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Abstract: A diverse array of neurological and psychiatric disorders, including multiple sclerosis,
Alzheimer’s disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular
and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes
and alterations in myelin structure, which may be pivotal factors contributing to the disconnection
of brain regions and the resulting characteristic clinical impairments observed in these conditions.
Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-
one ratio, play indispensable roles in the development, maintenance, and overall well-being of
neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset
and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting
astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain
deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is
imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of
complex human diseases in a reliable and reproducible manner. One such model is the cuprizone
model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving
microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following
the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs.
In this review article, we provide a historical overview of studies investigating the responses and
putative functions of astrocytes in the cuprizone model. Following that, we list previously published
works that illuminate various aspects of the biology and function of astrocytes in this multiple
sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology
and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field,
and, more importantly, to inspire fellow researchers to embark on experimental investigations to
elucidate the multifaceted functions of this pivotal glial cell subpopulation.
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1. Introduction

The central nervous system (CNS) comprises neurons and neuroglial cells. Neurons
receive and facilitate nerve impulses across their membranes to the next neuron, thus
forming a fine-tuned communication network. Indispensable for fast and energy-efficient
action potential propagation are the myelin sheaths built up by extended and modified
plasma membranes of a specialized glia cell population—the oligodendrocytes [1]. Dis-
orders of CNS myelin form a large and growing list of neurological disorders in humans,
ranging from the most common myelin disease, multiple sclerosis (MS), to rare genetic
conditions, such as Niemann–Pick disease. It is of note that oligodendrocyte dysfunctions
also appear to be involved in different neurodegenerative and psychiatric disorders, in-
cluding, among them, Alzheimer’s and Parkinson’s disease, eating disorders, depression,
and schizophrenia [2–6].

MS is an autoimmune-mediated inflammatory disorder of the CNS with a still largely
unknown aetiology. Two main clinical MS courses can be defined: a relapsing–remitting
and a chronic, progressive course. Relapsing–remitting MS (RRMS) is characterized by
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recurrent episodes of clearly delineated clinical impairment (i.e., relapsing) from which
the patients can eventually recover completely (i.e., remission). A relapsing–remitting
disease course often turns into a secondary progressive (SPMS) course after approximately
10–15 years. In this secondary phase of the disease, individual relapses occur less frequently,
but there is a slow, more or less continuous progression of the clinical impairment. The
main histopathological features of MS are peripheral immune cell recruitment (id est,
mostly monocytes and lymphocytes), blood–brain barrier integrity loss, reactive gliosis,
oligodendrocyte damage, and, most importantly, demyelination. Mechanistically, it is
believed that the disruption of the function of myelin results from an immunologically
specific interaction between autoimmune T-/B-lymphocytes and myelin antigens [7].

Although demyelination is still a distinct pathological entity in MS, it has become
increasingly apparent in the last two decades that substantial axonal and neuronal losses
are equally important features. This phenomenon is at least partially related to the failure
of remyelination. Remyelination is a regenerative process of the CNS. It occurs in three
consecutive steps: (i) activation of oligodendrocyte progenitor cells (OPCs)—a widespread
population of multipotent progenitors, (ii) their enrichment within areas of demyelina-
tion through migration and proliferation, and, finally, (iii) their differentiation into new
myelinating oligodendrocytes [8]. It is unclear why, in some MS patients, remyelination
is widespread, while, in others, it is sparse. Thus, understanding why a relatively robust
regenerative process may lose momentum is an essential prerequisite for developing an
effective therapeutic approach for this disease.

2. Glia Cells

Following the classical textbooks, neuronal cells can be divided into neurons and glial
cells; the latter, based on their morphology, are subdivided into big (macroglia) and small
(microglia) ones. While microglia constitute the innate immune cells of the CNS, macroglia
are a diverse cell population, including oligodendrocytes, ependymal cells, pericytes, and
astrocytes.

Astrocytes are highly heterogeneous in form and function, including the protoplasmic
astrocytes residing in the grey matter, fibrous astrocytes residing in the white matter,
velate astrocytes, which are localized in brain regions where small neurons are densely
packed (e.g., the olfactory bulb or the granular layer of the cerebellar cortex), radial glia
cells with essential guidance functions for neurons during development, the cerebellar
Bergmann glia [9,10], the retinal Müller glia [11,12], pituicytes that are localized in the
neurohypophysis, Gomori-astrocytes, which are prominent in the arcuate nucleus of the
hypothalamus [13], and perivascular astrocytes, whose endfeet connect with blood vessels
and are fundamental for the establishment of the blood–brain barriers. Furthermore, the
literature describes specialized astrocytes, which are observed only in the brain of higher
primates, including interlaminar astrocytes [14] and varicose projection astrocytes [15].

Astrocytes assume various essential functions, much like assistants in a theatre play.
For example, astrocytes structure neuronal networks and shield neurons from each other
with their extensions. They, thus, function like set designers creating the backdrop of the
stage. They are assistant directors, ensuring that the “actors” (the neurons) are where
they need to be and interacting with the right colleagues at the right time [16,17]. Like
oligodendrocytes [18], astrocytes supply neurons with metabolites and dispose of their
waste products; thus, they are responsible for both the pantry and catering service, as
well as sanitary facilities and waste disposal [19–21]. Furthermore, astrocytes maintain
the finely tuned balance of ions and transmitters. Like props, they are responsible for
ensuring that the performers have their lines and costumes ready and that unneeded
materials are cleared away [22,23]. Finally, astrocytes receive signals from neurons and
signal back to them, influencing synaptic transmission and being capable of modify-
ing it. They are the prompters assisting the actors on the stage (adopted from dasGe-
hirn.info (https://www.dasgehirn.info/grundlagen/glia/astrozyten-die-heimlichen-stars-
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des-gehirns?gclid=CjwKCAiA9dGqBhAqEiwAmRpTCzqdOdy2G26KS9fL-T4EQuAFkhV7
2cF7i1-9c0j4PRTz6yytgrLYYxoCy2kQAvD_BwE (accessed on 15 November 2023)) and [24]).

