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Abstract: Bladder carcinoma is globally among the most prevalent cancers and is associated with
a high mortality rate at advanced stages. Its detection relies on invasive diagnostic methods that
are unpleasant for the patient. Non-invasive molecular biomarkers, such as miRNAs, could serve
as alternatives for early detection and prognosis of this malignancy. We designed a computational
approach that combines transcriptome profiling, survival analyses, and calculation of diagnostic
power in order to isolate miRNA signatures with high diagnostic and prognostic utility. Our analysis
of TCGA-BLCA data from 429 patients yielded one miRNA signature, consisting of five upregulated
and three downregulated miRNAs with cumulative diagnostic power that outperforms current
diagnostic methods. The same miRNAs have a strong prognostic significance since their expression
is associated with the overall survival of bladder cancer patients. We evaluated the expression of this
signature in 19 solid cancer types, supporting its unique diagnostic utility for bladder carcinoma. We
provide computational evidence regarding the functional implications of this miRNA signature in
cell cycle regulation, demonstrating its abundance in body fluids, including peripheral blood and
urine. Our study characterized a novel miRNA signature with the potential to serve as a non-invasive
method for bladder cancer diagnosis and prognosis.

Keywords: miRNAs; bladder carcinoma; diagnosis and prognosis; genitourinary transcriptomics;
ROC analysis

1. Introduction

Urothelial bladder carcinoma (BLCA) ranks as the seventh most frequently diagnosed
cancer among males but falls to the tenth position when both genders are included. The
incidence and mortality rates of bladder cancer exhibit variations among different countries
due to disparities in risk factors, practices related to detection and diagnosis, and accessibil-
ity of treatment options [1]. The majority of BLCA are non-muscle-invasive carcinomas
with a high risk of recurrence within the first year after diagnosis [2,3]. Non-invasive
traditional methods such as ultrasound scans and cytology evaluation are widely accepted
methods for making a diagnosis, as both are very easy and cost-effective procedures; how-
ever, their sensitivity, specificity, and repeatability are to some extent limited [4]. To date,
cystoscopy is generally considered the gold standard for BLCA diagnosis. However, due to
its invasive nature and associated discomfort, there is a pressing need to explore alternative
non-invasive procedures for the identification of novel biomarkers.
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Non-invasive molecular approaches based on the assessment of protein biomarkers
have been proposed as alternatives to invasive diagnostic procedures, provided that their
sensitivity exceeds 90% [5]. ELISA-based techniques have been widely used for the de-
tection of various antigens, such as the NMP22 chromatin regulator, complement factor
H-related protein, or bladder tumor antigen (BTA), with variable sensitivity and sensitivity
rates [6,7]. Immunofluorescence and fluorescence in situ hybridization (FISH) techniques,
such as ImmunoCyt and Urovision, detecting either abnormal proteins or chromosomal
aberrations, have also been used for the diagnosis and follow-up of BLCA [8,9]. Beyond
antigens, other tests, such as UroSEEK, aim at detecting tumor DNA or even direct DNA
methylation (EpiCheck) as an epigenetic marker for bladder cancer [10,11].

Nowadays, despite the existence of several non-invasive urine biomarkers that have
been established for the purpose of diagnosing urothelial cancer, it is worth noting that
urine cytology stands as the sole liquid biopsy method indicated for the surveillance of
BLCA in several treatment guidelines [12]. Urinary cytology is commonly used in routine
practice due to its high specificity in the diagnosis of high-grade urothelial carcinoma,
though it shows a low sensitivity for low-grade urothelial carcinoma [13–15].

Given the expanding knowledge of liquid biopsy in the field of oncology, many
studies have focused on the introduction of new biomarkers in diverse biological fluids,
such as blood, plasma, urine, cerebrospinal fluid, and saliva, not only for monitoring
cancer progression but also for diagnosis [16,17]. In this context, microRNAs (miRNAs),
a diverse group of short non-coding RNAs of 20-22 nucleotides in length, may serve as
helpful biomarkers of diagnostic and prognostic value in various human diseases [18,19].
A miRNA molecule is capable of targeting and controlling hundreds of genes implicated
in variable biological processes [20,21]. Bioinformatic analysis has revealed that a range
of 30% to 60% of human coding genes have the potential to be regulated by miRNAs [20].
miRNAs could suppress the expression of their target genes by promoting the breakdown
of mRNAs (messenger RNAs) or by interfering with their translation process. Therefore,
they play a crucial role in the diagnosis and prognosis of various conditions, depending on
their classification as tumor suppressors (TSs) or oncogenic [22].

The precise mechanisms by which miRNAs are altered in the bladder are still poorly
understood. Previous studies have shown that miRNAs in bladder cancer are dysregu-
lated, aiding cell proliferation and epithelial–mesenchymal transition (EMT) and inhibiting
apoptosis [23]. The dysregulation of miRNAs is strongly associated with multiple biolog-
ical processes, including cell cycle arrest, apoptosis, proliferation, metastasis, treatment
resistance, and other activities. Numerous miRNAs have been associated with tumor type,
stage, or patient survival. Due to their notable stability in biological fluids, miRNAs are
recognized as a promising group of biomarkers for the early detection of many human
malignancies, including bladder cancer [24]. To date, many miRNA signatures have been
identified, some of which have superior diagnostic efficacy in comparison to others. How-
ever, there is no consensus on a definite diagnostic miRNA signature, emphasizing the
necessity for further research [25].

