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Abstract: One of the most complex and challenging developments at the beginning of the third
millennium is the alarming increase in demographic aging, mainly—but not exclusively—affecting
developed countries. This reality results in one of the harsh medical, social, and economic con-
sequences: the continuously increasing number of people with dementia, including Alzheimer’s
disease (AD), which accounts for up to 80% of all such types of pathology. Its large and progressive
disabling potential, which eventually leads to death, therefore represents an important public health
matter, especially because there is no known cure for this disease. Consequently, periodic reappraisals
of different therapeutic possibilities are necessary. For this purpose, we conducted this systematic
literature review investigating nonpharmacological interventions for AD, including their currently
known cellular and molecular action bases. This endeavor was based on the PRISMA method, by
which we selected 116 eligible articles published during the last year. Because of the unfortunate lack
of effective treatments for AD, it is necessary to enhance efforts toward identifying and improving
various therapeutic and rehabilitative approaches, as well as related prophylactic measures.

Keywords: Alzheimer’s disease; amyloid-beta (Aβ) aggregation; tau hyperphosphorylation;
neuroinflammation; nonpharmacological interventions; neuroplasticity
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1. Introduction

Currently, the population faces one of humanity’s greatest and most multifaceted
global challenges—an almost worldwide demographic aging process [1,2]. Consequently,
the number of people living with dementia comprises over 55 million people (World Health
Organization. (2021). Dementia fact sheet. https://www.who.int/news-room/fact-sheets/
detail/dementia--last accessed on 28 August 2023). Alzheimer’s disease (AD)—named
after Dr. Alois Alzheimer—represents up to 80% of all dementia cases and accounts for
over 6 million persons affected in the USA [3,4]. Thus, AD is “the most/main common
form/type/cause of dementia“ [3,5–8] and the “most widely studied” type [9], followed
by other types of dementia, such as vascular dementia with Lewy bodies or frontotempo-
ral [10] and mixed dementia. If AD is considered in the prodromal/preclinical AD stage,
it results in “416 million across the AD continuum” [11]. AD occurs across all continents
and among all races, with the incidence being greater in women [12]. Aging is the most
important related risk factor2, and as such, most patients are elderly, i.e., ≥65 years old2 [13].
Sporadic AD affects those over the age of 65, and its incidence increases with age. Familial
AD has a lower age of onset and is rare in comparison to the sporadic form [14]. It is also
specified that sporadic AD has, as a major risk factor, a higher prevalence of the ε4 allele
of apolipoprotein E (ApoE), which is also the case in late-onset familial AD [15,16]. AD,
as an expression/consequence of a non-physiological way of growing old, progressively
impairs basic cognition, including memory and the habits that rely on it, as well as somatic
functions. Affected individuals with disabled status eventually see the disease compromise
their activities of daily living2; at the same time, AD is the fifth main cause of mortality in
the elderly (≥65 years old) [17]. Cognitive decline is determined by an increased rate of
neuronal death/losses in the brain, through complex and still incompletely understood
causes [17]. It may also entail chronic pain [18] and motricity and mobility impairments,
especially in advanced stages; movements, including walking, are progressively slowed,
with rigid muscle hypertonia of the extrapyramidal kind. Hence, reduced diversity in
activities may predict AD onset [19]. In addition to the above-mentioned symptoms, there
are language processing issues [20] and problem-solving difficulties [10] that accompany
the progressive deterioration of episodic and semantic memory, language, and visuospatial
ability [14], all within a taxonomic cluster referred to as behavioral and psychological symp-
toms of dementia (BPSD) [21]. These are also referred to as neuropsychiatric symptoms
of dementia and include changes in behavior, perception, content of thoughts, and mood
disorders that are found in AD as well as other types of dementia [5].

Therefore, dementia, including its most common subtype, AD, represents a growing
“serious global public health problem”, with multifaceted consequences and challenges
that affect individuals, their kin, and the wider community, and have broad socioeconomic
impacts [22]. For example, annually in the USA, the overall financial burden of related ther-
apeutic approaches approximates USD 305 billion, and this cost may soon grow, exceeding
USD 1 trillion, because of inevitable demographic aging [23].

Current treatments, most of which are medicine-based, have little or no effect on the
evolution/progression of this disease. Accordingly, the scope of our systematic literature re-
view is to highlight the basic mechanisms behind the development of AD in connection with
the role of its risk and diagnosis factors, and to use this information for a comprehensive
topical reappraisal of the most recent literature concerning nonpharmacologic therapeutic
and rehabilitative interventions, along with their intimate, cellular, and molecular actions,
thus addressing the gap in the structured knowledge in this domain.

Regarding AD’s pathogeny, one of the major causes is the age-related failure of the
elimination of a small protein, amyloid-β (Aβ), that results in its accumulation in the brain
and the walls of arteries supplying the brain [24]. Soluble waste substances, including
Aβ, drain from the brain along thin membranes in the walls of capillaries and arteries in
a process known as Intramural Periarterial Drainage (IPAD). With advancing age, in AD,
Aβ is deposited within these membranes, further impeding the elimination of Aβ and
other waste material from the brain [25,26]. It should be emphasized that when predicting
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the appearance of AD, the impaired purging of the Aβ precursor protein is considered a
major inceptive disturbance at the intimate level and results in the pathogenic Aβ peptide’s
“accumulation and plaque formation 20 to 30 years before cognitive symptoms arise” [27].
Apart from age, other risk factors for AD may also impede the elimination of Aβ from the
brain. Such risk factors are present in patients who produce the epsilon 4 (ε4) form of the
protein apolipoprotein E (apoE4), particularly in those with high levels of cholesterol in
the blood [28,29] and/or hypertension and/or with “metal-induced neurotoxicity” (iron,
copper, and manganese are particularly important elements required for brain function
and development); their local imbalance can be functionally detrimental, i.e., neurodegen-
erative, at the cerebral level, more precisely affecting “the motor, cognitive and emotional
systems” [30]. Further consideration of, on the one hand, the complex path-physiologic
mechanisms of AD at the intimate level and, on the other hand, the abovementioned
necessity to detect AD as early as possible at the presymptomatic stage has led to the recent
expansion of the focus on para-clinical diagnosis. Alongside a blood assay to check for
“blood count, thyroxine, antithyroid antibodies, anti-syphilis antibodies, folic acid, and
vitamin B12”, positron emission tomography (PET) is quite a valuable nuclear medicine
tool that is able to investigate the prodromal and advanced dementia stages. To examine
isotopic markers, AD-related PET examinations can be used, namely, Aβ-PET, tau-PET, and
fluorodeoxyglucose (FDG)-PET [31]. As supplementary proof of its very complex and still
incompletely understood causality, there is an example that does not only apply to older
people: post-traumatic encephalopathy (PTE) may evolve into secondary Alzheimer-like
dementia even decades after the trauma [32]. Moreover, the literature explicitly emphasizes
a social–biopathological link too. Loneliness can be mentally distressing and can also
induce autonomic and phlogistic responses [33]. This is considered to occur in AD as a
consequence of the inflammation caused by the enhancement of oxygen toxicity-free-radical
production. Oxidative stress [34,35], which produces “oxidation of the chemicals induced
by free radicals” [36], causes damage when reactive oxygen species (ROS) reach an aug-
mented amount [37]. They have especially aggressive actions in the hippocampus, which
is part of the brain structure involved in memory and executive functions. So, in terms of
immune–endocrine functional interference, loneliness may be considered in relation to a
subsequent lingering hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis [33].
In fact, generally, aging also results in a “progressive chronic pro-inflammatory state”, and
this is considered a basic biological issue (together with “the critical role of a dysregulated
immune system in promoting persistent neuroinflammation”) [38], encountered in different
age-related sicknesses, including AD [39] and Parkinson’s disease (PD) [38].

1.1. Pathology of AD

The pathological features of AD are neurofibrillary tangles, amyloid plaques, and
vascular amyloidosis [40]. Neurofibrillary tangles are non-membrane-bound bundles of
paired helically wound filaments, 6–11 nm in width and 10 nm–2 µm in length, formed
from the microtubule-associated protein tau in its insoluble form. When stained with
Congo red, neurofibrillary tangles possess green birefringence in polarized light [41]. The
insoluble tau within the filaments is covalently bound to ubiquitin [42].