Several excellent reviews have been written addressing the putative relevance of
astrocytes in demyelinating disorders, including MS [25–27]. In this work, we will focus on
astrocytic changes and their putative function in the so-called “cuprizone model,” which
is frequently used to study mechanisms of oligodendrocyte degeneration, demyelination,
and remyelination. Although the tabular listing of published works, which we provide at
the end of this manuscript, claims to be comprehensive, we would like to focus in more
detail on only a few works with groundbreaking insights for the field of research. The next
chapter gives a brief overview of the most frequently used pre-clinical MS animal models,
followed by a brief outline of the mechanistic and histo-pathological characteristics of the
cuprizone model.

3. Multiple Sclerosis Animal Models

To study the distinct aspects of MS pathology, several different animal models exist,
and they are essential for assessing the impacts of novel therapeutic approaches. One
category consists of the experimental autoimmune encephalomyelitis (EAE) models in-
duced by injecting a CNS antigen combined with Freund’s and other adjuvants to trigger
an immune response. From a motor–behavioral perspective, most of the EAE models
lead to ascending paralysis in mice, with the severity and clinical course depending on
factors like the immunization peptide and mouse strain used. If, for example, C56BL6 mice
are immunized with the MOG35–55 (myelin oligodendrocyte glycoprotein) peptide, the
animals develop a chronic disease course. In contrast, a relapsing–remitting disease course
develops if SJL-mice are immunized with the PLP139–151 (proteolipid protein) peptide.
Histopathologically, these models are characterized by multifocal inflammatory lesions,
which can mainly be found in the spinal cord, brainstem, and cerebellum.

Another group of commonly used animal models to understand MS disease pathology
and to develop new therapeutic strategies are the toxin-mediated demyelination models.
In these models, the toxins can be either administered via focal injection into the brain
parenchyma (usually, lysophosphatidylcholine (LPC) is used) or provided to the animal per
os (usually, cuprizone). LPC injection into the brain parenchyma causes rapid disruption
of cellular membranes, myelin sheath disintegration, and focal demyelination within
1–2 weeks, followed by natural remyelination [28,29]. Reduced macrophage/microglial
activation and myelin clearance post LPC injection in T-cell-deficient nude mice, along with
inhibited remyelination in Rag-1-deficient mice lacking both B and T cells, indicate that the
LPC model captures aspects of MS’s autoimmune component [30].

In contrast to the LPC model, demyelination in the cuprizone model occurs more
slowly. Feeding young mice (around 8 weeks old) with cuprizone induces early apop-
tosis in oligodendrocytes, followed by microglia and macrophage activation and, finally,
demyelination [31–33]. The exact mechanisms of oligodendrocyte death remain unclear,
but it is believed to involve mitochondrial disruption due to a cuprizone-induced cop-
per deficit, ferroptosis [34], and endoplasmic reticulum stress responses [35]. Emerging
research indicates, however, that the detrimental effects of cuprizone may not be solely
attributed to copper chelation or a selective impact on oligodendrocytes. Instead, it is
proposed that a reactive cuprizone–copper complex is responsible for the toxic effects of
cuprizone and that various cell types within the CNS are affected [36–38]. Why cuprizone
predominately compromises oligodendrocytes is unknown, but the energy-intensive nature
of myelin synthesis might play a role. Although the primary region of interest in many
studies is the corpus callosum, demyelination in this model affects multiple white and grey
matter brain areas [39]. During the 5–6 weeks of cuprizone exposure, the corpus callosum
undergoes “acute demyelination.” When cuprizone intake is ceased at this time point, spon-
taneous remyelination occurs. If, however, the cuprizone intoxication is extended beyond
12–13 weeks, this leads to “chronic demyelination” with limited endogenous remyelination
capacity [40]. All of the aforementioned animal models made, in the past, a significant
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contribution to the development of new therapeutic approaches in MS therapy. Of note is
that some authors apply this model as well in the context of schizophrenia research, where
myelin and oligodendrocyte abnormalities are well known [41,42].

In the next section, we will describe key papers investigating the response of astrocytes
upon cuprizone-induced demyelination and functional studies that suggest that astrocytes
can orchestrate de- and remyelinating pathways in this model. This section does not claim
to discuss all publications relevant to astrocytes. Instead, we aim to provide a historical
overview of how the function of astrocytes has been better understood over the past
decades using the cuprizone model. In contrast, Table 1 lists all relevant works to provide
the interested reader with an overview of the available literature.

4. Astrocytes and the Cuprizone Model

Astrocyte activation is a robust early event during cuprizone-induced demyelina-
tion [31]. Various laboratories have been able to demonstrate that during the course of
cuprizone-induced demyelination, there is a significant upregulation in the expression of
various astrocyte marker proteins, such as glial fibrillary acidic protein (GFAP), aldehyde
dehydrogenase 1 family member L1 (ALDH1L1), and vimentin, within the demyelinated
regions [43,44].