Below, we present the results of a computational analysis that relies on publicly avail-
able TCGA data to evaluate miRNA expression in terms of diagnostic and prognostic
performance for bladder cancer diagnosis. Our analysis provided a molecular signature
consisting of eight miRNAs that collectively outperform existing diagnostic methods. This
miRNA signature complements existing diagnostic approaches, facilitating the develop-
ment of molecular biomarkers for the non-invasive detection of bladder cancer.

2. Results
2.1. miRNA Differential Expression Analysis in TCGA Bladder Cancer Biopsies

Transcriptome analysis was performed in BLCA biopsies from the TCGA consortium
with the aim of isolating differentially expressed miRNAs with an elevated diagnostic and
prognostic potential, using three selection criteria. First, comparative analysis between
tumor and paracancerous biopsies revealed a total number of 794 differentially expressed
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miRNAs (DEMs), corresponding to 56.7% of all analyzed miRNAs (Figure 1A, Supplemen-
tary Table S1). Based on standard cutoffs for differential expression (see M&M, Section 4.2),
the majority of these DEMs were upregulated (756 or 54% of analyzed miRNAs), while
only 38 miRNAs were significantly downregulated (2.7% of analyzed miRNAs).
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Figure 1. Differential expression analysis of miRNAs in TCGA-BLCA patient cohort. (A) Volcano
plot analysis highlighting differentially expressed miRNAs (DEMs) between BLCA tumors (N = 409)
and paracancerous tissues (N = 19). Green and red dots correspond to significantly down- and
upregulated miRNAs, respectively. Vertical dashed lines indicate the log2FC thresholds (log2FC < −1
or > 1), while the horizontal dashed line highlights the statistical threshold (transformed − log10
p-value > 1.3, corresponding to p-value < 0.05). (B) Heatmap analysis highlighting the expression of
the selected miRNAs in BLCA tumors. Tumors are stratified according to the pathological stage and
are color-coded accordingly at the top horizontal annotation of the heatmap. The selected miRNAs
are divided and color-coded as up- (purple) or downregulated (orange), as indicated in the left-row
annotation. Box plots, shown on the right, illustrate the expression of up- or downregulated miRNAs
in all tumor stages against that of miRNAs in paracancerous (normal) biopsies, the average expression
of which is highlighted with the vertical dashed line inside the box plot. Heatmap colors correspond
to Z-scores of normalized miRNA expression.

Apart from the observed differences in absolute miRNA numbers, an overall stronger
pattern of upregulation was also observed since the fold change range of the upregulated
miRNAs was two times higher compared to the downregulated miRNAs (upregulated
log2 fold change (FC) range: 1 to 9, downregulated log2FC range: −1 to −4, Figure 1A,
Supplementary Table S1). Taken together, these data support the existence of a large
number of DEMs between BLCA tumors and paracancerous biopsies, with an observed
bias toward upregulation in tumor samples.
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2.2. Establishment of a miRNA Signature for BLCA Diagnosis

Having detected several DEMs for BLCA, we subsequently focused on the establish-
ment of a miRNA signature that is suitable for early-stage detection. Among our top DEMs,
we selected a small number of miRNAs, the expression of which was significantly altered
between early and late BLCA tumor stages compared to paracancerous levels (Figure 1B,
Supplementary Table S2). Therefore, differential expression in each tumor stage compared
to paracancerous expression levels served as a second criterion for selecting each of the
shortlisted DEMs, applying the same criteria as described in Section 4.2 as minimum
cutoffs. More specifically, the upregulated miRNA signature consisting of five miRNAs
(hsa-mir-210, hsa-mir-455, hsa-mir-130b, hsa-mir-93, and hsa-mir-200a) was significantly
overexpressed in tumors of all American Joint Committee on Cancer (AJCC) tumor stages
(I–IV) compared to paracancerous tissue. The average expression change of this miRNA
signature ranged between 7.9- and 11.9-fold (log2FC mean difference: 2.98–3.57), and
its upregulation pattern was consistent among the four tumor stages compared to their
presence in paracancerous tissues (Supplementary Table S2).

Moreover, we complemented the upregulated miRNA signature with three miRNAs
(hsa-mir-30a, hsa-mir-100, and hsa-mir-143) that were significantly downregulated in all
tumor stages compared to paracancerous tissue levels (Figure 1B, Supplementary Table S2).
Similar to the observations on the upregulated miRNAs, the downregulation of the three
selected DEMs was consistent in tumor tissue biopsies ranging between 0.12- and 0.22-fold
(log2FC mean difference: −2.17 and −3.1) (Supplementary Table S2). In conclusion, our
differential expression analysis highlighted an 8-miRNA signature consisting of five up-
regulated and three downregulated DEMs, the expression of which was significantly and
consistently altered even from the early stages of BLCA compared to their paracancer-
ous counterpart.