In the widely accepted amyloid cascade hypothesis for the pathogenesis of AD, the Aβ
protein is considered to be the single key element responsible for neurodegeneration and
dementia through a series of related events [43]. ApoE, extracellular matrix, and basement
membrane components have been located in AD plaques [44]. The Aβ peptide accumulates
in its insoluble form in the walls of cerebral blood vessels as cerebral amyloid angiopathy
(CAA) [45].

The diagnostic criteria for AD are grouped into a clinical and neuropsychological
assessment within the consortium to establish a registry for Alzheimer’s disease and
pathological staging according to the neurodegenerative features [46,47]. The deposition of
Aβ in blood vessel walls as CAA correlates strongly with the presence of dementia and is
now considered a key feature in diagnosing AD [48].
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Aβ is produced systemically by most tissues [49]. There is evidence for the uptake
of Aβ from blood and transport across the blood-brain barrier [50]. In earlier studies,
smooth muscle cells were named as the sole source of Aβ in vessel walls; however, this
does not provide an explanation as to why Aβ does not accumulate in the walls of smooth-
muscle-rich extracranial vessels [51]. More recently, it has been shown that Aβ is produced
by neurons [52]. The overexpression of the mutant human amyloid precursor protein
in the neurons of transgenic mice induced amyloid deposition in blood vessel walls and
associated neurodegeneration [53]. Thus, in transgenic mice, the transport and drainage of
Aβ from neurons is responsible for the deposition of Aβ in blood vessel walls [53]. Soluble
Aβ is predominantly 1–40 (Aβ40) and is found at low concentrations in normal brains [54].
The levels of soluble Aβ40 and 42 are in the picomolar range in young normal brains
and increase 100–1000-fold with age and in CAA [55]. The amyloid in neuritic plaques
consists of 42–43 amino acids at its C-terminal [55]. Vascular amyloid mainly consists of
the 1–39/40 type, with some Aβ 1–42 [55].

Aβ is derived through cleavage from a transmembrane-secreted protein: Amyloid
Precursor Protein (APP). The gene encoding of APP is located on chromosome 21 [56].
APP is involved in homeostasis, regulation, and neuroprotection. Cleavage by β and γ
secretases results in the generation of Aβ, whereas γ secretase cleaves APP within the Aβ
sequence, thus preventing the formation of Aβ [57].

ApoE is secreted by neurons under the influence of regulatory astrocytic-secreted
factors [58]. The three common alleles ε2, ε3, and ε4 encode the E2, E3, and E4 isoforms
of ApoE. ApoE has been described as a chaperone molecule for Aβ [58]. Evidence from
human and transgenic mouse studies shows that the ε4 isoform of ApoE (ApoE4) is a
predisposing factor for AD, hypercholesterolemia, atherosclerosis, and poor outcomes after
head injuries [59,60]. Epidemiological studies estimate that approximately one-third of the
population are ApoE4 heterozygotes; this is associated with a two- to threefold increased
risk of developing AD. The 1–2% of the population who are ApoE4 homozygotes have
an approximately 8–10-fold risk of AD. The mechanism by which ApoE exerts its effects
on Aβ transport and deposition is unclear, but it seems to be related to a worsening of
the clearance of Aβ [28,61]. On the other hand, clusterin (apolipoprotein J) appears to be
involved in blocking the aggregation of Aβ and preventing its deposition [62].

1.2. Familial and Sporadic AD

Familial forms of AD appear to be due to an overproduction of Aβ as a result of
mutations or polymorphisms in one of three genes. Mutations in the APP (amyloid
precursor protein) gene account for less than 0.1% of all AD cases but form the basis for
one of the most informative transgenic mouse models of AD [63]. Presenilin-1 (PS1) and
presenilin-2 (PS2) span cellular membranes and are encoded on chromosomes 14 and 1,
respectively [64]. More than 50 mutations have been described for PS1, compared to eight
in PS2 [65]. Double transgenic mice for APP and PS1 express more Aβ42 and develop a
larger number of Aβ deposits in their brains than single APP transgenic mice. Although
Aβ deposits are not present, there is an increase in the concentration of Aβ42 in PS1 single
transgenic mice, suggesting that presenilin mutations enhance the secretion of the more
amyloidogenic Aβ42 [66].

In the familial forms of cerebral amyloid angiopathy, there are other amyloid proteins
that deposit in blood vessel walls: the mutant cystatin C in hereditary cerebral hemorrhage
with amyloidosis, the Icelandic-type variant transthyretins in meningo-vascular amyloido-
sis, mutant gelsolin in Finnish-type familial CAA, PrPSc in Creutzfeldt–Jakob disease and
a variant of Gerstmann–Straüssler–Scheinker syndrome, ABri in familial British dementia,
and ADan in familial Danish dementia [67].

The great majority of cases of AD are sporadic, and there appears to be no firm
evidence of the overproduction of Aβ. It seems, therefore, that the failure to eliminate
Aβ from the elderly brain is an important factor in the pathogenesis of sporadic AD. The
pattern of distribution of Aβ in the blood vessel walls in both human and mouse CAA
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suggests that Aβ is eliminated from the brain along Intramural Periarterial Drainage (IPAD)
pathways that fail with advancing age and the possession of the APOE4 genotype [26,68].
Other hypotheses for the pathogenesis of sporadic AD include, but are not limited to,
the role of microbial infections via periodontal and gastrointestinal routes, as systemic
inflammation can drive the amyloid cascade in the brain [69,70]. Age-related oxidative
stress leads to mitochondrial dysfunction, which can then trigger a cascade leading to the
aggregation of Aβ and the intraneuronal accumulation of tau [71].

2. Methods

In order to carry out a systematic literature review on this subject, we followed the
principles of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA), with preliminary registration of it on the International Prospective Register of
Systematic Reviews [72] (PROSPERO) website (related ID: 456157) (https://www.crd.york.
ac.uk/PROSPERO, last accessed on 28 August 2023). For this purpose, we followed the five-
step filter/selection PRISMA-specific standardized methodology. First, we contextually
interrogated four renowned international medical databases: Elsevier (available at https:
//www.elsevier.com/ (last accessed on 28 August 2023)), the National Center for Biotech-
nology Information (NCBI)/PubMed (available at https://pubmed.ncbi.nlm.nih.gov/
(last accessed on 28 August 2023)), the National Center for Biotechnology Information
(NCBI)/PubMed Central (PMC) (available at https://www.ncbi.nlm.nih.gov/pmc/ (last
accessed on 28 August 2023)), and the Physiotherapy Evidence Database PEDro (available
at https://www.strokengine.ca/glossary/pedro{-}{-}score (last accessed on 28 August
2023)), using the keyword combinations/syntaxes displayed in Table 1. The selection
criteria for the studies considered in our work were free full-text papers, written in English,
and published between 1 January and 31 December 2022 in journals indexed in the Institute
for Scientific Information (ISI—ex Thomson Reuters—currently administered by Clarivate
Analytics), i.e., the renowned ISI Web of Knowledge/Science (The Institute for Scientific
Information, Web of Science Group. Available at https://mjl.clarivate.com/home (last
accessed on 28 August 2023)) database.

Table 1. Keyword combinations/syntaxes used contextually within our systematic literature re-
view search.

Keywords Elsevier PubMed PMC PEDro Total

“Alzheimer’s disease” + “Video game therapy” 0 0 0 0 0

“Alzheimer’s disease” + “Augmented reality therapy” 0 0 0 0 0

“Alzheimer’s disease” + “Virtual reality therapy” 0 0 19 0 19

“Alzheimer’s disease” + “Serious games therapy” 0 0 0 0 0

“Alzheimer’s disease” + “Reminiscence therapy” 1 6 96 0 103

“Alzheimer’s disease” + “Music therapy” 0 16 249 0 265

“Alzheimer’s disease” + “Dancing therapy” 0 0 0 0 0

“Alzheimer’s disease” + “Exercise therapy” 2 22 241 0 265

Total 3 44 605 0 652

In the next step, we indirectly assessed the scientific quality of the remaining arti-
cles (after traversing the previous steps) using a proper related measurement-weighted
algorithm [73] inspired by the PEDro classification/scoring system, selecting papers that
obtained a score of at least 4 (“fair quality = PEDro score 4–5”) (PEDro score, Strok Engine.
Available at strokengine.ca/glossary/pedro{-}{-}score/ (last accessed on 28 August 2023)).