Figure 1 demonstrates findings published by Samuel Ludwin, one of the pioneers
working with the cuprizone model from the late 1970s on. In Ludwin’s study, 3H-thymidine
was used to label mitotic cells, revealing that alongside macrophages, astrocytes proliferate
early during demyelination in the cerebellar peduncle, a frequently studied region in these
initial periods of cuprizone research [45]. Despite the limitations of the applied method
to label proliferating cells [46], these early studies demonstrated an early activation of
astrocytes in the cuprizone model. Of note is that this first notion that prior to astrocyte
activation, microglia cells respond to the cuprizone insult, was replicated by Matsushima’s
lab in 1998 [47]. Some years later, when anti-GFAP labelling via immunohistochemistry
became available, A. Mackenzie from the ARC Institute for Research on Animal Diseases
in the UK demonstrated that astrocyte activation is widespread and not restricted to
the cerebellar peduncles [39,48–55]. One of the first functional studies was published
by Samuel Komoly and colleagues, who, in those days, was working at the National
Institute of Neurological Disorders and Stroke, Bethesda/US, and, later, as the director
of the neurology department at Pecs/Hungary. In that study, mice were intoxicated with
cuprizone for 8 weeks to induce demyelination and, thereafter, provided normal chow
to allow endogenous remyelination [56]. Throughout the periods of cuprizone treatment
and recovery, brain tissue sections were subjected to hybridization and immunostaining
with specific anti-Igf1 and Igf1-receptor probes to determine the precise locations and
relative quantities of IGF-I and IGF-I receptor mRNAs and peptides. The authors found
that in the white matter of untreated mice, there were no detectable levels of IGF-I or IGF-I
receptor mRNAs or peptides. Conversely, in mice treated with cuprizone, astrocytes in
regions where myelin was breaking down exhibited significantly elevated levels of both
IGF-I mRNA and peptide. As the recovery process commenced, the expression of IGF-I in
astrocytes decreased rapidly. At the same time, oligodendrocytes began to express the IGF-I
receptor, suggesting that astrocyte-derived IGF1 regulates oligodendrocyte differentiation
and remyelination. Although the results of subsequent studies suggested that IGF-1 is
probably not a good candidate for treatment in MS [57,58], this was the first work in this
model implicating that astrocytes orchestrate de- and remyelination in the diseased brain.
In 2000, Brian Popkos’s lab showed that besides microglia accumulation, the extent of
astrocyte activation might well be a good indicator of the overall extent of the cuprizone-
induced pathology. In that study, the authors investigated the effect of IFN-gamma on
myelin injury in the cuprizone model. They used a transgenic mouse line that expresses
IFN-gamma under the transcriptional control of the Mbp gene. Careful evaluations revealed
that mice overexpressing IFN-gamma preserved the myelin architecture, as demonstrated
by LFB-PAS stains and anti-MBP immunohistochemistry. The assessment of glia reactivity
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showed that both microglia and astrocyte activation were less severe in the IFN-gamma-
overexpressing mice, demonstrating that the quantification of glia reactivity is a good
indicator of the overall extent of the cuprizone-induced pathology [59]. Our knowledge
regarding possible cell–cell interactions in the cuprizone model involving astrocytes became
more complex in the following years. In 2011, Matsushima’s lab showed that IL1ß-deficient
mice have impaired remyelination capacities, which was paralleled by a lack of IGF-1
synthesis [60]. Because it has been shown in a previous study that astrocytes are the main
source of IGF-1 in the cuprizone model, it was suggested that IL1ß might be necessary to
induce IGF1 expression in astrocytes, which, in turn, promotes sufficient remyelination.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  5  of  20 
 

 

that expresses IFN-gamma under the transcriptional control of the Mbp gene. Careful eval-

uations revealed that mice overexpressing IFN-gamma preserved the myelin architecture, 

as demonstrated by LFB-PAS  stains and anti-MBP  immunohistochemistry. The assess-

ment of glia reactivity showed that both microglia and astrocyte activation were less se-

vere in the IFN-gamma-overexpressing mice, demonstrating that the quantification of glia 

reactivity is a good indicator of the overall extent of the cuprizone-induced pathology [59]. 

Our knowledge regarding possible cell–cell interactions in the cuprizone model involving 

astrocytes  became  more  complex  in  the  following  years.  In  2011, Matsushima’s  lab 

showed that IL1ß-deficient mice have impaired remyelination capacities, which was par-

alleled by a lack of IGF-1 synthesis [60]. Because it has been shown in a previous study 

that astrocytes are the main source of IGF-1 in the cuprizone model, it was suggested that 

IL1ß might be necessary to induce IGF1 expression in astrocytes, which, in turn, promotes 

sufficient remyelination. 

 

Figure 1. The proliferation of different glia subpopulations during the course of cuprizone-induced 

demyelination [45]. The curved line in the graph illustrates the myelination levels of the midline of 

the corpus callosum during acute demyelination (week 5) and the subsequent remyelination phase 

as the animals are provided normal chow after acute demyelination. The dotted line illustrates the 

myelination levels of the midline of the corpus callosum if the intoxication with cuprizone is con-

tinued until week 13  (chronic demyelination). The straight  lines beneath  the graph  illustrate  the 

periods of glia cell proliferation. The inserts show cortical astrocytes, visualized using anti-GFAP 

immunohistochemistry,  in control  (left  image) and 5-week-cuprizone-intoxicated mice  (right  im-

age). The inserted bars are 50 µm. 

