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Abstract: Resistance to anticancer drugs is a problem in the treatment of pancreatic ductal carcinoma
(PDAC) and overcoming it is an important issue. Recently, it has been reported that statins induce
apoptosis in cancer cells but the mechanism has not been completely elucidated. We investigated the
antitumor mechanisms of statins against PDAC and their impact on resistance to gemcitabine (GEM).
Lovastatin (LOVA) increased mitochondrial oxidative stress in PDAC cells, leading to apoptosis.
LOVA reduced lipid rafts in the plasma membrane and mitochondria, suppressed the activation of
epithelial growth factor receptor (EGFR) and AKT in plasma membrane rafts, and reduced B-cell
lymphoma 2 (BCL2)-Bcl-2-associated X protein (BAX) binding and the translocation of F1F0 ATPase
in mitochondrial rafts. In the three GEM-resistant cell lines derived from MIA and PANC1, the lipid
rafts in the cell membrane and the mitochondria were increased to activate EGFR and AKT and to
increase BCL2-BAX binding, which suppressed apoptosis. LOVA abrogated these anti-apoptotic
effects by reducing the rafts in the resistant cells. By treating the resistant cells with LOVA, GEM
sensitivity improved to the level of the parental cells. Therefore, cholesterol rafts contribute to drug
resistance in PDAC. Further clinical research is warranted on overcoming anticancer drug resistance
by statin-mediated intracellular cholesterol regulation.

Keywords: statin; pancreas cancer; drug resistance; mitochondrial raft; apoptosis

1. Introduction

Pancreatic cancer is the third leading cause of cancer-related deaths in the United
States [1] and the fourth in Japan [2]. The incidence of pancreatic cancer continues to
increase; it is predicted to become the second leading cause of cancer-related deaths in
the next decade [3]. Pancreatic ductal adenocarcinoma (PDAC) accounts for the majority
of pancreatic cancers; even with multidisciplinary treatment, the prognosis remains poor,
with an overall 5-year survival rate of only 8.5% [2]. The early detection of PDAC remains
challenging and radical resection is often difficult to perform due to anatomical factors [1].
Consequently, the importance of anticancer drug treatment is increasing. However, the
increased likelihood of anticancer drug resistance makes treatment difficult [4].

In terms of chemotherapy for PDAC, improved survival rates have been observed with
the use of gemcitabine (GEM), 5-fluorouracil (5-FU), nab-paclitaxel, and folfirinox [5]; how-
ever, anticancer drug resistance poses a significant challenge. Resistance to gemcitabine,
the primary first-line drug, develops several weeks after treatment initiation [4]. Drug
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resistance genes and microRNAs [6], the stemness of cancer cells [7], the abundant stroma
interacting with cancer cells, and the cancer microenvironment, including the occurrence of
hypoxia, are the primary factors that contribute to drug resistance [8]. These factors are
difficult to overcome [9]. When PDAC-resistant cell lines induced by continuous treatment
with GEM were examined, although the development of specific resistant genes was not
triggered, resistance to GEM, 5-FU, cisplatin, and paclitaxel occurred [10,11]. In these
resistant cells, the energy metabolism was reprogrammed from oxidative phosphorylation
to glycolysis upon treatment with anticancer drugs. As a result, oxidative stress associ-
ated with anticancer drug treatment was suppressed. Thus, altered energy metabolism
contributes to the acquisition of anticancer drug resistance in PDAC [10,11].

Statin use improves hyperlipidemia, especially hypercholesterolemia, and plays a ma-
jor role in the prevention of arteriosclerosis and cardiovascular diseases [12,13]. Statins in-
hibit the rate-limiting reaction of cholesterol synthesis in which 3-hydroxy-3-methylglutaryl
coenzyme A (HMGC) is converted to mevalonate by HMGC reductase [14]. As a result,
intracellular cholesterol levels decrease. Attempts to use this approach in cancer treatment
are attracting attention [15,16]. However, the mechanisms underlying the antitumor effects
of statins have not yet been definitively determined.

In this study, we examined the effects of statins on cholesterol rafts by limiting choles-
terol production. Lipid rafts are heterogeneous membrane domains characterized by high
concentrations of cholesterol, sphingolipids, and gangliosides that serve as sorting plat-
forms to compartmentalize and regulate signal transduction pathways [17]. Cholesterol
is essential for lipid raft production [18]. However, for lovastatin (LOVA) and simvas-
tatin (SIMVA), beta-hydroxylation through liver passage is thought to be important for
this effect [19,20]. The HMGCoA reductase inhibitory effect of statins relies on the fact
that β-hydroxy-oxidized statins are misrecognized as β-hydroxy β-methylglutaryl-CoA,
the natural ligand for HMGCoA reductase [19]. Lovastatin and its activated form can
reduce cholesterol content through mechanisms beyond enzymatic interaction, influencing
the transcription of genes crucial for cholesterol production, metabolism, uptake, and re-
lease [19]. We have previously reported that the inhibition of raft production by cholesterol
depletion suppresses EGFR signaling and has antitumor effects [21]. Statins reduce the
risk of pancreatic cancer and improve the prognosis [22–24]. Furthermore, statins induce
apoptosis in PDAC cells [25]. However, the mechanism by which statins induce apoptosis
by inhibiting cholesterol synthesis has not been completely clarified. In this study, we
aimed to investigate the effects of statins on drug resistance in PDAC.