2.3. Evaluation of the Diagnostic and Prognostic Value of the Upregulated miRNA Signature

Differential expression analysis is useful in isolating DEMs with altered levels between
cancerous and non-cancerous tissues, but these changes are not always indicative of an
increased diagnostic potential for the respective miRNAs. We, therefore, performed a
receiver operating curve (ROC) analysis with the aim of evaluating the performance of our
miRNA signatures in differentiating between BLCA tumor and paracancerous tissues and
using it as a third miRNA selection criterion. We applied an ROC AUC (area under curve)
cutoff of 0.8 as a minimum threshold for selecting the final miRNA signatures.

ROC analysis indicated that our selected five DEMs that constitute the upregulated
miRNA signature are characterized by a robust and statistically significant sensitivity in
differentiating tumors from paracancerous samples (Figure 2A). More specifically, the
individual AUC performance of these DEMs ranged from 0.95 to 0.82, while the AUC of
the combined upregulated signature was near 0.96 (CI: 0.92–0.98), with an optimal cutoff
point of expression that equals 10.26 on a log2 scale (Supplementary Table S3).

Surprisingly, although the expression of the upregulated DEMs follows the binomial
pattern in tumor samples, their expression in paracancerous biopsies follows a bimodal
pattern of expression (Figure 2A). It can be postulated that this may be due to differences in
the proximity of the paracancerous tissue to the tumor or due to physiological factors that
alter DEM levels. Nevertheless, our calculated cutoff considers this observed variability to
minimize the probability of false positive detection. Importantly, the AUC performance of
other top upregulated miRNAs from our differential expression analysis (Supplementary
Table S1) was inferior compared to our selected DEMs (Supplementary Table S3), again
supporting the necessity of evaluating diagnostic performance using a combination of ROC
and differential expression analysis.
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Figure 2. Diagnostic and prognostic significance of the upregulated miRNA signature. (A) ROC
analysis for discriminating BLCA tumor vs. paracancerous tissues. ROC curve (upper left) indicates
an increased diagnostic potential (AUC = 0.95) of the upregulated miRNA signature shown in red. The
cutoff analysis curve (upper right) indicates the optimal expression cutoff point (10.26) for separating
tumors from paracancerous biopsies. The bottom left distribution graph highlights the expression
range of the miRNAs that constitute the upregulated signature in paracancerous (red) or tumor (blue)
samples. Finally, the bottom right dot plot highlights the average expression of the upregulated
miRNA signature in individual paracancerous (blue) or tumor (red) biopsies. The horizontal dashed
line indicates the calculated optimal cutoff point. (B) Box plot analysis indicating the elevated
expression of the upregulated miRNA signature according to regional lymph node status of AJCC
tumor invasion compared to paracancerous levels. (C) Same as in (B) but for AJCC distant metastasis
status. (D) Box plot analysis highlighting the elevated expression of the upregulated miRNA signature
in various anatomical/histological sites of BLCA biopsies within the bladder. (E) Box plot analysis
depicting the elevated levels of the upregulated signature in common histological variants of BLCA.
The vertical dashed line in all box plots marks average miRNA expression in paracancerous samples.
(F) Kaplan–Meier analysis showing a statistically significant association between elevated expression
of the upregulated miRNA signature (red curve) and shorter overall survival time of BLCA patients.
Dashed lines indicate duration for 50% probability of survival since diagnosis. Asterisks in all graphs
indicate the level of statistical significance based on ANOVA (***: p-value < 0.001, **: p-value < 0.01).

In addition to the above, a significantly elevated expression of the same DEMs was uni-
formly observed regardless of patient clinical characteristics, including tumor nodal status
(ranging between 7.2- and 12.4-fold higher than average paracancerous levels, Figure 2B,
Supplementary Table S2) or presence of distant metastases (ranging between 7.8 and
9.4-fold higher than average paracancerous levels, Figure 2C, Supplementary Table S2).
This finding is concordant with the previously observed increase in average signature levels
in all tumor stages compared to precancerous tissues (Figure 1B). We also confirmed that
the average expression of our upregulated miRNA signature is significantly increased in all
common biopsy sites (ranging between 5.4- and 9.5-fold higher than average precancerous
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levels, Figure 2D, Supplementary Table S2) or BLCA histological variants (ranging between
2.9- and 11.1-fold higher than average precancerous levels, Figure 2E, Supplementary
Table S2), supporting its suitability for robust and versatile diagnosis of BLCA.

Further to its elevated diagnostic potential, our upregulated miRNA signature is also
significantly associated with poor prognosis. More specifically, Kaplan–Meier analysis
revealed that elevated mean levels of the upregulated signature are associated with a
significantly shorter overall survival time of BLCA patients (50% survival probability of
900 days for the high-expressing cohort against 1.950 days for the low-expressing patient
cohort), while elevated expression in tumors is associated with a hazard ratio (HR) of 1.8
(95% confidence interval (CI): 1.3–2.4, Figure 2F). Taken together, these data highlight the
significant diagnostic and prognostic value of our upregulated miRNA signature regardless
of tumor stage, histological variant, or biopsy site.