The cuprizone model also paved the way to imaging the development and progres-

sion  of  neuropathological processes  via distinct  imaging  techniques,  such  as Positron 

emission tomography (PET). PET represents a sensitive method for visualizing neuropa-

thological states, such as alterations in neuronal activity, deficiencies of neurotransmitter 

systems, or the extent of neuroinflammation. During PET, a small amount of a radioactive 

substance, known as a radiotracer, is introduced into the body. This radiotracer is usually 

a molecule chemically similar  to a naturally occurring compound  in  the body, such as 

glucose or water, or it binds to endogenous proteins. As the radiotracer undergoes radio-

active decay, it emits positrons, which can be visualized via gamma ray detection. Chen 

and  colleagues were  able  to  show  that  the mitochondrial  translocator protein  18 kDa 

(TSPO), formerly known as the “peripheral benzodiazepine receptor,” is expressed in the 

cuprizone model by microglia and astrocytes [61]. Later studies, relying on this initial ob-

servation, used specific TSPO-radioligands, such as (18F)-GE180 [62] and others, to visu-

alize activated microglia and astrocytes in living animals [43,63–66]. Zinnhardt and col-

leagues demonstrated that the expression of TSPO in either microglia or astrocytes is time-

Figure 1. The proliferation of different glia subpopulations during the course of cuprizone-induced
demyelination [45]. The curved line in the graph illustrates the myelination levels of the midline of
the corpus callosum during acute demyelination (week 5) and the subsequent remyelination phase
as the animals are provided normal chow after acute demyelination. The dotted line illustrates
the myelination levels of the midline of the corpus callosum if the intoxication with cuprizone is
continued until week 13 (chronic demyelination). The straight lines beneath the graph illustrate the
periods of glia cell proliferation. The inserts show cortical astrocytes, visualized using anti-GFAP
immunohistochemistry, in control (left image) and 5-week-cuprizone-intoxicated mice (right image).
The inserted bars are 50 µm.

The cuprizone model also paved the way to imaging the development and progression
of neuropathological processes via distinct imaging techniques, such as Positron emission
tomography (PET). PET represents a sensitive method for visualizing neuropathological
states, such as alterations in neuronal activity, deficiencies of neurotransmitter systems, or
the extent of neuroinflammation. During PET, a small amount of a radioactive substance,
known as a radiotracer, is introduced into the body. This radiotracer is usually a molecule
chemically similar to a naturally occurring compound in the body, such as glucose or water,
or it binds to endogenous proteins. As the radiotracer undergoes radioactive decay, it emits
positrons, which can be visualized via gamma ray detection. Chen and colleagues were
able to show that the mitochondrial translocator protein 18 kDa (TSPO), formerly known as
the “peripheral benzodiazepine receptor,” is expressed in the cuprizone model by microglia
and astrocytes [61]. Later studies, relying on this initial observation, used specific TSPO-
radioligands, such as (18F)-GE180 [62] and others, to visualize activated microglia and
astrocytes in living animals [43,63–66]. Zinnhardt and colleagues demonstrated that the
expression of TSPO in either microglia or astrocytes is time-dependent in this model, with
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a predominant expression in microglia during demyelination and a shift towards astrocytic
expression during remyelination [66]. Of note is that different TSPO radioligands, including
(18F)-GE180, indicated equally good performance in MS patients [67,68]. Furthermore, the
results of a recent study suggest that species-related differences should be considered when
interpreting the results of such metabolic imaging techniques [69].

The importance of astrocytes for orchestrating de- and remyelinating events in the CNS
was demonstrated in seminal work published by Stangels’s lab from Hannover/Germany.
In that study, the authors used a mouse model in which thymidine kinase from the herpes
simplex virus was targeted to astrocytes using the mouse GFAP promoter [70]. Ganci-
clovir functions as a nucleoside analogue, and it undergoes phosphorylation through the
action of herpes simplex virus thymidine kinase within the GFAP-positive cell population.
This phosphorylated form of ganciclovir competes with naturally occurring nucleotide
triphosphates, thereby interfering with the process of DNA synthesis. Consequently, this
disruption of DNA synthesis initiates apoptotic cell death, particularly in actively prolif-
erating cells. Astrocyte ablation did not affect cuprizone-induced oligodendrocyte loss.
However, without astrocytes, microglia recruitment and myelin debris clearance were
hindered, leading to delayed remyelination.