2. Results
2.1. Antitumor Effects of Statins against PDAC Cells

The human PDAC cell lines MIA-PaCa-2 (MIA) and PANC1 were treated with four
types of statins (Figure 1A). The antiproliferative effects of LOVA and SIMVA were rela-
tively high, with LOVA being slightly more potent. By contrast, pravastatin (PRAVA) and
rosuvastatin (ROUSVA) had poor growth-inhibiting effects. All four statins were ranked as
follows based on the potency of their HMG-CoA reductase inhibitory activity in MIA cells:
LOVA > SIMVA > PRAVA > ROUSVA (Figure 1B). A correlation was observed between
the antiproliferative effect of statins and the inhibitory activity of HMG-CoA reductase
(Figure 1C). Furthermore, LOVA, which had the highest antiproliferative effect among the
four statins, suppressed the invasive ability and sphere formation of both MIA and PANC1
cells and promoted GEM sensitivity (Figure 1D–F).
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Figure 1. Effect of statins on PDAC cells. (A) Effects of statins on PDAC cell proliferation. (B) The 
inhibitory effect of statins on HMG-CoA reductase activity. (C) Correlation between HMG-CoA 
reductase inhibitory activity and growth inhibition by statins. (D–F) Effects of LOVA on invasion 
(D), sphere formation (E), and GEM sensitivity (F). Error bars: standard deviation from three in-
dependent trials. Statistical significance was calculated using the Mann–Whitney U test. PDAC, 
pancreatic ductal adenocarcinoma; MIA, MIA-PaCa-2; C, control; LOVA, lovastatin; SIMVA, 
simvastatin; FLUVA, fluvastatin; ROUSVA, rosuvastatin; HMGCR, 3-hydroxy-3-methylglutaryl 
coenzyme A reductase; GEM, gemcitabine. 

2.2. Cell Death Caused by LOVA 
When examining for alterations in mitochondrial oxidative stress due to LOVA, in-

creased levels of superoxide, hydroxyl radicals, and hydrogen peroxide were observed in 
both PDAC cell lines (Figure 2A,B). LOVA did not reduce the mitochondrial volume but 
decreased the mitochondrial membrane potential (Figure 2A,C). When LOVA-induced 
cell death was examined, the ladder formation of genomic DNA and PARP cleavage due 
to caspase 3 activation were observed, indicating the induction of apoptosis (Figure 2D). 
During the cell death inhibitor assay, a rescue effect of approximately 20% was achieved 
following the use of an apoptosis inhibitor (Z-VAD-FMK, ZVAD) and of approximately 
15% for N-acetylcystein (NAC) (Figure 2E). However, the use of inhibitors for necroptosis 
(necrostatin, NEC), ferroptosis (ferrostatin, FRS), autophagy (chloroquine, CHL), and 
endoplasmic reticulum stress (salubrinal, SAL) did not prevent LOVA-induced cell death. 
These results suggested that LOVA-induced cell death involves apoptosis due to in-
creased oxidative stress. 

Figure 1. Effect of statins on PDAC cells. (A) Effects of statins on PDAC cell proliferation. (B) The
inhibitory effect of statins on HMG-CoA reductase activity. (C) Correlation between HMG-CoA
reductase inhibitory activity and growth inhibition by statins. (D–F) Effects of LOVA on invasion (D),
sphere formation (E), and GEM sensitivity (F). Error bars: standard deviation from three independent
trials. Statistical significance was calculated using the Mann–Whitney U test. PDAC, pancreatic
ductal adenocarcinoma; MIA, MIA-PaCa-2; C, control; LOVA, lovastatin; SIMVA, simvastatin; FLUVA,
fluvastatin; ROUSVA, rosuvastatin; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase;
GEM, gemcitabine.

