. User-
defined stringent filtering parameters can result in robust protein turnover estimation and improve
the confidence interval for protein turnover estimations.

The performance of the filtering tool was evaluated using a benchmark dataset ac-
quired from a recent work that reported a large-scale LC-MS murine liver proteome
study [21]. The dataset contains raw mass spectral data, database search results, and
quantification outputs that were obtained from eighteen C57/BL6J male mice liver tissues
using an Orbitrap Eclipse mass spectrometer at nine different labeling durations (0,1, 2, 3, 4,
5, 6, 14, and 21 days). The experiments were described in detail in the original publication.
In brief, for day zero (unlabeled samples), two mice were randomly selected and were
used to estimate the natural isotope abundances. The remaining mice were IP-injected
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with 750–960 ul of 99.9% D2O that was made isotonic with 0.9 g NaCl w/v. They were
immediately given free access to 8% enriched (v/v) deuterated water for variable labeling
durations [15,21]. At each labeling duration, two randomly chosen mice were sacrificed,
and dissected livers were used to prepare the samples for LC-MS analysis. ThermoFisher
Eclipse Orbitrap mass spectrometer was operated using data-dependent acquisition (DDA)
to obtain the raw mass spectral data from the liver samples. Proteowizard MSConvert
tool [22] was used to convert the raw mass spectral data to mzML format, and the Mascot
database search engine [23] was used to identify peptides from tandem mass spectra data.
The turnover rates of proteins and peptides were determined from the spectral data and
the database search results using d2ome software.

Figure 3a,b present the comparison of the computed turnover rates and their correspond-
ing standard deviations before and after using the advanced filtering tool. R2 ≥ 0.95, r ≥ 0.95,
RMSE≤ 0.05, SD≤ 0.05, NDP≥ 4, abundance≥ 2× 107, and isotope deviation ≤ 0.3 thresholds
were used to recompute the protein turnover rates and their corresponding 95% confidence
intervals. For the comparative analysis, 436 proteins with at least five peptides that satisfied
the filtering criteria were selected. Figure 3a shows a scatter plot and heat map of protein
turnover rates before (x-axis) and after (y-axis) using the filtering thresholds. The corre-
lation coefficient between the original d2ome output (koriginal) and the newly computed
turnover rates using the advanced filtering (kfilter) was 0.94. For 80% of the proteins, the
relative difference between the original and newly computed turnover rates is less than
15%. Overall, the observed change in turnover rates due to the filtering criteria was small.
However, the change in the standard deviation and the confidence intervals of protein
turnover rates is significant. Figure 3b shows the distribution of the relative differences
between the standard deviations of the original d2ome outputs and the newly computed
values using the advanced filtering tool. The filtering technique improves the standard de-
viations and the confidence intervals of the computed turnover rates for 88% of proteins. In
addition, the standard deviation was improved by more than 15% and 25% for 45% and 17%
of the proteins, respectively. The standard deviation for protein turnover rate is computed
as the harmonic mean of the standard deviation of its constituting peptides. Consequently,
the improvements in the standard deviation result in a tighter confidence interval.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 15 
 

 

the proteins, the relative difference between the original and newly computed turnover 
rates is less than 15%. Overall, the observed change in turnover rates due to the filtering 
criteria was small. However, the change in the standard deviation and the confidence in-
tervals of protein turnover rates is significant. Figure 3b shows the distribution of the rel-
ative differences between the standard deviations of the original d2ome outputs and the 
newly computed values using the advanced filtering tool. The filtering technique im-
proves the standard deviations and the confidence intervals of the computed turnover 
rates for 88% of proteins. In addition, the standard deviation was improved by more than 
15% and 25% for 45% and 17% of the proteins, respectively. The standard deviation for 
protein turnover rate is computed as the harmonic mean of the standard deviation of its 
constituting peptides. Consequently, the improvements in the standard deviation result 
in a tighter confidence interval. 

 
(a) 

Figure 3. Cont.



Int. J. Mol. Sci. 2023, 24, 15553 6 of 14Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 15 
 

 

 
(b) 

Figure 3. The advanced filtering technique improves the standard deviation and 95% confidence 
intervals of computed turnover rates: (a) scatter plot and heat map of protein turnover rates before 
(x-axis) and after (y-axis) using advanced filtering tool, (b) distribution of the relative differences 
between the standard deviation of the original d2ome output and the newly computed value using 
the advanced filtering tool. 