2.4. Evaluation of the Diagnostic and Prognostic Value for the Downregulated miRNA Signature

Despite the robust diagnostic and prognostic performance of our upregulated miRNA
signature, its sole application cannot exclude the misidentification of false positives or neg-
atives among BLCA biopsies, thus limiting its clinical application as a molecular biomarker.
To eliminate the possibility of such ambiguities, we also evaluated the diagnostic and
prognostic utility of our downregulated miRNA signature with the aim of using it in
conjunction with our upregulated DEMs.

Similar to our upregulated miRNA results, ROC analysis confirmed the increased
diagnostic significance of our downregulated DEMs, with a calculated AUC for the individ-
ual miRNAs ranging between 0.86 and 0.9 (Figure 3A, Supplementary Table S4). The AUC
performance of the combined downregulated signature was further increased to 0.93 (CI:
0.88–0.99), suggesting that utilization of a limited number of carefully selected miRNAs
can increase diagnostic accuracy compared to individual miRNA performance. Our cutoff
analysis indicates 17.79 as an optimal log2 expression threshold for discriminating para-
cancerous tissue from tumor samples. This threshold is 185-fold higher than the calculated
cutoff for the upregulated signature, ensuring significant separation and, therefore, robust
differentiation of the biological samples. Interestingly, we did not observe a bimodal distri-
bution for the expression of our downregulated miRNA signature expression since both
the paracancerous and the tumor histograms follow the binomial distribution (Figure 3A),
facilitating sharp biological sample identification.

Next, we assessed the expression of our downregulated DEM signature according
to various clinico-pathological characteristics. Following the opposite trend compared
to the upregulated signature, the mean expression of our downregulated miRNAs was
significantly reduced across tumors of different nodal status (ranging between 4 and 26%
of average paracancerous levels, Figure 3B, Supplementary Table S2) or distant metastasis
(ranging between 15 and 20%, Figure 3C, Supplementary Table S2). We confirmed that this
downregulation pattern in the tumors is maintained among most common biopsy sites
(ranging between 15 and 27% of average paracancerous levels, Figure 3D, Supplementary
Table S2) and all common diagnostic BLCA subtypes (ranging between 2 and 18% of
average paracancerous levels, Figure 3E, Supplementary Table S2), supporting its potential
as a diagnostic tool for all stages of BLCA.

Apart from its diagnostic value, our downregulated signature also holds a prognostic
utility. Kaplan–Meier analysis revealed a statistically significant association between low
mean expression levels of downregulated miRNAs in tumors and reduced survival of BLCA
cancer patients (50% survival probability of 800 days for the low-expressing cohort against
1.650 days for the high-expressing cohort, Figure 3F). In addition, elevated expression of the
same miRNAs in tumors was associated with an HR of 0.59 (95% CI: 0.44–0.8, Figure 3F),
highlighting the protective function of this signature against bladder cancer. In conclusion,
these results support the diagnostic and prognostic potential of our downregulated miRNA
signature, the utilization of which complements the performance of our upregulated
miRNA signature for early detection of bladder carcinoma.
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Figure 3. Prognostic and diagnostic significance of the downregulated miRNA signature (A) ROC
analysis for discriminating paracancerous vs. tumor BLCA biopsies. ROC curve (upper left) indicates
an increased diagnostic potential (AUC = 0.93) of the downregulated miRNA signature shown
in blue. Cutoff analysis (upper right) indicates the optimal expression cutoff point (17.79) for
separating paracancerous from tumor biopsies. The bottom left distribution graph highlights the
expression range of the miRNAs that constitute the downregulated signature in paracancerous (blue)
or tumor (red) samples. Finally, the bottom right dot plot highlights the average expression of the
downregulated miRNA signature in individual paracancerous (blue) from tumor (red) biopsies. The
horizontal dashed line indicates the calculated optimal cutoff point. (B) Box plot analysis indicating
the elevated expression of the downregulated miRNA signature in paracancerous samples compared
to regional lymph node status. (C) Same as in (B) according to the presence of distant metastasis.
(D) Box plot analysis highlighting the uniformly decreased expression of the downregulated miRNA
signature in various anatomical sites of BLCA biopsies. (E) Box plot analysis depicting the decreased
levels of the downregulated signature in histological variants of BLCA. The horizontal dashed line
marks the average miRNA expression in paracancerous samples in all box plots. (F) Kaplan–Meier
analysis depicting a statistically significant association between reduced mean expression (green
curve) of the downregulated miRNA signature and reduced overall survival of BLCA patients.
Dashed lines indicate the duration for a 50% probability of survival. Asterisks in all graphs indicate
the level of statistical significance based on ANOVA (***: p-value < 0.001, **: p-value < 0.01).