In the last few years, single cell sequencing and/or single nuclei sequencing techniques
were introduced, and they now allow the scientific community to investigate translatome
changes of various cell types in the cuprizone model, including astrocytes. Hou and
colleagues performed single-nucleus RNA sequencing from three distinct experimental
categories: (1) a demyelination group, which underwent a 5-week cuprizone treatment,
(2) a remyelination group, exposed to a 5-week cuprizone treatment followed by a 2-week
regular chow diet, and (3) the control group, which received regular chow throughout the
entire experimental period. As expected, the relative frequency of mature oligodendrocytes
decreased during demyelination and recovered during remyelination [71]. Surprisingly,
the frequency of astrocyte nuclei slightly dipped during demyelination but significantly
recovered during remyelination. On the first view, this contrasts with the histological
finding that severe astrocytosis can be observed after acute cuprizone-induced demyeli-
nation. Of note is that in this study, nuclei isolated from the corpus callosum and cortex
were analyzed. Under control conditions, most cortical astrocytes express very low, almost
undetectable GFAP levels, with a robust increase during demyelination. As such, the robust
increase in GFAP+ cell numbers during cuprizone-induced demyelination does not really
reflect the accumulation of new astrocytes. Indeed, it has been shown that pro-apoptotic
pathways are activated in astrocytes after acute cuprizone-induced demyelination [35],
which would explain the observed dip in the frequency of astrocyte nuclei. On the other
hand, astrocyte proliferation has been demonstrated in the cuprizone model by several
labs [45,72,73], so there remains a certain uncertainty about how to interpret these data.
Nevertheless, although astrocyte abundance was minimally affected by cuprizone intoxica-
tion, marked transcriptional changes were evident during de- and remyelination. The most
important findings of this single-nucleus RNA sequencing study can be summarized as
follows. Firstly, homeostatic astrocytes are diverse at a steady state, with subpopulations
expressing genes related to the extracellular matrix or neurogenesis. Nine subclusters were
identified. Secondly, during demyelination, each subpopulation uniquely upregulated
stress responses and mTOR pathway genes. However, certain pathways, such as the IFN-R
pathway, were upregulated only in specific subpopulations. Thirdly, in the remyelination
phase, pro-inflammatory clusters decreased, while some homeostatic astrocyte clusters
were replaced by others. Of note is that the study also provided evidence that only minor
expressional changes occur in neurons, verifying our own results that at least after acute
cuprizone-induced demyelination, the degeneration of entire neurons, despite the high
frequency of acute axonal injury [74], is not a characteristic feature in this model [75].

Schröder et al. applied the ribosomal tagging (RiboTag) approach to obtain insight
into astrocyte function in the cuprizone model [76]. The RiboTag approach is a molecu-
lar technique used to study gene expression and protein translation within specific cell
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populations in complex tissues. First, transgenic animals are generated—usually mice—in
which a specific ribosomal protein (often Rpl22) is genetically engineered to be tagged with
a sequence (in this case, hemagglutinin A or HA), which allows for efficient isolation and
purification of ribosome-bound mRNA and associated translating ribosomes. This tagged
ribosomal protein is expressed under the control of a cell-type-specific promoter (in that
study, under the GFAP promotor), so it is only present in a specific subset of cells within the
animal. The transgenic animals are then bred or crossed with other genetically modified
mice that express Cre recombinase under the control of a cell-type-specific promoter. This
results in the deletion of a “floxed-stop” cassette that was preventing the expression of the
tagged ribosomal protein. As a result, the tagged ribosomal protein is now expressed in
the desired cell type. Tissues or cells of interest can now be sampled from these transgenic
animals and subsequently analyzed.

Schröder and colleagues performed HA-tagged ribosome isolation from four distinct
experimental categories: a demyelination group, which underwent a 5-week cuprizone
treatment; two remyelination groups, which were exposed to 5-week cuprizone treatment
followed by a 0.5- and 2-week regular chow diet; and a control group, which received
regular chow throughout the entire experimental period. Upon isolation of the corpus
callosum, HA-tagged ribosomes were isolated from the tissue lysate, and RNA was isolated
from the HA-tagged ribosomes. Of note is that under conditions of acute demyelina-
tion (id est, 5-week cuprizone intoxication), basically all HA+ cells also expressed GFAP,
which means that under such conditions, RiboTag mice are suitable for revealing astrocyte-
specific transcriptomic signatures. Differential expression analysis of samples from 5-week-
cuprizone-fed mice versus controls revealed 1453 differentially expressed genes, of which
1041 were up- and 412 down-regulated. Within the group of differentially upregulated
genes, there were numerous chemokines (for example, Ccl6, Cxcl5, and Cxcl10), genes
encoding for markers of cell activation (Cd86), and interleukins (Il3ra). Of note is that the
results of recent studies suggest that CXCL10 orchestrates the activation of microglia in
the cuprizone model [73,77]. In line with the single-nucleus RNA sequencing results from
Hou and colleagues, in depth analysis of the RiboTag experiments suggests that astrocytes
actively contribute to inflammation during demyelination but adopt a regenerative phe-
notype during remyelination. Another important finding from Schröder and colleagues
was the existence of distinct expression signatures of HA-tagged cells during early and
late remyelination, suggesting that astrocytes shape their adoptive phenotype according to
the dynamic changes of oligodendrocytes during maturation and remyelination [76]. As
a limitation of that study, under control conditions, approximately half of the HA+ cells
were positive for APC/CC1 (a frequently used maker of mature oligodendrocytes) but
did not express GFAP. The authors suggest that these HA+APC+GFAP- cells are mature
oligodendrocytes that did express GFAP during their development [78,79].

5. Conclusions

For a long time, astrocytes lived in the shadows in neuroscience. After an initial focus
on neurons, research turned its attention to the myelin producers of the central nervous
system, the oligodendrocytes, and the cells of innate immunity, the microglia. However,
astrocytes are gradually stepping out of the shadows. It is becoming increasingly clear that
astrocytes do not represent a uniform cell population but are highly heterogeneous, with
various essential functions. Without astrocytes, normal development and maintenance of
neuronal function would not be possible. They are not just a filler substance holding the
nervous system together, but rather, like ministers in a government, working diligently
behind the scenes to enable higher cognitive functions. Furthermore, astrocytes play an
important role in the development and progression of a number of neurological diseases,
and we are just at the beginning of understanding the relevance and function of astrocytes
in such diseases. This is, maybe, best illustrated with neuromyelitis optica, a neurological
disorder that was, for a long time, considered to be a subvariant of MS. Today, we know
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that an autoimmune attack against the water channel protein aquaporin 4 is a key event
during neuromyelitis optica, and this protein is expressed by astrocytes [80,81].