In another step, we excluded papers that appeared to be eligible according to the
criteria mentioned, which after reading, were found to be irrelevant/non-contributive in
relation to our scope (“full-text articles excluded with reasons”). This was based on a direct
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quality assessment regarding the relevance of the papers’ content to our focus. As for the
data extraction from the selected articles, each author was allotted a number of papers
for condensed evaluation and preliminary data synthesis. In the last step, we analyzed
all of the papers deemed to contain the most useful information and extracted the data
underpinning the work (Figure 1). A full list of references and links to the final selected
works within our systematic literature review are presented in Section 3.
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We acknowledge that, despite the rigor of the PRISMA method, it is still possible
that some papers that would have been useful to this project may have been overlooked.
We therefore added a number of contributive papers freely found in the literature to the
knowledge base of this systematic review [74].

3. Results

Generally, and specifically in this paper, nonpharmacological interventions refer to
medical, psychological, and social therapeutic–rehabilitative endeavors (see Table 2) with-
out the use of medicines. Consequently, they are very diverse and therefore difficult to
classify, encompassing cognitive therapy and physical exercise either alone or within mul-
timodal procedures [75]. An appropriate attempt to systematize these approaches to the
treatment of BPSDs (but without encompassing all of their diversity, e.g., physiatric types
of interventions, which will be approached differently, or dose methodology-dependent
outcomes) entails directed interventions such as “reminiscence therapy, validation therapy,
and supportive psychotherapy”, “reality orientation and skills training”, and “recreational
activities, art therapies, exercise, and music therapies”. Yet, we believe this structure does
not sufficiently encompass all of their diversity, for instance, physiatric types of interven-
tions [21]. So, as nonpharmacological interventions, including for the treatment of AD,
are quite diverse and at least some of them are either mixed and/or rather nondescript,
we opted to arrange them in two complementary ways: “classical”, i.e., grouped mainly
as presented below, and, respectively, in tabular form according to their names, that is, in
alphabetic order.

The heterogeneity of this diverse field matched with the consensus criteria constructed
in the Delphi technique (DT) [76], with this being the main reason for the use of a muti-
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professional panel (physicians: Gerontology and Geriatrics, Physical and Rehabilitation
Medicine, Psychiatry, Neurology, Neuropathology, Neurobiology, and IT).

It is also worth noting that according to objective editorial customs, this paper must
be of a reasonable length; therefore, herein, “we shall not detail related methodological
aspects” [77].

3.1. Acupuncture

Some of the literature data regarding related trials report that this type of interven-
tion, targeting specific acupoints, can support the flow of energy across the acupuncture
meridians (https://acupuncturecanada.org/acupuncture-101/what-is-acupuncture/ ((last
accessed on 28 August 2023)) to “replenish qi resolve phlegm, and promote blood cir-
culation”, outcomes objectified through favorably modified scores on the Alzheimer’s
Disease Assessment Scale—cognitive subscale (ADAS-cog) and Clinician’s Interview-Based
Impression of Change—Plus (CIBIC-Plus) of AD patients [78]. Interestingly, studies in this
field “using data mining methods” provided algorithms for appropriate acupoints that
match different types of neurological pathology, including AD [79]. Specifically, “in the
treatment of AD with acupuncture and moxibustion”, many acupoints are “selected from
the Governor Vessel”, being prevalent in the “combination of the local acupoints with the
distal ones” [80].

Electroacupuncture

This kind of intervention is a newer form of acupuncture that uses low-intensity
electric currents delivered through small electrodes connected to acupuncture needles
inserted into specific acupoints to augment the therapeutic effects (https://www.webmd.
com/pain-management/what-is-electroacupuncture ((Last accessed on 28 October 2023));
applied at “at acupoints on the head”, these have shown outcomes quantified by the
enhancements in the scores on the Montreal Cognitive Assessment (MoCA), in patients
with AD [78].

3.2. Cognitive Behavioral Therapy (CBT)

The method, based on first determining abnormal cognition, emotions, and or habitus
reactions, “is a type of psychotherapeutic treatment that. . . combines cognitive therapy
with behavior therapy”, thus improving the affected individual’s ability to cope (Kendra
Cherry (Updated on 10 August 2022). Medically reviewed by Rachel Goldman–https:
//www.verywellmind.com/what-is-cognitive-behavior-therapy-2795747, accessed on 28
October 2023). This nonpharmacological type of intervention seems to be useful in the
treatment of insomnia. Such chronically affected persons appear to be prone to cognitive
decline earlier in life and, therefore, to developing AD and “Usual CBT (CBT-I–cognitive
behavioral therapy for insomnia–o. n.). . . enhance cognitive function”; moreover, at the
intimate level, the “preliminary findings suggest that CBT may reduce the rate of Aβ
deposition in older adults with insomnia and potentially delay” the onset of AD [81].

Counseling and Psychoeducation

This kind of procedure is quite complementary, possibly merging with CBT, as it “pro-
vides systematic disease-specific information”, contributing to the promotion of a healthy
lifestyle, including better coping strategies [82]. Such types of interventions (including
“multifaceted and semi-tailored counseling, education, and support” [83]), administered
for a longer time, with telephone tracking and related guidance provision [84], showed a
“small positive effect” in the treatment of depression in patients with mild AD, according
to the Danish Alzheimer Intervention Study (DAISY) [83]. As the implications, at the
intimate level, of different environmental destressing agents are well known (for instance,
the influence upon the expression of the brain-derived neurotrophic factor (BDNF) “in
specific brain regions” [85]), we do not discuss these aspects in any further detail.

https://acupuncturecanada.org/acupuncture-101/what-is-acupuncture/
https://www.webmd.com/pain-management/what-is-electroacupuncture
https://www.webmd.com/pain-management/what-is-electroacupuncture
https://www.verywellmind.com/what-is-cognitive-behavior-therapy-2795747
https://www.verywellmind.com/what-is-cognitive-behavior-therapy-2795747


Int. J. Mol. Sci. 2023, 24, 16533 8 of 29

3.3. Environmental Adjustment

Connected to this subject matter, “loneliness and social isolation”—with marked detri-
mental psychological and biological consequences, including favoring the development of
AD—are, as already pointed out from different perspectives, a matter of public health and
policy [86]. So, combating these issues has become an important social/community goal “in
a demographically aging population” [87]. Moreover, a clinical (the University of California
(UCLA) Los Angeles Loneliness Scale [88], respectively revised [89]) and imagistic (i.e.,
magnetic resonance imaging (MRI)) evaluation instrument has been developed to objectify
and assess the consequences of loneliness: “the loneliness score was significantly negatively
correlated with rWMD” (regional WM density) “in eight clusters” of the brain cortex [90].
Being rather eclectic and with a variable taxonomical framing, an approach found in the
literature designed to mitigate loneliness in the elderly was the physical practice of “remi-
niscence therapy, and technological interventions”, used as a community contribution to
“improve the social milieu of older adults” [91]. Related examples include “community-
based services (i.e., meeting centers, Alzheimer’s Cafés)” [92] and/or “organizing social
events” [87]. Even deeper within the intimacy of the superior nervous activity’s biological
support are “Musical Abilities, Pleiotropy (genetic kind), Language, and Environment”, in-
cluding a “musically and linguistically enriched” (MAPLE) integrative framework. This is a
complex endeavor that may be helpful to add necessary knowledge about the alterations to
underlying premonitory semiology aspects—and even maybe related biomarkers—of com-
munication problems [93]. Additional related endeavors include “Modification to the built
environment, Fall prevention, Digital Health” [94]. Another dimension of environmental
adjustment is oriented towards making it more agreeable. In this respect, aromatherapy
is a common procedure used among adults, including healthy individuals, as a wellness,
relaxation, and non-standardized procedure. As medicines based on acetylcholinesterase
inhibitors are the ones used more often in AD, and considering, in this respect, the possible
helpful composition of Salvia officinalis [95], the use of the “essential oil (EO) of Salvia
officinalis (common sage)” [96] was recommended in the literature for the treatment of
AD [97].