2.2. Cell Death Caused by LOVA

When examining for alterations in mitochondrial oxidative stress due to LOVA, in-
creased levels of superoxide, hydroxyl radicals, and hydrogen peroxide were observed
in both PDAC cell lines (Figure 2A,B). LOVA did not reduce the mitochondrial volume
but decreased the mitochondrial membrane potential (Figure 2A,C). When LOVA-induced
cell death was examined, the ladder formation of genomic DNA and PARP cleavage due
to caspase 3 activation were observed, indicating the induction of apoptosis (Figure 2D).
During the cell death inhibitor assay, a rescue effect of approximately 20% was achieved
following the use of an apoptosis inhibitor (Z-VAD-FMK, ZVAD) and of approximately
15% for N-acetylcystein (NAC) (Figure 2E). However, the use of inhibitors for necropto-
sis (necrostatin, NEC), ferroptosis (ferrostatin, FRS), autophagy (chloroquine, CHL), and
endoplasmic reticulum stress (salubrinal, SAL) did not prevent LOVA-induced cell death.
These results suggested that LOVA-induced cell death involves apoptosis due to increased
oxidative stress.
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Figure 2. Effect of LOVA on induction of apoptosis. (A–C) Effect of LOVA on mitochondrial oxida-
tive stress (A,B), mitochondrial volume, and membrane potential (A,C). Scale bar, 50 µm. (D) DNA 
ladder formation (left) and PARP cleavage by LOVA. (E) Inhibition of cell death. Error bars: 
standard deviation from three independent trials. Statistical significance was calculated using the 
Mann–Whitney U test. PDAC, pancreatic ductal adenocarcinoma; MIA, MIA-PaCa-2; C, control; 
LOVA, lovastatin; SO, superoxide; HR, hydroxy radical; HP, hydrogen peroxide; MV, mitochon-
drial volume; MMP, mitochondrial membrane potential; PARP, poly (ADP-ribose) polymerase; 
ZVAD, Z-VAD-FMK; NEC, necrostatin; FRS, ferrostatin; NAC, N-acetyl-L-cysteine; SAL, salu-
brinal; CHL, chloroquine. 

2.3. Inhibition of Plasma Membrane Rafts by LOVA Treatment 
To examine the inhibitory effect of LOVA treatment on cholesterol production, we 

measured the cholesterol content in the membrane fraction of LOVA-treated PDAC cells. 
The membranous cholesterol content decreased in both cell types (Figure 3A). The sem-
iquantification of cholesterol rafts in the cell membrane using a fluorescent probe using 
cholera toxin revealed that the rafts were reduced in both cells by LOVA (Figure 3B). In 
LOVA-treated PDAC cells, the raft-related proteins, such as caveolin-1, epithelial growth 
factor receptor (EGFR), and AKT [26–28] (Figure 3C,D) were detected. Caveolin-1 protein 
levels were decreased by LOVA in whole-cell lysates. The total protein levels of EGFR 
and AKT remained unchanged; however, the phosphorylation levels of EGFR and AKT 

Figure 2. Effect of LOVA on induction of apoptosis. (A–C) Effect of LOVA on mitochondrial oxidative
stress (A,B), mitochondrial volume, and membrane potential (A,C). Scale bar, 50 µm. (D) DNA
ladder formation (left) and PARP cleavage by LOVA. (E) Inhibition of cell death. Error bars: standard
deviation from three independent trials. Statistical significance was calculated using the Mann–
Whitney U test. PDAC, pancreatic ductal adenocarcinoma; MIA, MIA-PaCa-2; C, control; LOVA,
lovastatin; SO, superoxide; HR, hydroxy radical; HP, hydrogen peroxide; MV, mitochondrial volume;
MMP, mitochondrial membrane potential; PARP, poly (ADP-ribose) polymerase; ZVAD, Z-VAD-FMK;
NEC, necrostatin; FRS, ferrostatin; NAC, N-acetyl-L-cysteine; SAL, salubrinal; CHL, chloroquine.

2.3. Inhibition of Plasma Membrane Rafts by LOVA Treatment

To examine the inhibitory effect of LOVA treatment on cholesterol production, we mea-
sured the cholesterol content in the membrane fraction of LOVA-treated PDAC cells. The
membranous cholesterol content decreased in both cell types (Figure 3A). The semiquantifica-
tion of cholesterol rafts in the cell membrane using a fluorescent probe using cholera toxin
revealed that the rafts were reduced in both cells by LOVA (Figure 3B). In LOVA-treated PDAC
cells, the raft-related proteins, such as caveolin-1, epithelial growth factor receptor (EGFR),
and AKT [26–28] (Figure 3C,D) were detected. Caveolin-1 protein levels were decreased by
LOVA in whole-cell lysates. The total protein levels of EGFR and AKT remained unchanged;
however, the phosphorylation levels of EGFR and AKT were decreased. Furthermore, the
protein levels of EGFR and AKT decreased in the membrane raft fraction, and their phos-
phorylation levels were lower than those in the whole-cell lysate. Additionally, the physical
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association between phosphatidylinositol-3 kinase (PI3K) and AKT was reduced in the raft
fraction (Figure 3E). Examining the temporal changes in EGFR in the membrane fraction,
LOVA promoted the disappearance of EGFR from the membrane (Figure 3F).
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Figure 3. Effect of LOVA on plasma membrane raft. (A) Plasma membrane cholesterol content.
(B) Lipid raft content of the plasma membrane. (C,D) Effect of LOVA on the activation of EGFR and
AKT in whole-cell lysates (C) and plasma membrane raft fractions (D) (Right panels) Semiquantifi-
cation of Western blot. (E) The effect of LOVA on the interaction between PI3K and AKT in plasma
membrane rafts. (Right panel) Semiquantification of Western blot. (F) Effect of LOVA on turnover
of membranous EGFR. Error bars: standard deviation from three independent trials. Statistical
significance was calculated using the Mann–Whitney U test. PDAC, pancreatic ductal adenocar-
cinoma; MIA, MIA-PaCa-2; C, control; LOVA, lovastatin; EGFR, epithelial growth factor receptor;
pEGFR, phosphorylated EGFR; pAKT, phosphorylated AKT; PI3K, phosphoinositide 3-kinases; WCL,
whole-cell lysate; IP, immunoprecipitation; HC, heavy chain; CB, Coomassie blue.
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2.4. Inhibition of Mitochondrial Rafts by LOVA Treatment