2.2. Recent Developments in d2ome Software 
2.2.1. Quantification of Label Enrichment from Partial Isotope Profiles 

The incorporation of deuterium into amino acids results in a composite profile that 
contains both labeled and unlabeled versions of the peptide. The existing methods for 
estimating the label incorporation use the complete isotope profiles of a peptide to deter-
mine the normalized monoisotopic RIA [1,24]. This technique has an advantage in aver-
aging out measurement errors that arise due to the limitations in spectral accuracy. How-
ever, this technique fails to compute the accurate monoisotopic RIA when the isotope pro-
file is distorted. Due to the complexity of the mammalian proteome, it is common for tar-
get peptides to co-elute with contaminants and result in overlapping and distorted isotope 
profiles. The traditional approach, which uses the first six heavy mass isotopomers to de-
termine RIA, results in inaccurate estimations of label incorporation. It has been observed 
that more than half of the peptides quantified using this technique exhibit low GOF char-
acteristics (with an R2 value less than 0.8) and cannot be utilized in determining the protein 
turnover rate [17,24]. 

To address this problem, we have introduced a new algorithm to estimate label in-
corporation for a peptide from the ratio of any pair of its mass isotopomers [15,25]. This 
algorithm only uses the ratio of raw abundances from two unaffected mass isotopomers 
to determine the monoisotopic RIA in overlapping peptide isotope profiles. This tech-
nique has doubled the number of high-quality quantified peptides (R2 ≥ 0.95) and im-
proved the CIs of the computed turnover rates. 

Figure 4 presents the common type of isotope profile overlap (top plot) in comparison 
with the theoretical spectrum from unlabeled samples (bottom plot). Figure 4a shows the 
interference in the isotope profile for the FSTANPVYVGNVAWAHILAAR+3 peptide of the 
3BHS3_MOUSE protein. As seen from the figure, the M2–M5 mass isotopomers were 

Figure 3. The advanced filtering technique improves the standard deviation and 95% confidence
intervals of computed turnover rates: (a) scatter plot and heat map of protein turnover rates before
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2.2. Recent Developments in d2ome Software
2.2.1. Quantification of Label Enrichment from Partial Isotope Profiles

The incorporation of deuterium into amino acids results in a composite profile that
contains both labeled and unlabeled versions of the peptide. The existing methods for esti-
mating the label incorporation use the complete isotope profiles of a peptide to determine
the normalized monoisotopic RIA [1,24]. This technique has an advantage in averaging
out measurement errors that arise due to the limitations in spectral accuracy. However,
this technique fails to compute the accurate monoisotopic RIA when the isotope profile is
distorted. Due to the complexity of the mammalian proteome, it is common for target pep-
tides to co-elute with contaminants and result in overlapping and distorted isotope profiles.
The traditional approach, which uses the first six heavy mass isotopomers to determine
RIA, results in inaccurate estimations of label incorporation. It has been observed that more
than half of the peptides quantified using this technique exhibit low GOF characteristics
(with an R2 value less than 0.8) and cannot be utilized in determining the protein turnover
rate [17,24].

To address this problem, we have introduced a new algorithm to estimate label
incorporation for a peptide from the ratio of any pair of its mass isotopomers [15,25]. This
algorithm only uses the ratio of raw abundances from two unaffected mass isotopomers to
determine the monoisotopic RIA in overlapping peptide isotope profiles. This technique
has doubled the number of high-quality quantified peptides (R2 ≥ 0.95) and improved the
CIs of the computed turnover rates.

Figure 4 presents the common type of isotope profile overlap (top plot) in comparison
with the theoretical spectrum from unlabeled samples (bottom plot). Figure 4a shows
the interference in the isotope profile for the FSTANPVYVGNVAWAHILAAR+3 peptide
of the 3BHS3_MOUSE protein. As seen from the figure, the M2–M5 mass isotopomers
were affected by the interferences from a co-eluting contaminant. Therefore, the complete
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isotope profile underestimates the monoisotopic RIA. However, the estimation of the label
enrichment from the unaffected M0 and M1 can be used to accurately determine I0(t).
Similarly, Figure 4b shows a distorted isotope profile of the FANTMGLVIER+2 peptide from
3HAO_MOUSE. The interference affects the intensity of M3–M5 mass isotopomers. The
estimation of label enrichment from the partial isotope profile can be used to accurately
compute the monoisotopic RIA from the unaffected M0, M1, and M2 mass isotopomers.
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unlabeled sample of FANTMGLVIER+2 (3HAO_MOUSE).