What did we learn by using the cuprizone model? In fact, various studies using
this model were able to show that astrocytes are functionally involved in the process
of oligodendrocyte damage and demyelination. Proteins expressed by astrocytes and
functionally relevant for the cuprizone-induced pathological changes are, among others,
the Transient Receptor Potential Ankyrin 1 (TRPA1), a nonselective cation channel with
relatively high Ca2+ permeability [82], Lipocalin 2 (LCN2), also known as oncogene 24p3 or
neutrophil gelatinase-associated lipocalin (NGAL), an adipocytokine implicated in various
immunological functions [83], lymphotoxin-alpha, a cytotoxic protein [84], and the IκB
kinase 2 pathway, which induces nuclear factor kappa B activation [85]. Regarding a
possible function of astrocyte-expressed factors in the context of remyelination, among
others, galectin 3 [86], the CXCR4 ligand, CXCL12 [87] BDNF [88], and the Cav1.2 voltage-
gated Ca2+ channel [88] have been identified.

Whether astrocytes are beneficial or detrimental in the context of MS is discussed
controversially, and this has been elaborated in several excellent review articles in the
past [89,90]. On the one hand, available data suggest that astrocytes help protect demyeli-
nated tissue from additional harm and mitigate the negative impact of neuroinflammatory
activities on these tissues through the release of anti-inflammatory cytokines, like TGF-β
and interleukins 10 and 27. These actions include blocking inflammatory cells from entering
demyelination zones and fostering an environment conducive to remyelination. On the
contrary, some studies challenge this view by attributing to astrocytes a role in exacerbating
demyelination due to their release of chemokines that draw inflammatory microglial cells
to the sites of injury, thereby hindering the remyelination process. Results in the cuprizone
model are equally inconclusive. Two studies addressed this question by ablating astrocytes
and studying the consequences for myelin repair. Skripuletz and colleagues used Ganci-
clovir treatment in GFAP–thymidine kinase transgenic mice to ablate astrocytes [73]. While
astrocyte ablation did not influence the cuprizone-induced loss of oligodendrocytes, the
removal of damaged myelin sheaths by microglia appears to be impaired, thus inhibiting
the regeneration of oligodendrocytes and myelin. While Skripuletz and colleagues ablated
astrocytes during active demyelination, Madadi and colleagues ablated astrocytes with
La-aminoadipate (L-AAA) after chronic cuprizone-induced demyelination [91]. Under such
experimental conditions, ablated animals showed better myelin and functional recovery,
suggesting that astrocytes impair myelin repair in the more chronic lesion. The results of
both studies are difficult to compare. On the one hand, different experimental approaches
were used to ablate astrocytes (L-AAA versus thymidine kinase). On the other hand, the
ablation of astrocytes was carried out at two entirely different points in time. In the first
study, astrocytes were removed from a highly inflammatory environment characterized
by a large amount of myelin debris, significant activation of microglia, and infiltration by
oligodendrocyte precursor cells. In the second study, in contrast, astrocytes were removed
from a less inflammatory environment containing no or only limited myelin debris, less
pronounced microglia activation, and sparsely oligodendrocyte precursor cells. Based on
our current knowledge, it appears that astrocytes initially play a supportive role in myelin
regeneration, which, however, can turn negative as the lesion becomes chronic. Future
studies will show whether such a simplified statement is indeed true.
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Table 1. IHC (Immunohistochemistry); ISH (in situ hybridization); IGF-1 (Insulin-like growth fac-
tor 1); IFN-γ (Interferon-gamma); MIP-1alpha (Macrophage Inflammatory Protein-1 Alpha); IL-1β
(Interleukin-1β); MHC (Major Histocompatibility Complex); PDGF-A (Platelet-Derived Growth Fac-
tor A); OPC (Oligodendrocyte Progenitor Cells); Notch-1 (Neurogenic locus notch homolog protein
1); ADAM12 (ADAM Metallopeptidase Domain 12); CXCL12 (C-X-C motif chemokine 12); Cx47 (Con-
nexin 47); APP (Amyloid precursor protein); TSPO (Translocator protein); COX-1 (Cyclooxygenase-1);
FABP7 (Fatty Acid Binding Protein 7); MMP-3 (Metalloproteinase-3); RXRβ (Retinoid X Receptor β);
Tumor necrosis factor receptor 1 (TNFR1); GFAP (Glial fibrillary acidic protein); IL6 (Interleukine
6); mGluR (metabotropic glutamate receptor); BDNF (brain derived neurotrophic factor); OSMR
(Oncostatin M receptor); NRF2 (Nuclear factor erythroid-2-related factor 2); S1P (Sphingosine-1-
Phosphate); NF-κB (nuclear factor k-light-chain-enhancer of activated B cells); GLI1 (GLI Family
Zinc Finger 1); SOX10 (SRY-box transcription factor 10); DDIT3 (DNA Damage Inducible Tran-
script 3); HO-1 (Hämoxygenase-1); PI3K (Phosphoinositide 3-kinase); CTNF (Ciliary neurotrophic
factor); PAR-1 (Protease-activated receptor-1); GDNF (Glial cell line-derived neurotrophic factor);
P2X7 (purinoceptor 7); 8-OHdG (8-hydroxy-2’ –deoxyguanosine); SIRT-1 (NAD-dependent protein
deacetylase sirtuin-1); AQP4 (Aquaporin-4); NgR1 (Nogo-66 receptor 1); SPARC (Secreted protein
acidic and rich in cysteine); EBI-2 (EBV-induced gene 2); TrkB (Tropomyosin receptor kinase B);
CTR1 (High affinity copper uptake protein 1); ATP7A (ATPase copper transporting alpha); FTH1
(Ferritin Heavy Polypeptide 1); GLAST1 (GLutamate ASpartate Transporter 1); LCN2 (Lipocalin-2);
ALDH1L1 (aldehyde dehydrogenase 1 family, member L1); TIMP1 (TIMP metallopeptidase inhibitor
1); TRAP1 (TNF Receptor Associated Protein 1); PTPRZ (Protein Tyrosine Phosphatase Receptor Type
Z1); HNK-1 (Human natural killer-1).