3.4. Exercise/Physical Activity

These kinds of “low-cost accessible” [98] nonpharmacological procedures are fre-
quently discussed in many studies, as they have attracted growing interest in recent
decades. This results from the accumulation of enhanced and deeper knowledge in most of
the medical domains, and in this context, consistent with evidence-based principles, the
benefits of physical activity are now more well-established. The benefits, as well as the
limits and even adverse effects, of a larger amount of pharmacological and nonpharmaco-
logical interventions, are now known. Therefore, the literature provides a topical, balanced,
and more holistic approach paradigm that we consider largely applicable. In terms of
specific, disease-centered treatment, “a multidisciplinary support intervention program
should contain pain therapy, nutritional medicine, and exercise therapy” [99]. Generally,
in addition to its ability to counteract depression, including its onset, there are known
beneficial actions of physical activity, especially when integrated within a healthy pro-
active lifestyle. Improvements to body image and self-esteem, as well as self-capabilities to
efficiently solve daily tasks, consequently improve quality of life (QOL), thus contributing
to the reduction in the occurrence or development of cognitive problems [100]. Overall, a
proactive lifestyle, including controlled physical exercise or sports, could mitigate the risk
of AD appearance and postpone “the onset of loss of autonomy by 7 to 10 years” [101]. Such
interventions produce extensive effects. Hence, physical exercise can adaptatively promote
the general homeostatic balance of the organism, and at the same time, affect biological
states and functions, from the intimate level of cells and tissues to organs, apparatuses,
and systems. For instance, “a single exercise session is sufficient to produce acute changes
at the transcriptional level”, and, if repeatedly practiced, through related adaptation, ex-
ercise can generate “more lasting effects on protein function” [102]. In elderly humans,
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exercise enhances memory and learning and slows down mental decline. The onset of
AD is delayed in individuals who exercise, and there is some evidence that the cognitive
decline may be delayed [103], including the paraphysiological aspects associated with
aging and also the onset of dementias (e.g., AD), based on complex, subtle, multi-target
actions at various morpho-physiological levels [96–98]. Exercise may be most beneficial in
individuals who are ApoE4-positive, although this requires further study. Recent imaging
studies in young humans demonstrate that 12 weeks of exercise aimed at cardiovascular
benefit increases blood flow in the hippocampus, and this is associated with improved
learning tasks. Taken together, these observations suggest that exercise has a beneficial
effect on the function of the cerebral vasculature, resulting in a more efficient clearing of
the toxic soluble Aβ from the aging brain [104]. Yet, although this type of procedure could
augment the blood flow in the brain (as in the case of AD), the direct effective action of
this augmentation on intellective functions is questionable [98]. However, the regional
cerebral blood flow (rCBF) is “an index of prefrontal regional brain oxygenation”, and its
fluctuations are considered detrimental to cognition, thereby possibly also reflecting the
recovery process in traumatic brain injury (TBI), AD, and mild cognitive decline (MCI).
Even just walking at ”low or moderate intensity” may ameliorate “cognitive function
mediated by the increased prefrontal oxygenation” it produces [105]. Additionally, exercise
enhances brain metabolic activity and the synthesis/release of BDNF, “which support
brain plasticity and angiogenesis in the hippocampus” [106]. As the amount of BDNF
being disturbed in AD is high [107], the ability of physical exercise to increase BDNF is
widely pointed out in the literature [108,109]. Regarding the efficacy of exercise in terms of
brain biology and the modulation of BDNF levels, resistance training (RT) “at moderate
intensity” is recommended and has proven effective. Accounting for individual tolerance
is recommended but ought to be in accordance with patient-centered needs, possibilities,
and choices in order to ensure adherence to an exercise regimen [110]. Further exploration
of the related actions at the intimate biological level revealed that exercise “can influence
the transcriptome characteristics of monocytes”. Actually, at the intimate level, moderate
exercise seems to favor the molecular expression associated with oxidized low-density
lipoprotein (LDL) of induced trans-endothelial monocytes’ passage, including their ad-
hesion. Based on these stimulated actions, monocytes have a potential role in the control
and prevention of AD [111]. Additionally, Irisin, which is a myokine largely expressed in
different tissues and organs, decreases with age and, hence, is possibly involved in different
illnesses of this type. Thus, it may contribute to the amelioration of such diseases, including
AD. The main intimate mechanisms involved seem to be the support of autophagy (that
naturally tends to reduce with age) at its basic level, including ameliorating metabolic and
cellular equilibrium and stability, along with the opposition to excess ROS generation, with
the consequent mitigation of inflammatory status [112]. The literature also proposes the
establishment of “a direct link between exercise and microbiota gut-brain communication”,
with the immune system being an “essential modulator” [113].

There is “moderate to limited evidence” that aerobic exercises (alone or associated
with other techniques) in more complex multimodal paradigms are suitable for AD pa-
tients [114]. The “multimodal exercise program” type of procedure is frequently considered
in the literature, because it mainly attempts to help elderly people adhere to “physical
activity and exercising”, with the aim of maintaining or even enhancing muscle strength,
endurance, equilibrium, and maybe even ameliorating “stretching” [94]; this would pro-
duce favorable effects in terms of the support of physical and cognitive abilities. There
is “moderate evidence” for the mitigation of “neuropsychiatric symptoms”, but there are
still improvements in both QOL [114] and “functional capacity”, namely, the activities of
daily living (ADLs) [115]. There is a possible virtuous circle. The better the self-efficacy
and associated confidence, the greater the adherence, which is augmented with every new
related level attained in terms of practicing physical exercise [116]—including with the use
of technology “through exergames” [94], especially those associated/based on a “game
narrative approach” [117]. In fact, “multi-component exercise” [118] or “multidomain



Int. J. Mol. Sci. 2023, 24, 16533 10 of 29

interventions”, i.e., encompassing two or more such procedures, ”may have even greater
benefits than cognitive training or exercise alone” in elderly individuals. This is especially
the case with MCI [106] or other single (including preventive) interventions, this being
the case for persons at risk for AD dementia, too [82,119]. However, “the importance of
walking outdoors, and PWD (persons with dementia–o. n.) reported physical activity as
means of maintaining personhood” [20]. Additionally, on the one hand, physical activ-
ity/exercise is, in principle, beneficial no matter the age, even at low intensity, and on the
other, therapeutic–rehabilitative procedures involving directed physical exercises can also
be considered, including therapeutic sports and music procedures/melotherapy, because
these approaches are underpinned by many international trials. Furthermore, combined
with rhythmic auditory stimulation (RAS), physical exercise/activity is responsible for ben-
eficial effects on the raw physical force and functionality and smooth coordinated/skilled
motions, especially in “mild to moderate AD” [120]. Regarding AD motor impairments,
RAS might be increasingly considered, including among the motor neurorehabilitation in-
terventions aiming to improve balance and orthostatic stability, together with walking [121].
Physical exercise, but not music, may produce favorable outcomes in dementia-related
“neuropsychiatric symptoms (NPS)” [122]. Additionally, physical exercise associated with
education seems to “effectively ameliorate older adults’ depressive symptoms” [123]. But,
despite the opinions, in the majority of cases, physical exercise has been shown to favor
the clearance of “bioactive substances” (called “exerkines”, e.g., Nerve Growth Factor
(NGF), Brain-Derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor
(VEGF), Insulin-like Growth Factor 1 (IGF-1), and Adiponectin), which helps to support and
ameliorate physiologic and cerebral capabilities [124,125]. Moreover, voluntary physical
exercise/training could favorably influence hippocampal-related cognitive function in AD
through BDNF (largely considered to be protective) and postsynaptic density protein 95
(PSD-95) modulation in the actions of reactive astrocytes (which, aside from microglia, are
the main cellular populations involved in AD pathophysiology [120–123]. Likewise, AD is
“probably identified as age-related impairment of AHN” [119] (adult hippocampal neuroge-
nesis) according to the literature, and it “has been discussed for decades, but there are still
inconsistent views on the effect of its intervention in different studies”. More precisely, it is
thought that “short-term (2–5 months) physical activity interventions” would be a reason-
able formula to favorably address the overall QOL in AD patients based on improvements
in cognition and neuropsychiatric impairments. However, regarding their effectiveness,
no objective distinction has been found between the different types of interventions [126]
or the related outcomes in control groups receiving common care [127]. There are also
rather conflicting opinions in the literature regarding the effects of physical exercise on
mental activity in AD [13]. Additionally, in regard to this physiatric type of intervention,
“the dose-response association” still needs to be clarified, and therefore more research is
required in the related methodology domain [128] of this otherwise-considered “possible
disease-modifying therapeutic approach” [129] (i.e., “sport is medicine”) [110]. So, we can
reasonably conclude that physical activity exercise contributes to AD prevention based on
sustaining mitochondrial biological homeostasis and related functioning [130], and overall,
physical exercise/activity is an effective “and safe add-on therapeutic intervention” [131],
including for patients with AD [131,132]. A particular type of such intervention is the
“traditional Chinese medicine (TCM) exercise therapies. . . (Baduanjin exercise, Tai Chi,
Liuzijue exercise and finger exercise)”, which can also “improve MCI” [133], and in general,
“traditional Chinese health exercises (TCHEs)” have capabilities “for managing cognitive
decline” [134].