Thus, the inhibition of cholesterol production by LOVA treatment reduces the number
of cholesterol rafts in the cell membrane and suppresses signal transduction. Next, we
examined the effects of LOVA treatment on the mitochondrial rafts. When the mitochondria
were isolated from the cells and the cholesterol content of the extract was measured, the
results showed that the cholesterol content reduced after LOVA treatment (Figure 4A).
The semiquantification of mitochondrial cholesterol rafts isolated from LOVA-treated cells
using a fluorescent probe revealed that the number of rafts decreased to a lesser extent
than that of the plasma membrane rafts (Figure 4B). The raft fractions were extracted from
isolated mitochondria and the proteins were examined. The B-cell lymphoma 2 (BCL2) and
Bcl-2-associated X protein (BAX) levels were decreased by LOVA treatment (Figure 4C).
To confirm that mitochondrial rafts were extracted, the extracts were slot-blotted and
stained with cholera toxin. Although the same amount of protein was blotted, cholera
toxin binding was reduced by LOVA. The physical association between the two factors also
decreased (Figure 4D). Furthermore, F1F0 ATP synthase subunit C was translocated to the
mitochondrial rafts following LOVA treatment.
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Figure 4. Effect of LOVA on mitochondrial raft. (A) Cholesterol content in mitochondria. (B) Lipid
raft content in the mitochondria. (C,D) Effect of LOVA on mitochondrial raft proteins (C) and BCL2-
BAX binding in mitochondrial rafts. (Right panels) Semiquantification of Western blot. (D) Error
bars: standard deviation from three independent trials. Statistical significance was calculated using
the Mann–Whitney U test. PDAC, pancreatic ductal adenocarcinoma; MIA, MIA-PaCa-2; C, control;
LOVA, lovastatin; BCL2, B-cell lymphoma 2; BAX, Bcl-2-associated X protein; F1F0, F1F0 ATP
synthase subunit C; cholera T, cholera toxin subunit B CF®Dye; IP, immunoprecipitation; HC, heavy
chain; CB, Coomassie blue.
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2.5. Effect of Cholesterol Adsorbent on PDA Cells

To confirm whether the antitumor effect of statins lies in the induction of intracellular
cholesterol depletion, we investigated the effects of the cholesterol adsorbent methyl-β-
cyclodextrin (MβCD) [21,29]. Treatment of PDAC cells with MβCD induced the occurrence
of apoptosis and reduced the formation of plasma membrane rafts (Figure 5A,B). In contrast,
co-treatment of MβCD with cholesterol abrogated the induction of apoptosis and the
reduction of rafts by MβCD. MβCD treatment decreased the phosphorylation levels of
EGFR and AKT in plasma membrane rafts (Figure 5B,C). The BCL2 and BAX levels in the
mitochondrial rafts were decreased, and F1F0 ATP synthase subunit C was translocated
to the rafts (Figure 5D). Thus, treatment with cholesterol adsorbent produced similar
alterations in PDAC cells as that of LOVA.
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Figure 5. Effect of MβCD on PDAC cells. (A) Apoptosis (B) Lipid raft content of the plasma
membrane. (C) Effect of LOVA on the activation of EGFR and AKT in plasma membrane rafts. (Right
panel) Semiquantification of Western blot. (D) Effect of LOVA on mitochondrial raft proteins. Error
bars: standard deviation from three independent trials. (Right panel) Semiquantification of Western
blot. Statistical significance was calculated using the Mann–Whitney U test. PDAC, pancreatic ductal
adenocarcinoma; MIA, MIA-PaCa-2; C, control; LOVA, lovastatin; MbCD, methyl-β-cyclodextrin;
EGFR, epithelial growth factor receptor; pEGFR, phosphorylated EGFR; pAKT, phosphorylated AKT;
PI3K, phosphoinositide 3-kinases; BCL2, B-cell lymphoma 2; BAX, Bcl-2-associated X protein; F1F0,
F1F0 ATP synthase subunit C.