Int. J. Mol. Sci. 2023, 24, 15553 8 of 14

Figures 5 and 6 depict the time-course comparison of the experimental and theoretical
monoisotopic RIA determined from complete and partial isotope profiles for two peptides
(YILGNPLNSGINQGPQIDKEQHNK+3 and ALQYFAGWADK+2) of the AL1A7_MOUSE
protein. Without co-elution, both methods reproduce similar RIA values, as shown in
Figure 5. Figure 6a demonstrates the sample-improvement data point using the RIA
values from the A2(t)/A0(t) from the distorted isotope profile. Figure 6b presents the
peptide isotope profile at 14 days of deuterium labeling. As shown in Figure 6a, the
experimental RIA computed from the six mass isotopomers for 14 days of labeling duration
is overestimated due to the co-elution of the peptide with a contaminant that resulted in
distorted isotope profiles. As a result, the computed GOF measures for the peptide are too
low to be used for protein turnover estimation (R2 = 0.07 and RMSE 0.123). Using the RIA
values determined from A2(t)/A0(t), the peptides GOF can be improved from 0.07 R2 value
to 0.99 with an RMSE value of 0.01. This will make the peptide usable for protein turnover
estimation. Similarly, the RIA values from the other ratios (A1(t)/A0(t), and A2(t)/A1(t))
are also applicable to improve the peptide’s goodness-of-fit measures depending on the
degree of the isotope profile overlap. Comprehensive statistics about the performance of
the two-mass isotopomers method and its comparison with the complete isotope profile
have been presented elsewhere [15].
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Figure 5. Label incorporation estimation using two mass isotopomers reproduces the monoisotopic
RIA determined using the complete isotope profile. The solid magenta line indicates the theoretical
fit from the computed turnover rate. The black circle, green rectangle, magenta circle, and orange
diamond represent the monoisotopic RIAs determined using the complete isotope profile, A1(t)/A0(t),
A2(t)/A0(t) and A2(t)/A1(t), respectively.

2.2.2. Retention Time Alignment

At each labeling duration, peptides are detected and quantified using their tandem
mass spectra and precursor m/z. However, due to the stochastic nature of the data-
dependent acquisition (DDA) techniques, a significant number of “missing values” are
observed across experimental datasets. The “missing values” problem becomes more
prominent in the metabolic labeling of heavy water. The incorporation of 2H atoms into
amino acids increases the abundance of heavy-mass isotopomers. As a result, the isotope
distribution of the fragment ions is different from those of natural peptides. These dif-
ferences affect the performance of conventional database search engines and reduce the
number of confidently identified peptide spectrum matches.
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determine monoisotopic RIA from overlapping isotope profiles. (a) The black circle, green rectangle,
magenta circle, and orange diamond all show the monoisotopic RIAs, which were computed using
the complete isotope profile, A1(t)/A0(t), A2(t)/A0(t), and A2(t)/A1(t). The theoretical fit from the
computed turnover rate is shown by a solid magenta line. (b) Isotope profile of ALQYFAGWADK+2

(AL1A7_MOUSE) peptide at 14 days of heavy water metabolic labeling.

Match between runs (MBR) and accurate mass and chromatographic time alignment
techniques have been widely used to address the “missing value” problem [26–28]. How-
ever, this technique does not account for time series samples from metabolic deuterium-
labeling experiments. This is due to the significant changes in isotope profiles of pep-
tides caused by the incorporation deuterium, as well as the retention time shifts in chro-
matograms obtained at different labeling durations. To address this issue, we implemented
an algorithm based on correlation-optimized time warping to align peptide retention time
between heavy-water-labeled LC-MS experiments [3].
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Figure 6a,b present the elution profile of the AAFDDAIAELDTLSEESYK+2 peptide
of the 1433E_MOUSE protein acquired from LC-MS chromatograms at seven different
labeling durations (0, 1, 6, 7, 13, 13, 24, and 31 days). Figure 7a shows the retention time
shift of the peptides in different experiments. The maximum shift observed for this peptide
is 65.7 s between the chromatograms acquired from the unlabeled sample and 31 days
labeled sample. After applying the technique for retention time alignment, we were able to
align the most significant peaks of the chromatograms in the elution window of the peptide,
as shown in Figure 7b.
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labeling durations: (a) before retention time alignment and (b) after retention time alignment. The
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the corresponding retention time. The line connecting the circle indicates the elution window of
the peptide at a specific labeling duration. The different colors represent the labeling duration for
each chromatogram.