Music and Dancing

It is considered that listening to one’s preferred music and/or singing and using
musical instruments may be able to induce positive feelings, and this effect targets the
intimate level of neuroplasticity. In the literature, the actions of listening to music are said
to have effects “on autobiographical memory, emotion, and cognitive function in patients”



Int. J. Mol. Sci. 2023, 24, 16533 11 of 29

with AD [135]. There is not yet a complete understanding of its beneficial biomedical
and psychological effects, but the proposed actions are said to focus on the cerebral struc-
tures involved in emotivity and decision functionality, “including sympathetic arousal and
dopaminergic circuit activation” [13]. However, generally, melotherapy (neurologic music
therapy) is considered in some of the literature data to have the capability of mitigating
the expansion of neurodegenerative pathologies such as AD, including combating the
related reduction in social relationships and possibly even actions like ameliorating motor
impairments that frequently appear after brain lesions [136]. Therefore, the enhanced
availability of music is to be considered in domiciliary settings such as “daycare centers and
nursing homes” [137]. Music “combines science and art”, and therefore its actions on brain
activity can be measured using neurophysiological tests (electroencephalography (EEG),
functional near-infrared spectroscopy (fNIRS), and imaging (using functional magnetic
resonance imaging (fMRI)). The assessment using these methods shows that there seems to
be no important difference between the stimulatory cerebral actions induced by listening
to a favorite or an unfamiliar piece of music, while the cerebral activity evaluated with
fMRI in both patients with depression and those without “under positive and negative
music stimulation” showed “that their regions of interest (ROI) characteristics are quite
different” [138]. Regarding the contribution of AI-aided fMRI, including in the approach
used for AD patients, it is believed that this could offer useful information for clinicians as
additional data for training [139]. According to recent sophisticated neurophysiological and
imagistic data, it has been reported that listening to music seems to interfere with cerebral
connectivity, thus possibly providing therapeutic benefits to patients with disorders of the
default mode networks (DMNs) and/or of the psycho-cognitive reward processes, includ-
ing in AD. In this respect, “the mPFC (medial prefrontal cortex–o. n.) and PCC (posterior
cingulate cortex–o. n.) are most sensitive to changes in functional connectivity” [140].
Listening to music appears to quickly improve “autobiographic memory and category
fluency. . . . some improved in short-term memory, working memory, total verbal recall,
and digit span” in people with dementia and in “orientation, and psychomotor speed”
after up to four months and six months, respectively, with this kind of procedure [141].
Additionally, listening to instrumentally produced melodies and rhythms, administered
for a period of about four months, was shown to consistently reduce hallucinations [9].
There is evidence that patients with AD perform better when words are associated with
music [142], and this may even “foster a sense of connection, communication, relaxation,
and emotional well-being” [4], aside from the beneficial effect in situations when habitus
related to depression and/or anxiety occurs [143] in such patients. However, it should be
noted that this is confirmed for severe habitus, whereas the amelioration of memory and/or
speech fluency only occurs in mild AD [144]. There is little peer-reviewed published data
on the benefits of dancing in the elderly, although there are many reports of improvement
in mood, cognition, and coordination. One large prospective study performed in the USA
demonstrates that dancing and playing musical instruments are associated with a lower
risk of developing dementia. In fact, a so-called active dimension (involving participation
vocally/instrumentally and even creating songs and/or dancing) has been identified in
contrast to a passive one, i.e., only listening to music [4,13]. Recent literature data suggest
the possible prophylactic role of music regarding neurodegeneration in predisposed in-
dividuals, considering that a suitable target population is represented by persons either
with related genetic risk factors and/or with incipient intellective regress, and the sub-
clinical occurrence of AD usually precedes the full disease [145]. Also, in AD’s incipient
stages, to counteract the “impairment in the central executive system” and to improve
their “executive functioning”, such older affected persons “may require interventions that
are more cognitively intense than traditional” ones. A related example reported in the
literature is “a dual-task-based music therapy intervention that involved drum playing
and singing”, thus aiming at ameliorating “attentional and motor controls”, with good
outcomes [146]. Yet, despite the overall favorable effects of MT, including in AD patients,
it has also been observed that “a wide and heterogeneous range of MT techniques” have
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been reported/approached in various papers; therefore, “this heterogeneity may affect the
results of different studies” [147]. Still, a specific mention should be made for the dancing
kind of therapeutic intervention: this approach might reduce intellective decline because
the motricity driven by music to dance is increased [148]. Moreover, only a few months of
practicing aerobic dance may ameliorate episodic recollection in patients with MCI, and this
could be organically due to the volume enhancement of the (right and total) hippocampus;
this is also because “MCI, especially amnestic MCI (aMCI)”, represents “an intermediate
state between normal aging and dementia”, and therefore this is an important target for
the preventive dimension of this type of procedure in AD [149].

3.5. Information Technology

A general concept sustained by the World Health Organization (WHO) acknowledges
that “technology can be used to empower PwAD” (people with Alzheimer’s disease), thus
enabling them to have an overall better QOL [150]. Aside from the use of different tech-
nological devices like “ the internet and computer”, “texting or videoconferencing among
family and friends”, “email”, “telephone”, “social robot”, augmented reality/virtual reality
(AR/VR) [87], “tablet applications”, and for a more comprehensive “neuropsychological”
evaluation, ”robotic interfaces and wearable sensors”, the additional involvement of “music
therapy” could also be more engaging for people with dementia and their caregivers as well,
resulting in an improvement in care provision [150]. A large and diverse field of consequent
practical applications is grouped as “mobile health (mHealth) technologies”, dating back to
2003 [151]; the Global Observatory for eHealth (GOe) “defined mHealth or mobile health as
medical and public health practice supported by mobile devices”. This category includes
different wireless supervision/watch devices, personal digital assistants (PDAs), and even
smart mobile phones [152] that may serve as therapeutic interventions (e.g., art-based
interventions, reminiscence therapy, cognitive training therapy, and mentalizing imagery
therapy) [151]. Types of interventions such as “computer-based (or ”computerized”–o. n.)
cognitive training (CCT)” [153] appear to be “a potential instrument for the improvement
of cognition”. In fact, it is a technical facility that enables people to use their digital de-
vices, including mobiles, to become interactively involved in intellective practice, possibly
with access to some elements of VR (which provides especially good results), with fea-
sible and measurable outcomes including noninvasiveness and accessibility (no special
training needed and rather inexpensive). These approaches work well with technical “stan-
dard criteria” and “sustainability”, especially regarding global cognition and, specifically,
“working memory, executive function . . . processing speed” [154]. Also, the use of the
“digital-app version of the Photo-Activity”, especially of the “person-centered artistic” kind,
might be a sort of “psychosocial intervention”, helpful for both cognitive-behavioral and
social relationships among institutionalized patients with dementia, including those with
AD [155]. The same seems to go for “digital storytelling”, which represents a rather newer
computer-based facility, and could improve QOL through tracing and reciprocating various
lived situations, including for elderly people with AD [156], “after having viewed their
story” [157]. This may partially be true for telemedicine as well, especially in situations that
lack opportunities for a direct professional approach [158], as the majority of the procedures
based on mHealth technologies seem to provide good results when availed by patients
with MCI or dementias, including AD [159]. Digital/information technology also raises
some issues related to human-computer interaction (HCI). Hence, on the one hand, in order
to maximize its bio-medical and social advantages and, on the other hand, to minimize
possible side effects (for instance, different degrees of dependency/addiction), an adequate
approach to this rapidly developing domain focuses on the “positive technology” paradigm.
This focuses on facilities meant to augment the beneficiary’s experience and mainly en-
compasses ”hedonic technologies”, used to generate good/beneficial feelings, ”eudemonic
technologies”, which help people to become involved in and achieve life experiences, and
“social/interpersonal technologies” that sustain fair inter-human (individually and/or
collectively) relationships. All of these are based on providing different digital solutions,
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including “virtual reality environments”, targeting psychological soundness and QOL [160].
Yet, a precise rating of these already numerous and rather diverse kinds of digitally based
technologies is difficult, at least regarding one of their main scopes: to mitigate loneliness
and/or social isolation, with their negative aforementioned consequences, considering “the
vagueness of the concepts and related measures” [87].