2.6. Effect of LOVA on GEM-Resistant PDAC Cells

Three GEM-resistant cell lines were used to evaluate the effects of LOVA treatment
on GEM sensitivity. Panc1-G, a GEM-resistant cell line of Panc1, was established by
continuous treatment with low concentrations of GEM. MIA-A, which suppresses oxidative
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stress production, and MIA-B cells, which possess increased stemness, were derived from
MIA cells through continuous treatment with low concentrations of GEM in combination
with cobalt chloride, an HIF1α inhibitor [11].

In GEM-resistant cells, the cholesterol content in the plasma membrane and the
mitochondria was higher than that in parent cells (Figure 6A). The number of rafts also
increased. Moreover, the rate of thapsigargin-induced apoptosis in the resistant cells was
reduced compared with that in the parent cells (Figure 6B). The phosphorylation levels
of EGFR and AKT in the plasma membrane raft fraction increased in the resistant cells
(Figure 6C). Furthermore, the binding of BCL2 and BAX in the mitochondrial fraction
increased in the resistant cells compared with that in the parent cells (Figure 6D).
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Figure 6. Expression of raft-associated proteins in human GEM-resistant PDAC cells. (A) Cholesterol
and raft content in the plasma membrane and mitochondria. (B) Thapsigargin-induced apoptosis.
(C) Activation of EGFR and AKT in the plasma membrane raft fraction of GEM-resistant PDAC
cells. (Right panel) Semiquantification of Western blot. (D) Raft proteins in the mitochondria
and BCL2-BAX binding in mitochondrial rafts. (Right panel) Semiquantification of Western blot.
Statistical significance was calculated using the Mann–Whitney U test. PDAC, pancreatic ductal
adenocarcinoma; MIA, MIA-PaCa-2; C, control; LOVA, lovastatin; EGFR, epithelial growth factor
receptor; pEGFR, phosphorylated EGFR; pAKT, phosphorylated AKT; PI3K, phosphoinositide 3-
kinases; BCL2, B-cell lymphoma 2; BAX, Bcl-2-associated X protein; F1F0, F1F0 ATP synthase subunit
C; GEM, gemcitabine.
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When each resistant cell was treated with LOVA (0.2 µM, equivalent to IC = 20), the
GEM sensitivity of MIA-A and Panc1-G in resistant cells increased compared with that in
the parent cells. MIA-B also increased the GEM sensitivity to the same level as the parent
cells (Figure 7A). LOVA treatment decreased the EGFR and AKT phosphorylation in the
plasma membrane raft fraction in comparison with the LOVA(−) condition (Figure 7B). The
binding between BCL2 and BAX in the mitochondrial raft fraction decreased in comparison
with the LOVA(−) condition. The translocation of F1F0 ATP synthase subunit C to the
mitochondrial raft was induced by LOVA treatment (Figure 7C).
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Figure 7. Effect of LOVA on GEM sensitivity in human GEM-resistant PDAC cells. (A) GEM sensitiv-
ity in GEM-resistant PDAC cell lines without LOVA (left) or with LOVA (right). (B) Effect of LOVA
on EGFR and AKT activation in the plasma membrane raft fraction. (Right panel) Semiquantifica-
tion of Western blot. (C) Effect of LOVA on mitochondrial raft proteins and BCL2-BAX binding in
mitochondrial rafts. (Right panel) Semiquantification of Western blot. Error bars: standard deviation
from three independent trials. Statistical significance was calculated using the Mann–Whitney U test.
PDAC, pancreatic ductal adenocarcinoma; MIA, MIA-PaCa-2; C, control; LOVA, lovastatin; EGFR,
epithelial growth factor receptor; pEGFR, phosphorylated EGFR; pAKT, phosphorylated AKT; PI3K,
phosphoinositide 3-kinases; BCL2, B-cell lymphoma 2; BAX, Bcl-2-associated X protein; F1F0, F1F0
ATP synthase subunit C; GEM, gemcitabine.

3. Discussion

This study found that LOVA treatment inhibits the production of plasma membrane
rafts and mitochondrial cholesterol and induces apoptosis in human PDAC cell lines. LOVA
treatment also induced the occurrence of apoptosis in GEM-resistant PDAC cells.
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LOVA treatment inhibits HMG-CoA reductase and suppresses mevalonate synthesis.
As a result, the number of plasma membrane cholesterol rafts decreased in PDAC cells.
The levels of proteins involved in the activation of cell survival signaling pathways, such
as EGFR, PI3K, and AKT, were relatively high in plasma membrane rafts [26–28]. Our
data showed that their activity was decreased and the mutual association was suppressed.
As a result, the survival signals decreased, leading to the induction of apoptosis. Death
receptors and downstream signaling molecules are recruited to these raft domains during
apoptosis induction [17].