2.5. Multicancer Comparisons of the Selected miRNAs

Having established two selective miRNA signatures with high predictive power for
BLCA diagnosis and prognosis, our next goal was to assess whether this is a BLCA-specific
effect or whether their expression pattern across multiple cancer types might play a similar
role in diagnosis and/or prognosis. Thus, we examined the selectivity of each signature for
BLCA against other genitourinary malignancies and various primaries whereby the same
miRNAs are differentially expressed and, therefore, could potentially serve as diagnostic
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biomarkers. We also included a third signature of eight randomly selected miRNAs to
serve as control in the analysis.

Our multicancer survey revealed that the mean expression fold change of the up-
regulated signature in BLCA outperformed all other types of cancer, excluding cervical
squamous cell carcinoma (CESC) in which log2 fold change between tumor and paracancer-
ous samples was comparable to the one for BLCA (94.5% of BLCA outperformance among
the analyzed tumor types, Figure 4A). With respect to individual miRNAs, the fold change
of hsa-mir-200a in CESC and uterine corpus endometrial carcinoma (UCEC) exceeded that
of BLCA, which in turn outperformed all other cancers (89% of BLCA outperformance). In
addition, hsa-mir-130b also showed stronger differential expression in CESC compared to
BLCA, but the BLCA fold change outperformed all other types of cancer (94.5% of BLCA
outperformance). The fold change of tumor vs. paracancerous expression for each of the
remaining upregulated miRNAs was higher in BLCA compared to all other cancer types
that were tested.

Comparing the performance of our upregulated signature against a randomly selected
collection of miRNAs, an 11-fold higher mean expression was found compared to the
mean levels of the randomly selected miRNAs (Supplementary Table S5). When the same
signature was tested across other tumor types, its expression remained statistically higher
compared to the random signature in three out of five groups of malignancies (namely
urological, reproductive, and thoracic) with 4-fold higher expression compared to the
random signature (Supplementary Table S5).

With regards to the performance of the downregulated signature across different
tumor types, only two types of malignancies (CESC characterized by 31% downregulation
and lung squamous cell carcinoma—LUSC with 29% downregulation of the signature
in the tumors) outperformed BLCA that was associated with 34% downregulation. The
expression of the downregulated signature in all other cancer types was higher compared to
BLCA (89% of BLCA outperformance). With respect to individually downregulated DEMs,
hsa-mir-100 showed similar or more pronounced downregulation in five cancer types
compared to BLCA (72.2% of BLCA outperformance), while hsa-mir-30a and hsa-mir-143
showed similar or more pronounced downregulation in three and two other cancer types,
respectively, compared to BLCA (83.3% and 89% of BLCA outperformance). Among these
cancer types, reproductive (breast carcinoma—BRCA, prostate adenocarcinoma—PRAD,
CESC, and UCEC), together with thoracic-related malignancies, were overrepresented.

As expected, our statistical analysis revealed that expression of our downregulated
miRNA signature was significantly lower in BLCA tumors compared to the levels of the
randomly selected miRNAs (Supplementary Table S5). When assessing different primaries,
the difference between the downregulated and the random signature was significant for
three out of five malignancies, yet in contrast to the upregulated signature, the same
comparison was not significant for urological cancers, including BLCA and kidney cancer.
Of note, the mean expression of both signatures in BLCA outperformed the expression in
three types of kidney cancer (kidney chromophobe—KICH, kidney renal clear cell—KIRC,
and kidney renal papillary cell carcinoma—KIRP), further supporting their specificity for
BLCA. Collectively, our multicancer comparison approach underlines the potent tumor-
specific properties of the selected miRNA signatures for tumor versus paracancerous
biopsies, specifically for bladder cancer, as compared to the majority of the most common
types of solid tumors.
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Figure 4. Multicancer and body fluid expression analysis of the miRNA signatures. (A) Heatmap
illustrating the expression of the up- and downregulated miRNAs in 19 cancer types from TCGA
against a randomly selected miRNA signature of equal size. Tumor types are broadly annotated at
the top of the heatmap according to their anatomical primary sites. The selected miRNAs are divided
and color-coded as upregulated (purple), downregulated (orange), or randomly expressed (green). as
indicated in the left-row annotation. Box plots, shown on the right, indicate the expression of up-,
downregulated, or randomly expressed miRNAs in different primaries, the mean expression of which
is highlighted with the vertical dashed line inside the box plot. Heatmap colors correspond to Z-
scores of normalized miRNA expression. The bottom dot plots indicate average log2FC levels of each
signature (upregulated, downregulated, or random) across the 19 analyzed cancer types. Horizontal
dashed lines indicate the average expression of each signature in BLCA. An explanation of tumor
type abbreviations is available at https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/
tcga-study-abbreviations (accessed on 1 October 2023)). (B) miRNA target network and GO analysis
for both miRNA signatures. Black square nodes correspond to the five miRNAs that constitute the
upregulated signature (shown on the left) or the three miRNAs that constitute the downregulated
signature (shown on the right). Predicted mRNA targets are shown with the orange circle nodes
and are connected with their respective miRNA regulator(s) with gray edges. Blue circles highlight
mRNA target genes that are involved in cell cycle regulation, while green circles highlight target genes
that are associated with BLCA or genitourinary neoplasms in general. (C) Dot plots demonstrating
average normalized expression of the up-, downregulated, or random miRNA signatures in various
body fluids. Data represent mean ± S.E. The dashed horizontal line highlights the mean expression
of the random miRNA signature in urine. Asterisks highlight statistical significance compared to the
random miRNA signature (*: p-value < 0.05).