Virtual Reality (VR)

The developing domain of VR/VE (virtual environment) interventions also encom-
passes augmented reality (AR) procedures. As advanced digital facilities, regarding their
therapeutic–rehabilitative outcomes, all of them depend on both the technological types
and level of the devices used and the potential beneficiaries’ capabilities to favorably in-
teract with the kinds of information such methods provide [161]. Although rather old,
appearing in the 1980s, VR boosted its involvement in addressing different pathologies,
including neuropsychiatric types like AD, at the beginning of the last decade, partially
because of related concerns regarding the neuro-/biopsychological side effects [162,163];
specifically, some patients with AD “did experience boredom, fear, and anxiety while
using VR applications” [164], as well as possible social, more extended, consequences.
Therefore, generally speaking, from a medical perspective, since the beginning VR has
been considered as a bundle of modern methods that can be procedures added on to the
classical therapeutic–rehabilitative ones, without tending to replace them, which can (if
appropriately indicated and applied) supplement the multimodal information provided
to the users; it thus extends the amount of data brought to them, sometimes more safely
and/or ecologically, and hence, it may offer a better-matched construct of the specific
sanogenic approaches’ administration [165]. In particular, it can help through its immer-
sive dimension/component, an advanced type of apparatus consisting of head-mounted
displays (HMDs) that are able to virtually reproduce/simulate real-life environments and
situations, which interact with the perceptions/related experiences of “the first-person
perspective (1 PP)”, thus being able “to facilitate recovery and enhance motor or cognitive
functions in” such affected persons, with applications that include reproducing real-life
situations (e.g., shopping with a pre-established list of products and visiting different
virtual market environments); this is a training and measurable approach, interacting with
important challenging cognitive functions, such as working recollection, spatial memory
and orientation, intellective planning, and related performance [166], with favorable effects
on cognition preservation [167]. It should also be noted that the mitigation of apathy has
been observed more after “non-immersive virtual experiences” [168]. However, there are
also more reticent opinions regarding the safety and nuanced effectiveness of the use of
VR in AD patients [168,169]. On the other hand, targeting a very desirable therapeutic
direction to be attained, i.e., relaxation and positive emotions provision, in the literature,
the most common real-world elements reproduced for this purpose, by (immersive) VR,
are short movies displaying beautiful outer and/or inner natural landscapes [170]. From
intimate and motor points of view, in AD this kind of intervention would both induce
neuroplasticity and support pace practice by matching plural digital make-believes of
routine activities with an exercising gait on a treadmill and/or on a stabilometric-type
moveable apparatus, meant to (re-)train stance and motion [171]. To the above examples
of beneficial VR interventions must be added another, considering that elderly patients
often have more or less severe disabilities [163,170] (not seldom cumulative, as the charac-
teristic pathology paradigm in the elderly is multimorbidity [172]) that limit or can even
jeopardize their access in natural environments [163,170]. Complementary to what we have
pointed out, there are no significant differences reported in perceiving concrete vs. digi-
tally achieved backgrounds, regarding physical parameters like eye blinks and heartbeats,
heart rates, and electrophysiological rates, such as frequency band-powers, collected elec-
troencephalographically [170]. Newer literature data suggest a “next-virtual” level would
attempt to merge the “simulation technologies”, i.e., “virtual reality (VR), augmented
reality (AR)” and a “mixed” one, towards achieving a so-called “extended reality (XR)”,
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whose “core” would be “metaverse”, based on “haptic technologies embedded”, using
detectors or actuators, in order to reproduce haptic perceptions autonomically (e.g., body
temperature) and/or somatically (forces interaction), etc., that the concrete milieus generate
in individuals [173]. Actually, in AD, the rousing effect of rehabilitation interventions, with
beneficial actions towards recovery after cerebral lesions, seem to “have shown promising
results with XR-assisted treatments” [174]. At the same time, VR enhances “the fun and
enjoyment of daily physical activity” (physical activity is for the elderly a basic natural, and
in principle very accessible, endeavor, including for sickness and consequent disablement
prophylaxis [175], boosting the patients’ related engagement, especially associated/based
on a “game narrative approach” [117], within the already well-known concept and a bundle
of such related type of interventions, so-called “serious games” [176].

3.6. Lifestyle Factors

Factors such as diet and exercise improve cognitive function and may protect against
AD [177]. More precisely, there is a quite broad spectrum of opinion regarding the beneficial
effects of some of the Mediterranean diet’s components and in the complete diet itself in
counteracting intimate processes of aging (in general and of the brain in particular) and in
mitigating the related intellectual decline, including AD. The same seems to be true, on
one hand, for the ketogenic [178] diet, “a dietary approach characterized by high-fat and
low-carbohydrate intake, aiming to facilitate weight loss, enhance mental clarity, and boost
energy levels” [179], and for physical activity/exercise, on the other [178]. Yet, it is still not
clear whether a change in diet in middle-aged or elderly individuals can improve or halt
the progress of mild cognitive MCI to dementia [180].

3.6.1. Sensory Practices

Within this generic denomination are included “aromatherapy, massage, multi-sensory
stimulation, bright light therapy)” [20]. The literature suggests that these provide good out-
comes for some often-encountered problems in AD, e.g., habitus problems and symptoms
of depression [143].

3.6.2. Validation Therapy

This kind of nonpharmacological intervention is part of what some authors collectively
denote “psychosocial practices” (aside from, for instance, “meaningful activities”, “pet
therapy”, as well as reminiscence therapy (RT) and “music therapy” [20]; however, we
consider the latter two to be more consistent; therefore, we placed them into a different
taxonomy–see “Music and dancing”). However, such procedures can be also ”an alternative
approach to treating delusions and hallucinations in dementia” [9].

3.7. Low-Dose Ionizing Radiation (LDIR)

Lately, in the literature, low-dose ionizing radiation (LDIR) has been considered to be
a kind of procedure adequate for use in AD, among other neurodegenerative diseases. This
is connected to its possible intimate actions: “radiation hormesis”, which refers to a general
capability of living entities to favorably respond by adaptation to various stressor agents
and, hence, to enhance their biological resilience and functional performances, this being
the case of LDIR, too [181]. More precisely, it supports enzymatic repair in various biolog-
ical structures, including the deoxyribonucleic acid (DNA) level, with favorable actions
on the gene expression related to neuroprotective biological mechanisms, within related
protective mechanisms of antioxidant prophylaxis, with ROS depletion and enhancement
of the cells’ resilience to the damaging actions of these moieties, and the consequent con-
vergent promotion of the genome’s stability, with anti-inflammatory (inclusive regarding
neuroinflammation) actions in various tissues. As for the central nervous system (CNS),
at least mainly in animal experimental models, it would promote molecular and synap-
tic entities’ performance and even myelin production and neurogenesis. Besides these
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many beneficial effects, an open question remains regarding the possible appearance of
detrimental actions of applying LDIR to the CNS [181].