In contrast to plasma membrane rafts, studies related to mitochondrial rafts are
limited. Mitochondrial cholesterol is mostly located in the membrane, with more in the
outer membrane [30,31]. Cholesterol utilization is high in the inner membrane and low in
the outer membrane [32,33]. Therefore, cholesterol rafts are thought to be present in the
outer mitochondrial membrane. Lipid microdomains are also formed in the intracellular
organelles, including the endoplasmic reticulum, Golgi apparatus, and the mitochondria,
and are called raft-like microdomains [30]. Mitochondrial rafts are preferential sites for
reactions related to the release of apoptosis-inducing factors [34].

In our data, cholesterol rafts were detected as well as plasma membranes, but the
protein BCL2 contained therein was thought to bind to BAX, which inhibits apoptosis [35]
By contrast, LOVA treatment inhibited the binding of these proteins and promoted apopto-
sis. Furthermore, the F1F0 ATP synthase subunit C, which is a candidate for the creation
of mitochondrial permeability transition pores [36,37], migrates to the outer membrane
rafts. This finding matches the reduced mitochondrial membrane potential associated with
LOVA treatment, which may directly induce apoptosis.

According to the findings of our cell death inhibitor assay, the apoptosis inhibitors
only caused a partial inhibition of LOVA-induced cell death. This observation suggests that
cell death mechanisms other than apoptosis may be involved in LOVA-induced cell death.
LOVA treatment increased the levels of superoxide, hydroxyl radicals, and hydrogen
peroxide. Furthermore, the inhibition of oxidative stress by NAC partially inhibited
cell death. These findings suggest that oxidative stress plays an important role in the
induction of cell death by LOVA treatment. Oxidative stress triggers various types of cell
death, including apoptosis, ferroptosis, necroptosis, and autophagy [38,39]. However, the
inhibitors of necroptosis, ferroptosis, endoplasmic reticulum stress, and autophagy did
not prevent the occurrence of LOVA-induced cell death. These results did not facilitate
the identification of any specific type of cell death other than apoptosis. Therefore, future
studies should further investigate the involvement of cell death other than apoptosis.

We have previously shown that mitochondrial targeting is useful for overcoming
multidrug resistance [10,11]. GEM treatment damages the mitochondrial DNA and induces
multidrug resistance by reprogramming energy metabolism and enhancing stemness.
During mitochondrial alterations, the forced promotion of oxidative phosphorylation using
medium-chain fatty acids is effective for overcoming multidrug resistance [11]. In addition
to these energy alterations in drug-resistant cell lines, lipid rafts in the cell membrane
and mitochondria are involved in anticancer drug resistance. Although previous studies
reported that cholesterol rafts in the cell membrane are involved in GEM resistance [25], our
data further demonstrated the importance of mitochondrial rafts. Therefore, mitochondria
are important targets for overcoming anticancer drug resistance.

β-Hydroxylation by the liver is required for statin activation [19]. As shown in our
experiment (Figure 1B), all statins, including LOVA, exhibit HMGCoA reductase inhibitory
activity. They are then thought to be active forms. This suggests that cancer cells have
the ability to make statins active. This knowledge may lead to the drug discovery of
intratumoral metabolized statins which possess an antitumor effect. This is an issue that
many researchers should tackle in the future.

The clinical significance of our study is that LOVA treatment effectively overcame
GEM resistance in PDAC cell lines. Statins target the mitochondrial and plasma membrane
rafts through their HMG-CoA reductase inhibitory action, which is their primary drug
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activity, to inhibit antiapoptotic resistance. Statins have been widely and safely used in the
clinical setting, and clinical data related to their antitumor effects can be easily obtained. In
the future, the early clinical application of statins as antitumor drugs is anticipated.

4. Materials and Methods
4.1. Cell Line and Reagents

MIA-PaCa-2 human PDA cell line was purchased from Dainihon Pharmaceutical Co.
(Tokyo, Japan). PANC-1 cells were obtained from the American Type Culture Collection.
The cells were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10%
fetal bovine serum at 37 ◦C in 5% CO2.

GEM-resistant MIA-A and MIA-B cells were established by continuous treatment with
GEM (1 M; Sigma-Aldrich Inc., St. Louis, MO, USA) and CoCl2 (150 M; WAKO Pharma-
ceutical, Osaka, Japan) for >40 passages. GEM-resistant PANC-G cells were established by
continuous treatment with GEM (1 M) for >40 passages [11].