The retention time alignment followed by MBR is implemented in d2ome software as a
solution to mitigate the “missing value” problem. MBR is used to transfer peptide features
from one experiment where the peptide is fragmented and identified to the experiment
where it was not identified. Prior to the transfer, the experimental RTs are aligned to
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minimize the risk of incorrect transfers. This technique has been thoroughly validated
in different data sets and has consistently increased the number of quantified peptides
for quantitative analysis. In addition, this algorithm improves the CI and the SD of the
estimated turnover rates by increasing the number of experiments in which the peptide
is quantified. For instance, the peptide used in Figure 7, AAFDDAIAELDTLSEESYK+2,
was not identified in the experiments with labeling durations of 6, 7, 9, 13, 16, 21, 24,
and 31 days. However, by using RT alignment and the MBR technique, we were able to
accurately quantify the peptide in experiments where it was undetected. In Figure 8, the
red dots represent the quantified points obtained using RT, followed by the MBR technique.
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2.2.3. Two-Parameter Modeling

d2ome utilizes a nonlinear regression model to estimate the turnover rates of pep-
tides. This model estimates the fitting parameters by minimizing the sum of squared
errors between the experimental data points and the theoretical values that are computed
using Equation (1). The optimization technique implemented in the software is the Broy-
den–Fletcher–Goldfarb–Shanno algorithm (BFGS) [9,29]. This algorithm takes the labeling
durations, the time course experimental monoisotopic RIA values, and the normalized
theoretical monoisotopic RIA at the plateau of labeling and fits those values to Equation (1)
and determines the only parameter, which is the turnover rate (k). Hence, it is referred to as
one-parameter data modeling. This data-modeling technique has been the default method
for protein turnover estimation in d2ome software.

In this work, we introduce the incorporation of the two-parameter data modeling
approach in d2ome software. This approach uses the same equations as one parameter
data modeling technique, Equation (1), to model the experimental data points. Unlike
the one-parameter model, this approach fits two parameters: the turnover rate and the
monoisotopic RIA at the plateau of labeling. In one-parameter modeling, the RIA at the
plateau of labeling was determined using Equation (3) shown below:

Iasymp
0 = I0(0)

(
1 −

pW
1 − pH

)NEH

(3)
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where I0(0) is the monoisotopic RIA of the unlabeled peptide and pW is the body water
enrichment in deuterium. Here, we determine I0

asymp by fitting the experimental points
to the data model mentioned above. The optimization algorithm used in this method is
also BFGS. To ensure the accurate estimation of parameters, the optimization parameters
for the BFGS algorithm are set accordingly. This includes the number of iterations and the
minimum absolute error difference between two successive iterations.

The optimization algorithm searches for the best-fit values for the parameters from
unrestricted search space. However, the parameters used in the model have a range limit.
Thus, the turnover rate values for peptides cannot be negative, and the asymptotic normal-
ized RIA values cannot be greater than the natural RIA. To account for these restrictions,
d2ome incorporated parameter transformations as shown in Equations (4) and (5):

k = e−θ (4)

Iasymp
0 =

I0(0)
(1 + e−α)

(5)

θ and α are unconstrained parameters. Overall, the two-parameter approach enables users
to determine the turnover rates and the asymptotic RIA values for peptides simultaneously.
This will give additional options to evaluate the accuracy of the estimated turnover rate
and GOF by comparing the asymptotic monoisotopic RIA quantified from the experimental
LC-MS data with the fit parameter obtained from the two-parameter model.

3. Conclusions

In this work, we described a user-customizable tool for the estimation of the protein
turnover rate. This tool enables users to utilize their standard GOF measures to compute
protein turnover rates instead of d2ome’s built-in stringent criteria. The output from the
software is a comprehensive summary file that contains proteins identified in the LC-
MS dataset and their turnover rates with corresponding CIs. The tool is incorporated
into d2ome software and available on GitHub at https://github.com/rgsadygov/d2ome
(accessed on 20 September 2023).

This work also summarizes the latest advancements in d2ome software. The recent
developments include two-parameter data modeling for protein turnover estimation, reten-
tion time alignment to address the “missing value” problems in deuterium metabolically
labeled experiments, and the estimation of label incorporation from partial isotope profiles
to resolve the complexity of the mammalian proteome. These methods increase the pro-
teome coverage and number of quantified peptides, reduce the SDs of the turnover rates,
and improve their CIs.
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Abbreviations

CI—confidence interval; GOF—goodness of fit; LC-MS—liquid chromatography
and mass spectrometry; m/z—mass-to-charge ratio; NDP—the number of data points;
NEH—the number of hydrogen sites accessible to deuterium in heavy water; RIA—relative
isotope abundance; RMSE—root mean squared error; SD—standard deviation.
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