3.8. Mechanical-Based Stimulation

As found in the literature, this kind of different procedural intervention mainly en-
compasses whole-body vibration (WBV), transcranial ultrasound stimulation (TUSS), and
lately, auditory stimulation (AS) [182]. Regarding WBV, this represents a kinesiologic–
electromechanically-based type of therapeutic–rehabilitative and/or even prophylactic
procedure that comprises the exposure to low-frequency mechanical vibrations, using a
related apparatus able to produce such a form of energy, usually a kind of specific platform
on which the whole body is placed [183]; it is a mechanical low-frequency vibratory passive
stimulation [184] that “may offer an alternative for active exercise training... “ proving to be
“an effective intervention” with beneficial actions on various body structures and functions
“to improve physical fitness” mainly of “the musculoskeletal system...” but also with favor-
able involvement at the hormonal and nervous system levels, specifically through favoring
neurotrophy, neurotransmission, and maybe even neurogenic functions, all resembling the
effects of active exercises [185]. In animal experiments, TUSS has shown favorable actions
on cerebral circuitry and afferent neuroplasticity; specifically, AS, based on using “trains
of tones”, appeared to sustain gamma brain waves, with beneficial effects in AD at the
intimate pathological level and consequent related habitus improvement [145]. Generally,
the three aforementioned types of “low-cost and noninvasive mechanical-based interven-
tions” have shown their “effectiveness, safety, and feasibility” in the complex symptomatic
spectrum of AD, but because the related human studies are still few and heterogenic in
terms of the therapeutic methodology used, there is need for further confirmation [182].

3.9. Photobiomodulation (PBM)

This physiatric type of intervention, also called (low-)level LASER therapy (LLLT)
and LASER biostimulation, also seems to be promising in AD. Its main beneficial effects
are based on a claim in the literature that it improves action at a mitochondrial level [186];
it ameliorates the “behavioral results and reduces amyloid plaques and neurofibrillary
tangles”, seeming especially to have favorable actions at the basic intimate mitochondrial
level including “mitochondria fission and fusion” regulation (of “glial cells and neuroin-
flammation”, too), stimulating/modulating the cytochrome c oxidase (CCO) functionality,
and through antioxidant actions. On the other hand, different collateral or long-term
(side)effects need further examination, as the “brain is a difficult-to-irradiate organ” [187].

3.10. Reminiscence Therapy (RT)

This intervention, defined as “structured use of memories, experiences, and prompts” [188],
was considered for the cognitive treatment of AD, beginning in the 1990s, and it specifically
consists of stimulating the affected persons to, as much as possible, accurately retrace
and interactively communicate memories of their lived experiences [189], thus being an
“appropriate nursing intervention to the cognitively impaired elderly” [190]. The con-
struct particularly of the RT is the preponderant emphasis on remote memory, with less
importance given to the short term, by both the AD patient and the “facilitator” [190].
Generally, RT is a nonpharmacological care type of intervention that may be used in order
to overall ameliorate the QOL and as an additional procedure to mitigate depression and
anxiety [189]. Basically, RT is a category of “cognitive therapy” interventions, usually asso-
ciating/incorporating “reality orientation training” [30]. Works on this subject have shown
the beneficial value of RT, aside from the abovementioned fields, on intellectual functions,
including an improved capability to fulfill tasks of daily living, based on recalling their
former memories, mainly in mild-to-moderate AD patients, in association with relevant
related static and/or moving images and music [191], as a choice/complementary inter-
vention for “treating delusions and hallucinations in dementia” [9]. In addition, regarding
RT, “more recently, digital storage and presentation of photographs, music, and video
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clips have become widely used [192]. An important biomedical link has been reported
between RT and feeding; the former encourages persons with dementia to enjoy meals
specific to the origin culture and remote experiences from their childhood, including par-
ticipating in traditional related gastronomic events and involvement in cooking, using
their tastes and customs, established before becoming mentally ill [10]. Moreover, through
”electroencephalography (EEG) signals for automatic emotion recognition” one can see
the objective effects of RT; in addition, “the pleasure level of RT and the (o. n.: eu-)stress
level of the conversation is more conducive to the emotion classification of older people
in the communication support systems” [193]. Hence, RT “can help improve communica-
tion, feelings of belonging..., mood, wellbeing”, with beneficial intellective actions; further,
with the aid of the impressive actual development and expansion of artificial intelligence
(AI), there can be related digital progress: re-configuring RT in a customized paradigm,
resembling the features provided by a human health professional (skilled/licensed carer
or respectively, therapist), targeting thereby an “intangible cultural heritage”, including
“facial expression analysis and reinforcement learning techniques”. Thus, by recognizing a
user’s facial emotions, an adequately informed piece of software could emulate RT more
appropriately and promptly [194]. AI can thus be helpful “for assessment of cognitive
and functional impairment in” AD patients [195]. Apart from cognition, RT could thus
improve the QOL of patients with dementia, including AD and/or vascular [196], and
“using immersive VR may be more effective as it would be more realistic than traditional
reminiscence therapy and could lead to increased engagement”, proving, according to
different works, to be effective against “anxiety, depression, apathy, and negative mood
states” [170], as well as “improving semantic verbal fluency, immediately after a short
intervention program in elderly”, and even reducing “depressive symptoms” [197]. In
this context, we emphasize the important relation between the appearance of cognitive
involvement/impairment and depression; in the elderly, the rate of intellective downfall
can actually also predict the appearance or ingravescence of (associated) depression: [123].
Conversely, regarding depression (and anxiety, too), it “may be clinically observed many
years before the onset of significant cognitive symptoms” [82].

3.11. Repetitive Transcranial Magnetic Stimulation (rTMS)

This is a physiatric procedure/intervention that appears promising in AD, with fa-
vorable pathogenic targeting outcomes, i.e., diminishing the accretion of Aβ peptides,
counteracting “tauopathy”/”hyperphosphorylation”, and, at the geno-molecular level, mit-
igating ApoE “expression” and stimulating (protective) autophagy [187]. An “open-label
extended follow-up study” claimed that multisession maintenance, with the therapeutic
administration of rTMS, sustained over the long term, was preferable to a short-term
dosage (for instance, two weeks in AD). In addition, it may be better when “multisite”
is administered, mainly acting on “cognitive and executive functions” [198]. Although
not well understood [199,200], its principal known action mechanisms are as follows. In
AD, the amount of BDNF dependent on/controlled by the long-term potentiation (LTP)
and the overall functioning of neurons decreases in the rTMS, thus increasing the levels
of this neurotrophic factor (since a longer time is known to have neuroprotective effects
in AD [179], as well as in PD [180,201]). Redressing or at least abating abnormal LTP-like
neuroplasticity and the connected disturbances of cells’ communication bio-codes and
“concurrent cognitive training and/or patients with higher education” may result in better
outcomes” [200]. An important genetic factor involved in the predisposition to sporadic
AD is the presence of the APOE ε4 allele, which would detrimentally interfere with the
gamma-aminobutyric acid (GABA)’s -ergic deterrent support connectivity, thus altering
the aggregation of the Aβ peptide and also the egestion of its soluble form. Accordingly,
“rTMS as a modifier of inhibitory neuron function. . . reduces GABAergic synaptic strength
on principal neurons” [199]. So, as rTMS is “an inhibitory neuron function modifier” and
including its action on GABAergic synapses, it can favorably intervene in the functional
ensemble of the equilibrium between neural inhibition and excitation [200]. Aside from
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modulating synapses’ activity/neuroplasticity and exerting antiapoptotic actions, as well
as PBM, it regulates neuroinflammation and, although not fully confirmed, on glial cells.
On the other hand, rTMS needs further research, including a more complete identification
of possible undesirable reactions, among which are (although rare) seizures [187].

3.12. Transcranial Direct Current Stimulation (tDCS)

Aside from the dose, this kind of physiatric intervention has polarity dependence,
stimulatory under the anode and inhibitory under the cathode, in terms of its effects (there
remains debate regarding their intimate electro-physiological support and consequent
real actions) [187,202,203]. Through ample and complex actions, tDCS (mainly under
the positive electrodes) exerts favorable effects on cognition/learning, visual recognition,
spatial, word, and working types of memory in AD (Figure 2). At intimate levels, it
combats amyloid/Aβ peptide plaques depositing (as opposed to their consequent vi-
cious circle with the astrocytes’ activation), ameliorates cerebral circulation, improves
synapses’ plasticity, and stimulates N-methyl-D-aspartate (NMDA) receptors, also having
anti-neuroinflammation actions [204].