2.6. Target Network and GO Analysis of Selected miRNAs

miRNAs exert their physiological or aberrant function through the regulation of
downstream target genes at the post-transcriptional or translational level. With the aim of
providing a first line of functional evidence regarding the regulatory implications of our

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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selected miRNA signatures in BLCA, we performed target network construction followed
by gene ontology (GO) analysis separately for each miRNA signature.

This approach revealed an extensive network of interactions that are governed by
the five miRNAs that constitute the upregulated signature (Figure 4B). Among them, hsa-
mir-210 and 93 were predicted to affect the highest number of mRNA targets, followed
by hsa-mir-200 and 130b, while hsa-mir-455 had the smallest number of predicted targets.
miRNA disease enrichment analysis for the same DEMs revealed their significant associa-
tion with various cancer types, including BLCA (Supplementary Table S6A). In addition,
disease gene ontology (GO) enrichment of their mRNA targets again revealed significant
associations with several malignancies (Supplementary Table S6B). These affected mR-
NAs are strongly and statistically associated with various aspects of cell cycle regulation
(Figure 4B, Supplementary Table S6C), underlining their functional involvement not only
in BLCA but also in other malignancies.

Target network analysis for the DEMs that constitute the downregulated signature
revealed several mRNAs that are potentially under the control of these miRNAs. hsa-
mir-30a had the highest number of predicted target mRNAs, followed by hsa-mir-143
and hsa-mir-100 (Figure 4B). All three miRNAs were predicted to be involved in vari-
ous malignancies, including urothelial carcinoma, complementing the observations of
the upregulated miRNAs. At the mRNA target level, disease enrichment analysis was
concordant with the results of the upregulated signature, confirming the involvement of
the predicted targets in various malignancies, including BLCA. Finally, GO analysis of the
mRNA targets highlighted their multidimensional involvement in cell proliferation and
regulation of the cell cycle (Supplementary Table S7C). In conclusion, these results support
the notion that the selected miRNA signatures constitute a regulatory network that affects
the expression and function of multiple mRNA targets with significant implications for cell
cycle regulation and cancer progression.

2.7. miRNA Presence in Body Fluids

One crucial property of miRNAs is their presence in various body fluids, which
facilitates their utilization as non-invasive biomarkers for early and cost-effective cancer de-
tection. In order to explore the non-invasive potential of our selected miRNAs, we assessed
their expression in publicly available miRNA transcriptome data in various human body
fluids. We found that our upregulated miRNA signature is significantly overexpressed in
whole blood and urine compared to the mean expression of the randomly selected miRNAs
in the same body fluids (Figure 4C, Supplementary Table S8). Moreover, expression of
the same miRNAs is elevated in serum and plasma compared to the random miRNAs,
albeit not statistically different due to the small sample size. Regarding the circulating
nature of our downregulated miRNAs, their expression was significantly increased in
urine compared to the random signature, with no significant alterations in the remaining
body fluids based on this analysis (Figure 4C, Supplementary Table S8). However, these
transcriptomes represent body fluids from cancer patients and, therefore, largely underes-
timate the expression of our tumor-downregulated DEMs. In support of this hypothesis,
the expression of our tumor-upregulated signature was found to be increased in most
body fluids compared to the expression of the downregulated signature (Figure 4C). Of
note, both miRNA signatures were not present in saliva, similar to the randomly selected
miRNAs, suggesting that this body fluid potentially lacks miRNA that could be used for
BLCA diagnosis. It should be noted that in the lack of body fluid data from healthy individ-
uals, we cannot confirm or reject the differential expression of our selected miRNAs at the
body fluid level between cancer patients and healthy donors. Nevertheless, the data above
support the presence of our miRNA signatures in patient body fluids, supporting an initial
potential for non-invasive detection. It is within our short-term plans to experimentally
test our miRNA signatures for differential expression between healthy and patient body
fluids, testing their efficiency as non-invasive diagnostic biomarkers.
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3. Discussion

To date, bladder cancer diagnosis largely relies on invasive methods such as cystoscopy-
based biopsy, which is unpleasant for patients and can confound accurate detection of some
subtypes of this malignancy, especially in the early stages of the disease [26]. Non-invasive
traditional methods such as urinary cytology have been ancillary to cystoscopy in clinical
practice; however, their low sensitivity, which typically ranges below 40%, limits their
utility as alternative diagnostic tools [27]. Due to their regulatory role and expression
properties [28], miRNAs have long been proposed to serve as diagnostic and/or prognostic
markers in pathology [29], including infectious [30,31] and non-infectious diseases [32,33],
including various types of cancer [34,35].