Citation Main Finding(s)
[46] Astrocyte proliferation via 3H-thymidine labelling

[48] Astrocyte activation, demonstrated by IHC and ISH

[56] IGF-1 is expressed by astrocytes and the receptor by oligodendrocytes

[92] Altered astrocytic glutathione-S-transferase isoform expression during
demyelination

[93] Altered astrocytic glutathione-S-transferase isoform expression
during remyelination

[47] Astrogliosis promptly follows microgliosis during demyelination

[59] Amelioration of cuprizone-induced pathology ameliorates the extent of astrocyte
activation; IFN-γ overexpression, driven by the MBP reporter

[94] Amelioration of cuprizone-induced pathology ameliorates the extent of astrocyte
activation; MIP-1alpha deficiency

[60] IL1β-deficient mice have lower IGF-1 levels during the remyelination phase

[95] Astrocytes express MHC class I and II

[96] Transgenic mice that overexpress PDGF-A in astrocytes have increased
OPC numbers

[61] Peripheral benzodiazepine receptor is expressed by astrocytes and microglia

[97] Osteopontin is expressed by astrocytes and microglia

[98] Notch1 is expressed by various cell types, including astrocytes, within
remyelinating lesions

[84] Lymphotoxin-alpha is expressed by astrocytes and exacerbates demyelination

[99] Metallothionein-I and –II are expressed by astrocytes

[100] Different pathologies, including axonal injury and astrocyte activation, are more
pronounced in aged versus young mice during demyelination

[101] Complement regulatory protein Crry overexpression in astrocytes protects
against demyelination
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Table 1. Cont.

Citation Main Finding(s)
[102] The acyl-CoA synthetase, lipidosin, is expressed by astrocytes

[40] Platelet-derived growth factor-A overexpression in astrocytes
supports remyelination

[103] Metallothionein I/II are expressed by astrocytes

[39] Extent of astrocytosis differs between demyelinated white and grey matter areas

[104] Cortical demyelination, but not astrogliosis per se, is associated with accelerated
cortical spreading depression

[105] Astrocyte progenitor cells accumulate in cuprizone lesions

[106] ADAM12 is expressed by astrocytes

[107]
Increased numbers of astrocytes in vivo within the subventricular zone during
demyelination, and numbers were decreased by intraventricular
Noggin infusion

[108] CXCL12 is expressed by astrocytes and microglia

[109] Cx47 is expressed by astrocytes

[110] Glial isoform of APP is expressed by astrocytes

[111] C3a and C5a overexpression exacerbates demyelination and
delays remyelination

[112] IV-injected human-embryonic-stem-cell-derived neural precursor cells into mice
express GFAP to a limited extent

[85] IκB kinase 2 depletion in astrocytes ameliorates demyelination

[113]
Smad1, Smad5, and Smad8, intracellular effectors of the bone morphogenetic
protein (BMP) family of proteins, are active in oligodendrocytes and a subset
of astrocytes

[65] TSPO is expressed by astrocytes and microglia

[114] COX-1 is expressed by astrocytes and microglia

[86,115] Galectin-1 and -3 are expressed by astrocytes and microglia; galectin-3-deficient
mice show impaired remyelination

[116] Serine palmitoyltransferase, the rate-limiting enzyme for ceramide de novo
biosynthesis, is expressed by astrocytes

[117] FABP7 is expressed by astrocytes

[118] IGF1 is expressed by astrocytes

[119] MMP3 and MMP9 are expressed by astrocytes

[52] RXRβ is expressed by astrocytes

[120] Carbonic Anhydrase II is expressed by astrocytes

[121] Act1-deletion in astrocytes ameliorates demyelination

[122] p65 is active in astrocytes

[87] TNFR1 and TNFR2 are expressed by astrocytes and microglia; CXCL12 is
expressed by astrocytes, which promotes OPC proliferation and differentiation

[72]

In contrast to microgliosis, astrocytosis persists during de- and remyelination.
Astrocyte reaction is characterized, among others features, by early astrocyte
proliferation and increased expression of GFAP, vimentin, and fibronectin.
Furthermore, there is an elaboration of a dense network of processes

[73] Astrocyte ablation results in impaired remyelination

[123] IGF1 infusions can decrease astrocyte numbers during remyelination

[124] Glutamate-aspartate transporter is expressed by astrocytes
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Table 1. Cont.