Table 2. Nonpharmacological interventions in AD: a synthetic description of cellular/tissue and
molecular aspects.

Nonpharmacological Interventions in AD Cellular/Tissue and Molecular Aspects References

Acupuncture

Acupuncture in AD potentially modulates
neurotransmitters and neuroinflammation, improving
ADAS-cog and CIBIC-Plus scores. Data mining aids
acupoint selection.

[78–80]

Electroacupuncture

Electroacupuncture enhances MoCA scores in AD,
possibly via cellular mechanisms such as neuroplasticity
and molecular pathways like neurotransmitter
modulation.

[78]

Cognitive behavioral therapy (CBT)
CBT-I may improve cognitive function and potentially
delay AD onset through the modulation of Aβ deposition
at a molecular level.

[81]

Counseling and psychoeducation
The intervention promotes healthy lifestyles and better
coping strategies, with a potential cellular impact on
BDNF expression, affecting mental health in mild AD.

[82–85]

Environment adjustment

Interventions to combat loneliness may impact regional
WM density in the brain cortex, potentially affecting AD
development. Activities like aromatherapy with Salvia
officinalis could influence acetylcholinesterase levels,
offering molecular-level therapeutic potential.

[86–97]

Exercise/Physical activity

Exercise-based nonpharmacological interventions show
multifaceted benefits across cellular and molecular
domains, impacting homeostasis, transcription, protein
function, and BDNF release. Physical exercise modulates
brain metabolic activity, enhances the release of
Brain-Derived Neurotrophic Factor (BDNF), and possibly
influences monocyte functions, potentially offering a
holistic approach to managing AD. Exercise also affects
cerebral blood flow and mitochondrial function, although
its precise efficacy remains under debate.

[13,20,82,94,96–134]
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Table 2. Cont.

Nonpharmacological Interventions in AD Cellular/Tissue and Molecular Aspects References

Music and dancing

Music-based interventions, including active participation
and passive listening, impact neuroplasticity, evoke
positive emotions and influence cognitive function in
Alzheimer’s disease (AD) patients. These interventions
modulate brain structures linked to emotivity and
decision-making via dopaminergic circuits and
sympathetic arousal. Technological aids like functional
MRI and EEG indicate differential neural responses to
music, suggesting utility in AD management. Molecular
changes, although not fully understood, appear to involve
neurotransmitter pathways and neuroconnectivity,
particularly in regions like the medial prefrontal cortex
and posterior cingulate cortex.

[4,9,13,135–149]

Information technology

Technology, including mHealth and computer-based
cognitive training, empowers Alzheimer’s patients and
caregivers by enhancing cognition and psychosocial
well-being. These interventions likely modulate neural
pathways and cellular functions, although the exact
molecular mechanisms remain underexplored.

[87,150–160]

Virtual reality (VR)

VR and AR interventions in Alzheimer’s Disease (AD)
likely impact neuroplasticity, cognitive function, and
motor skills by modulating neural pathways. These
immersive technologies may interact with molecular
markers associated with cognitive and emotional
regulation, although specific mechanisms warrant further
study.

[117,161–176]

Lifestyle factors

Dietary interventions like the Mediterranean and
ketogenic diets, as well as exercise, are suggested to
modulate cognitive function possibly through
anti-inflammatory and antioxidant pathways, impacting
cellular and molecular mechanisms relevant to
Alzheimer’s Disease. Further studies are needed for
mechanistic insights.

[177–180]

Sensory practices

Alternative therapies like aromatherapy and light therapy
may modulate neurotransmitter levels and circadian
rhythms, potentially ameliorating behavioral symptoms in
Alzheimer’s Disease.

[20,143]

Validation therapy

Psychosocial interventions may influence
neurotransmitter systems and neuronal plasticity,
potentially alleviating delusions and hallucinations in
dementia patients.

[9,20]

Low-dose ionizing radiation (LDIR)

Low-dose ionizing radiation (LDIR) in Alzheimer’s
treatment may induce radiation hormesis, enhancing
DNA repair, gene expression, antioxidant defense, and
anti-inflammatory actions, while potentially improving
synaptic and myelin integrity.

[181]

Mechanical-based stimulation.

Whole-body vibration (WBV), transcranial ultrasound
stimulation (TUSS), and auditory stimulation (AS) may
impact neurotrophic and neurotransmission pathways.
WBV enhances musculoskeletal and hormonal systems,
TUSS affects cerebral circuitry and neuroplasticity, while
AS modulates gamma brain waves.

[145,182–185]
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Table 2. Cont.

Nonpharmacological Interventions in AD Cellular/Tissue and Molecular Aspects References

Photobiomodulation (PBM)

Low-level LASER therapy (LLLT) in Alzheimer’s Disease
(AD) mainly targets mitochondrial function, modulating
cytochrome c oxidase (CCO) and exerting antioxidant
effects. It also impacts mitochondrial fission/fusion and
neuroinflammation.

[186,187]

Reminiscence therapy (RT)

Reminiscence therapy (RT) in AD focuses on stimulating
remote memory. While not directly cellular or molecular,
EEG signals suggest its neurophysiological relevance,
impacting cognition and mood.

[9,10,30,82,123,170,188–197]

Repetitive transcranial magnetic stimulation
(rTMS)

Repetitive transcranial magnetic stimulation (rTMS) in
AD shows promise at the cellular and molecular levels by
reducing Aβ peptides, counteracting tau
hyperphosphorylation, and modulating ApoE expression.
It also influences BDNF levels and GABAergic synaptic
strength, potentially rectifying imbalanced neural
inhibition–excitation dynamics.

[179,180,187,198–200]

Transcranial direct current stimulation (tDCS)

Transcranial direct current stimulation (tDCS) in
Alzheimer’s Disease (AD) shows polarity-dependent
effects, enhancing cognition and combating Aβ peptide
deposits. It improves cerebral circulation, synaptic
plasticity, and NMDA receptor activity, while also
exerting antineuroinflammatory effects.

[187,202–204]
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4. Discussion

Overall, we underline the heterogeneity, responsiveness, and adherence, especially
of the “oldest olds” [205], to these kinds of interventions, very much depending on the
patients’ general biological reserve and their effective neuroplasticity.

Limitations

A large amount of related literature—116 selected articles issued in (only) one year
(2022)—is, on one hand, encouraging as regards the legitimate growing interest in this
subject matter, but this comes along with the heterogeneity of the literature data; hence, we
cannot guarantee the lack of bias within these data. As we emphasized, we taxonomically
grouped the nonpharmacological interventions used in the treatment-rehabilitation of the
AD patients either “classically”, i.e., with a relatively logical paradigm, considering either
the same or neighbor category of energy used or with a common focus on a different target
bundle of AD symptoms. However, we put these together asserting that as nonpharmaco-
logical interventions, particularly in AD, are quite diverse and at least some of them are
either mixed and/or rather nondescript, we have also arranged them in tabular form by
their names, that is in alphabetic order.

5. Conclusions

As AD has a growing frequency, with the increasing global demographic aging process,
and still there is no cure, we considered different approaches aiming to improve the
current therapeutic–rehabilitative outcomes, including nonpharmacological endeavors
(possibly strengthened by artificial intelligence, as this is largely promising but also, as wide
discussed in the topical literature, has risks) are justified, and their periodic reappraisals
welcome. The same is true for both fundamental research and clinical trials, in order to
improve and hasten the awaited translation from bench to bedside.

Accordingly, the aim of our systematic literature review (i.e., a reappraisal of the actual
data regarding AD exhaustively, from the basic mechanisms behind its development to
the main current clinical–epidemiological features and to the newer nonpharmacological
therapeutic–rehabilitative interventions considered in the literature, with their principal
cellular/tissue and molecular actions) is to provide topically related information, hopefully,
useful in such an interesting and evolving domain.
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