Several miRNAs have been previously proposed as non-invasive biomarkers for
bladder cancer [36]. Recently, a 4-miRNA panel consisting of hsa-miR-182-5p, hsa-miR-
196a-5p, hsa-miR-124-3p, and hsa-miR-34a-5p exhibited a sensitivity of 98%, specificity of
93% and an AUC of 0.98 (CI: 0.952 to 0.998, p-value < 0.001) [37]. However, the performance
of the same 4-miRNA signature in TCGA-BLCA data was poorer, with a sensitivity of
0.77, specificity of 0.84, and AUC of 0.69 (CI: 0.55–0.84, Supplementary Table S9). The
performance of our miRNA signatures in TCGA-BLCA data was superior to the reported
4-miRNA signature with an AUC of 0.95 (CI: 0.92–0.98, p-value < 0.001) for the upregulated
and 0.93 (CI: 0.88–0.99, p-value < 0.001) for the downregulated DEMs, along with improved
specificities and sensitivities. This lower diagnostic power and accuracy of the published
miRNAs in the TCGA cohort could in part be attributed to their original detection via
RT-qPCR in serum, while TCGA-BLCA data are generated through miRNA sequencing in
solid biopsies. In addition, preliminary evidence suggests that our selected miRNAs are
present in urine, and their BLCA performance, in terms of expression ratio in tumor vs.
paracancerous tissues, outperforms a large number of solid tumor types, properties that
were not tested for this recently published miRNA signature.

Another recent publication utilized TCGA-BLCA data to evaluate the diagnostic and
prognostic performance of ten prioritized miRNAs [38]. According to these results, the diag-
nostic AUC of the ten miRNAs ranged between 0.53 and 0.82. The poor AUC performance
that is observed for some of these miRNAs agrees with their reported lack of significance
for differential expression between BLCA tumors and paracancerous tissues [38]. We re-
tained only DEMs in our initial selection round of transcriptome analysis and subsequently
excluded all DEMs with AUC less than 0.80, resulting in an AUC range between 0.82 and
0.96 for our chosen miRNAs. In terms of prognostic power, the expression of the final
six selected miRNAs from the same report has been significantly associated with overall
survival. This prognostic performance is comparable to the reported one for the 6-miRNA
signature [38] or of the 21 miRNAs that were also analyzed previously [39]. Again, none
of these studies tested the expression of these miRNAs in other tumor types compared
to BLCA. Of note, some of our final DEMs are among those reported 21 miRNAs [39],
suggesting that our stringent selection coupled with the cumulative signature analysis not
only retains diagnostic and prognostic performance but also simplifies detection over a
large panel of miRNAs.

In terms of target prediction and function, our miRNA network and GO analysis
suggest that both signatures regulate target networks that, in turn, govern critical cancer-
related aspects of tumor biology, such as cell cycle. For example, hsa-mir-200a, which is
among our selected miRNAs, has been reported to regulate the cell cycle by targeting the
tumor necrosis factor α-induced protein 3 (A20, [40]). hsa-mir-210 is regulated by HIF and
acts as a critical link between hypoxia and cell cycle regulation in cancer [41,42]. hsa-mir-93
has been associated with poor prognosis in pancreatic cancer [43] and is reported to target
LATS2, which encodes for a tumor suppressor kinase, ultimately enhancing metastasis [44].
Its presence in exosomes from bladder cancer patients has been reported as an important
determinant for the progression of the disease [45]. Finally, hsa-mir-130b also promotes the
proliferation of bladder cancer cells via targeting of VGLL4 [46].
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With regards to the downregulated miRNAs, hsa-mir-100 has been negatively corre-
lated with the protein levels of FGFR3, a critical regulator in many forms of cancer [47].
hsa-mir-30a has been reported to function as an inhibitor of cell proliferation and/or disease
progression in many cancer types [48], including but not limited to bladder [49], liver [50],
and glioma [51]. Finally, hsa-mir-143 has been shown to inhibit proliferation of bladder
cancer cells through repression of the IGF-1R cascade [52]. Taken together, these reports not
only support our GO results regarding the critical function of our selected DEM in bladder
tumors or cancer in general but also provide a functional basis for the observed differential
expression of some selected miRNAs in other tumor types.

Our study is limited by its computational design without in vitro validation, which,
however, represents a strong hypothesis-generating analysis that may pave the way for
further investigations. These results could substantially help evaluate the full potential of
both miRNA signatures for early and non-invasive detection and prognosis of BLCA, as
well as elucidate the molecular mechanisms accounting for their function in bladder tumors.

4. Materials and Methods
4.1. TCGA Data Acquisition and Preprocessing

Data from the Cancer Genome Atlas program (TCGA) were downloaded as level 3
miRNA expression values from the GDC Data Portal (https://gdc.cancer.gov/ (accessed
on 17 July 2023)), along with their clinical information. The TCGA-BLCA miRNA dataset
consists of 429 samples, subdivided into 410 tumor and 19 matched paracancerous samples.
No significant biases were observed for the paracancerous biopsies regarding the tumor
stage of their matched tumor samples, with distributions ranging around 25%, indicating
random distribution across all tumor stages. Prior to the analysis, the raw expression
data of 1870 miRNAs were subjected to filtering to remove those with mean expression
below the 25% percentile across all samples, resulting in the removal of 471 low or not-
expressed miRNAs in the BLCA dataset (25% of total). The remaining 1399 miRNAs were
subsequently subjected to downstream analysis, as indicated below. ANOVA analysis did
not observe any bias regarding the preference of these miRNAs for a particular tumor
stage, with no statistically significant changes in average miRNA between tumor stages,
suggesting their even distribution.