4.2. Reagents

Statins (lovastatin, simvastatin, rosuvastatin, and pravastatin), GEM, N-acetyl-L-
cysteine (NAC, 1 mM), chloroquine (10 µM), necrostatin (30 µM), cholesterol (2 mM)
(Sigma), Z-VAD-FMK (ZVAD, 20 µM) (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
ferrostatin-1 (FRS, 2 µM) (Cayman Chemicals, Ann Arbor, MI, USA), and salubrinal (5 µM,
Selleck, Houston, TX, USA) were purchased. All the statins and the other reagents were
treated within 48 h.

4.3. Cell Growth, Cell Death, and Apoptosis

Cell growth was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymeth-
oxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay as previously described [10].
MTS assays were performed using a CellTiter 96 AQueous One Solution Cell Proliferation
Assay kit (Promega Biosciences Inc., Madison, WI, USA). The plates were read using a Mul-
tiskan FC microplate photometer (Thermo Fisher Scientific, Tokyo, Japan) at a wavelength
of 490 nm.

Cell death was assessed by pelleting floating and trypsinized adherent cells. The
cell pellet was resuspended in 1 × PBS and 0.4% trypan blue (Sigma), and the cells were
counted using a hemocytometer.

Apoptosis was induced by administering 0.5 µM lovastatine. DNA fragmentation
was also observed. Genomic DNA was extracted using the TRIzol reagent (Thermo Fisher
Scientific, Tokyo, Japan). Fragmented DNA was extracted from the supernatant by alcohol
precipitation dissolved in Tris-EDTA buffer with a pH level of 8.0. DNA fragmentation
was detected by gel electrophoresis, and the bands were stained with ethidium bromide
for visualization under ultraviolet light. In addition, PARP cleavage due to apoptosis was
examined by Western blotting.

4.4. Fluorescent Imaging

Mitochondrial function was examined using fluorescent probes, and 20 high-
magnification fields were acquired using an all-in-one fluorescence microscope (KEYENCE,
Osaka, Japan), with fluorescence intensity quantified on the same microscope. We used
MitoROS (mitochondrial superoxide, SO) (10 µM, AAT Bioquest Inc., Sunnyvale, CA,
USA), dihydrorhodamine 123 (mitochondrial hydrogen peroxide, HP) (10 µM, Sigma),
and OxiORANGE (mitochondrial hydroxy radical, HR) (10 µM, Goryo Chemical, Sapporo,
Japan) for assessing mitochondrial oxidative stress; MitoGreen (100 nM, PromoCell GmbH,
Heidelberg, Germany) for assessing the mitochondrial volume, and tetramethylrhodamine
ethyl ester (200 nM, Sigma) for mitochondrial membrane potential.
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4.5. Chamber Invasion Assay

A modified Boyden chamber assay was performed to examine the in vitro invasive
ability of the PDAC cells [40]. Following incubation at 37 ◦C for 24 h, the filters were
carefully removed from the inserts, the cells were stained with hematoxylin for 10 min,
and the stained cells were mounted on microscope slides. The number of stained cells
in each insert was counted at 100× magnification. The invasive activity was quantified
by calculating the average number of cells per well. All experiments were performed
in triplicate.

Sphere assay with 1000 cells per well, which were seeded in 3D Tumorsphere Medium
XF (Sigma) and cultured, was carried out. After 7 days, digital images of the spheres
were acquired using a BZ-X710 all-in-one fluorescence microscope (KEYENCE, Osaka,
Japan) and the size of the spheres was measured using NIH ImageJ software (version 1.52,
Bethesda, MD, USA).

4.6. Protein Extraction

To prepare whole-cell lysates, cells were washed twice with cold PBS (Sigma) and
harvested. Cells were lysed with RIPA buffer (Thermo Fisher Scientific) supplemented
with 0.1% NP-40 [40]. Protein assays were performed using the Protein Assay Rapid
Kit (WAKO).

4.7. Mitochondria Extraction

The cells were homogenized using a Teflon pestle homogenizer in extraction buffer
(230 mM mannitol, 70 mM sucrose, 3 mM HEPES, and 0.1 mM EGTA; pH 7.4; 0.1% bovine
serum albumin). The homogenate was centrifuged at 700× g for 10 min. The supernatant
was decanted and centrifuged at 7000× g for 10 min. The pellet was resuspended in 40 mL
of suspension buffer (230 mM mannitol, 70 mM sucrose, and 3 mM HEPES, pH 7.4) and
re-centrifuged at 7000× g for 10 min. This step was repeated thrice. The final mitochondrial
pellet was resuspended in 0.5 mL of suspension buffer.