Citation Main Finding(s)
[125] Receptor protein tyrosine phosphatase β is expressed in astrocytes

[126] IL6 is expressed by astrocytes

[88] mGluR1, mGluR5, and BDNF are expressed by astrocytes; astrocyte-derived
BDNF promotes recovery from cuprizone-induced demyelination

[77] CXCL10 is mainly expressed by astrocytes

[127]
Oncostatin M receptor is expressed by astrocytes and microglia; OSMR
deficiency aggravates demyelination; CNS-targeted OSM treatment
ameliorates demyelination

[128] Erk is especially activated in astrocytes and promotes demyelination

[129] Transgenic mice that overexpress IL6 in astrocytes show reduced glia activation,
axonal injury, and OPC recruitment

[82]
Transient Receptor Potential Ankyrin 1 (TRPA1) is expressed in astrocytes;
TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by
reducing the apoptosis of mature oligodendrocytes

[130] Activation of the astrocytic Nrf2/ARE system ameliorates demyelination

[131] Transgenic mice that overexpress IL-17A in astrocytes show aggravation
of demyelination

[132] Transglutaminase 2 is expressed by astrocytes

[133] Transgenic mice that overexpress IL6 in astrocytes show amelioration in the
cuprizone-induced pathologies

[134] S1P receptor 1 is expressed by astrocytes, and its modulation
ameliorates demyelination

[135] Astrocytes show NF-κB activation

[136] Gli1 is expressed by astrocytes after chronic, but not acute, demyelination

[137] Cuprizone induces astrocyte atrophy in the rat

[138] Metallothionein I/II and Megalin are expressed by astrocytes

[139] Sox10 converts astrocytes into oligodendrocyte-like cells

[140] Transplanted astrocytes convert into oligodendrocyte-like cells

[35] DDIT3 is expressed by oligodendrocytes and astrocytes

[141] Sox2 converts astrocytes into oligodendrocyte-like cells

[91] Astrocyte ablation augments remyelination after chronic demyelination

[63] TSPO is expressed by microglia and astrocytes

[142] Transferrin can be incorporated by all glial cells among astrocytes

[143] Overexpression of GFAP reduces cuprizone-induced apoptosis, demyelination,
and acute axonal damage

[144] Mesenchymal stem cells reduce astogliosis and microgliosis

[145] CD38 is expressed by astrocytes and microglia; CD38 ameliorates demyelination

[146] Astrocytes express NRF2, HO-1, and PI3K; Ginkgolide K augments the
expression of these proteins

[147] Astrocytes express SOX2, CNTF, IGF2, and BDNF

[148] Astrocyte-specific deletion of Transient receptor potential ankyrin 1 delays
demyelination

[149] PAR1 knock-out mice demonstrate skewing of reactive astrocyte signatures
towards a pro-repair phenotype

[150] Astrocytes express BDNF and GDNF; Ginkgolide B augments the expression of
these proteins
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Table 1. Cont.

Citation Main Finding(s)

[151] Deletion of astrocytic Cav1.2 channels leads to reduced astrocytosis, microgliosis,
ameliorates inflammation, and promotes remyelination

[152] P2x7 receptors are expressed by astrocytes and microglia; demyelination is
ameliorated in P2x7-deficient mice

[153] Induced neural stem cells ameliorate astrocytosis

[154] CD44 is expressed by astrocytes and microglia; Cd44 deficiency does not
ameliorate cuprizone-induced pathology

[155] Some astrocytes show oxidative damage to DNA (id est, 8-OHdG+)

[156] SIRT1 is expressed by astrocytes, microglia, and mature oligodendrocytes

[157] Mesenchymal stem cell transplantation ameliorates astrocytosis

[158] AQP4 is expressed in astrocyte endfeet; polarized expression is reduced
after demyelination

[159] Astrocytes phagocytose myelin; astrocytes express BDNF, CTNF, Nestin, SOX2,
Notch, and ß-catenin; expression profiles are regulated by ethyl pyruvate

[160] Astrocytes express NgR1, SPARC, and Hevin; astrocytic NgR1 sublocalization
alters during demyelination;

[161] Astrocytes express C3; TIC knock-outs show reduced C3 expression

[162] Aastrocyte participation in the tripartite synapse during demyelination

[163] mGluR5 is expressed by astrocytes and orchestrates remyelination

[164] EBI2 receptor is expressed in astrocytes and microglia

[165] Astrocytes express TrkB, CTR1, ATP7A, and ATP7B; demyelination is
ameliorated in mice lacking astrocytic TrkB expression

[166] Fth deletion in Glast1/EAAT1-positive astrocytes inhibits remyelination

[167] EAAT2 is expressed by astrocytes

[168] Astrocytes express S100B, GFAP, vimentin, LCN2, and ALDH1L1

[83] LCN2 is expressed by astrocytes; oligodendrocyte loss is more severe in
Lcn2-/- animals

[169] Ongoing astrocytosis weeks after completion of remyelination

[170] C3d, S100a10, Stat3, and Timp1 are expressed by astrocytes

[171] C3d and S100a10 are expressed by astrocytes; Bu Shen Yi Sui capsules promote
an A2 phenotype

[172] Combined mesenchymal stem cell transplantation and astrocyte ablation
support remyelination

[173] Cuprizone intoxication induces astrocyte endfeet sweelings

[174] Astrocytes express TRAP1; β-hydroxybutyrate downregulates the expression of
this protein

[71] High-resolution, single-nucleus RNA sequencing (snRNA-seq) analysis of gene
expression changes across various brain cells, including astrocytes

[175] Bone Marrow Mesenchymal Stem Cells reduce astrocytosis

[176] Astrocytes express HNK-1-O-Man+ PTPRZ

[177] A1 versus A2 astrocyte expression profiling

[178] The AQP4 inhibitor TGN020 ameliorates astrocyte and microglia activation

[76] Astrocytic transcriptome signature investigated via ribosomal tagging
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