4.2. miRNA Differential Expression Analysis

The expression data of the filtered miRNAs were subjected to differential expres-
sion analysis in paracancerous vs. tumor biopsies with the Bioconductor package edgeR
(https://bioconductor.org/packages/release/bioc/html/edgeR.html (accessed on 20 July
2023) [53–55]) in R. The applied thresholds for differential expression analysis were false
discovery rate (FDR) < 0.05 and log2FC > 1 or < −1 for tumor-upregulated or tumor-
downregulated miRNAs, respectively.

Volcano plots were prepared with the EnhancedVolcano Bioconductor package in R
(https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html (accessed
on 22 July 2023) [56]).

4.3. Heatmap Construction of miRNA Signature Expression in TCGA-BLCA Patient Data

miRNA expression quantifications for the final 8-miRNA signature in the complete
TCGA-BLCA patient cohort were log2 transformed and converted to z-scores in R. Patient
samples were annotated as paracancerous or tumor, the latter of which were further
stratified as stage I, II, III, and IV based on the available clinical information from the TCGA
platform. The Bioconductor ComplexHeatmap package [57] was used to construct separate
heatmaps in R for the 5-miRNA upregulated signature, the 3-miRNA downregulated
signature, or the 8 randomly selected miRNAs that served as control. ComplexHeatmap
arguments included row and column clustering based on the Pearson coefficient, together
with column split according to biosample annotation and row split and grid boxplot
construction according to miRNA signature annotation.

https://gdc.cancer.gov/
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
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4.4. ROC Analysis of Selected miRNA Signatures

The selected miRNAs from the differential expression analysis were subjected to ROC
calculations with the Github package EasyROC [58], while a cutoff analysis was performed
with the Github package OptimalCutpoint [59] in R. The selection criteria for elevated
diagnostic power of the selected miRNAs were p-value < 0.05 and AUC ≥ 0.8. All ROC
plots were generated in R.

4.5. Box Plot and Statistical Analysis of miRNA Expression According to Patient
Clinic-Pathological Characteristics in Multiple Cancer Types

miRNA expression was compared against four patient clinical and pathological
characteristics, namely, AJCC tumor stages I to IV, AJCC regional lymph node status
N0-Nx, AJCC distant organ metastasis M0-Mx, BLCA biopsy site, and BLCA primary
diagnosis, according to TCGA-BLCA clinical information. A normality test was per-
formed with Shapiro prior to ANOVA Holm–Sidak and multiple comparisons test, all
performed with SigmaPlot 11 https://alfasoft.com/software/statistics-and-data-analysis/
data-visulization/sigmaplot/ (accessed on 25 July 2023)). All box and dot plots were
prepared with ggplot2 (https://ggplot2.tidyverse.org/ (accessed on 29 July 2023)) in R.

4.6. Network and GO Analysis

For the miRNA network, the miRbase IDs of the final miRNA signature were used
as input for network construction using miRNET [60], focusing on the analysis of miRTar-
Base v8 genes. Functional analysis was performed with KEGG and DisGeNET through
hypergeometric enrichment.

4.7. Kaplan–Meier Analysis of miRNA Signatures

For the Kaplan–Meier analysis, miRNA expression and patient clinical characteristics
from the TCGA-BLCA cohort were analyzed with the Bioconductor RTCGA package [61]
in R. Patient stratification was performed through calculation of the optimal cutpoint for
each miRNA signature through the survival cutpoint function while statistical analysis was
based on log-rank p-value calculation. KM results were visualized with ggplot in R.

4.8. miRNA Expression in Circulating Body Fluids

For the body fluid analysis, miRNA expression data were extracted from the Human
miRNA Tissue Atlas database [62]. Dot plots corresponding to VSN miRNA levels in
collapsed tissues were created with ggplot in R. Statistical analysis was performed with
ANOVA (Holm–Sidak) in SigmaPlot.

5. Conclusions and Future Perspectives

This computational study used various transcriptional, diagnostic, and prognostic
parameters in order to isolate and evaluate two miRNA signatures with highly predictive
power for bladder cancer detection. The significance of our findings lies in both the
enhanced diagnostic properties of the reported signatures and their abundance in the body
fluids of cancer patients. Furthermore, this study provides bioinformatic evidence regarding
the molecular mechanisms that support the functional role and prognostic potential of the
same miRNAs. Collectively, our study supports the value of specific miRNA signatures as
non-invasive molecular biomarkers for bladder cancer detection and prognosis.

6. Patents

No patent currently results from the work reported in this manuscript.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms242216243/s1.
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