4.8. Extraction of Raft Fractions

The lipid rafts were isolated from 5 × 107 cells. Briefly, cell pellets disrupted in
1 mL of buffer A (50 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 0.15 M NaCl, 1% Triton
X-100, 5% glycerol, 50 mM PMSF, 1× protease inhibitor cocktail (Sigma), and 0.03% β-
mercaptoethanol] were centrifuged for 5 min at 500× g and 4 ◦C. The obtained supernatant
was added to 1 mL of buffer A (50 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 0.15 M NaCl,
and 80% sucrose) to achieve the final concentration of sucrose (40%). A discontinuous
sucrose gradient was obtained by stratifying 7.5 mL of buffer A with 38% sucrose and 2 mL
of buffer A with 15% sucrose. The gradient was ultracentrifuged for 18 h at 100,000× g
and 4 ◦C. Twelve fractions (1 mL each) were collected from the top to the bottom of the
gradient (F1–F12). Immunoblotting was performed to identify the fractions containing
lipid rafts. Extraction of rafts from the mitochondrial fraction was performed in the same
manner as above. To confirm that mitochondrial rafts were extracted, extracts (5 µg) were
slot-blotted (Bio Rad, Tokyo, Japan) and stained with cholera toxin subunit B CF®Dye
conjugates (10 µM, Biotium, Fremont, CA, USA).

4.9. Immunoblot Analysis

Lysates (20 µg) were subjected to immunoblot analysis by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (12.5%) and then electrotransferred to nitrocellulose fil-
ters. The membrane was then incubated with the primary antibody followed by peroxidase-
conjugated IgG antibody (Medical and Biological Laboratories, Nagoya, Japan). An anti-
β-actin antibody was used to assess the level of protein loaded in each lane. Immune
complexes were visualized using an enhanced chemiluminescence Western blot detection
system (Amersham, Aylesbury, UK). The primary antibodies used in the study are shown
in Table 1.
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Table 1. Antibodies.

Target Clone Dilution Code Manufacturer Location

PARP - 1:400 GTX100573 GeneTex Irvine, CA, USA
Caveoin-1 A-6 1:300 sc-393013 Santa-Cruz Santa Cruz, CA, USA

EGFR CDX2-88 1:500 ab157524 Abcam Waltham, MA, USA
pEGFR PAb240 1:300 ab26 Abcam Waltham, MA, USA

AKT - 1:400 ab70346 Abcam Waltham, MA, USA
pAKT - 1:400 #9271 Cell Signaling ser473 Danvers, MA, USA
PI3K OTI4H9 1:500 ab139307 Abcam Waltham, MA, USA
BCL2 C-2 1:300 sc-7382 Santa-Cruz Santa Cruz, CA, USA
BAX E63 1:500 ab205822 Abcam Waltham, MA, USA
F1F0 - 1:200 ab96655 Abcam Waltham, MA, USA

PARP, poly (ADP-ribose) polymerase; EGFR, epithelial growth factor receptor; pEGFR, phosphorylated EGFR;
pAKT, phosphorylated AKT; PI3K, phosphoinositide 3-kinases; BCL2, B-cell lymphoma 2; BAX, Bcl-2-associated
X protein; F1F0, F1F0 ATP synthase subunit C.

4.10. Immunoprecipitation

Immunoprecipitation was performed as previously described [41]. Briefly, whole-cell
lysates were prewashed with lysis buffer containing protein A/G agarose (Santa Cruz) for
1 h at 4 ◦C and then centrifuged. The supernatant was incubated with antibody against
BAX (Abcam) and protein A/G agarose for 3 h at 4 ◦C. The precipitate was collected by
centrifugation, washed five times with lysis buffer, solubilized with sample buffer (Sigma,
40 µg), and subjected to immunoblot analysis.

4.11. Enzyme-Linked Immunosorbent Assay (ELISA)

Whole-cell lysates, membrane fractions, and mitochondrial fractions were prepared as
previously described using RIPA buffer containing 0.1% SDS (Thermo Fisher Scientific) [41]
and a mitochondria isolation kit for cultured cells (Thermo Fisher Scientific), respectively.
Protein assays were performed using the Protein Assay Rapid Kit (WAKO). Using the
extracted proteins, an ELISA kit was used to measure the cholesterol concentration (LabAs-
say Cholesterol kit, Fujifilm, Tokyo, Japan) and HMG-CoA reductase activity (HMG-CoA
reductase assay kit, CS1090, Sigma) according to the manufacturer’s instructions.

4.12. Statistical Analysis

Statistical significance was calculated using a two-tailed analysis of variance test and
unpaired Mann–Whitney tests using InStat software (version 3.1, GraphPad, Los Angeles,
CA, USA). A two-sided p-value of <0.05 was considered significant.

5. Conclusions

In GEM-resistant cell lines, increased cell membrane rafts and mitochondrial rafts
promote activation of EGFR and AKT and BCL2-BAX binding within the rafts, suppressing
apoptosis, leading to GEM resistance. Lovastatin suppressed intracellular cholesterol
production and reduced rafts, resulting in decreased GEM resistance. The results of our
study may be useful in overcoming GEM resistance in PDAC and encouraging clinical
approaches to achieve the antitumor effects of statins.
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