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Abstract: Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant
clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic
factors play a pivotal role in normal neural crest and NB development, influencing gene expression
patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN
and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory
networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms,
encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs),
bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic
changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB.
Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including
histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA
methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical
and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.

Keywords: neuroblastoma; MYCN; epigenetics

1. Introduction

Neuroblastoma (NB), an embryonal tumor arising from the peripheral sympathetic
nervous system, represents a challenging clinical entity characterized by heterogeneity in
clinical presentation, prognosis, and treatment response [1]. Among the various genetic
alterations observed in NB, amplification of the MYCN oncogene has emerged as an adverse
prognostic genetic event. MYCN-amplification (MNA) occurs in approximately 20% of NB
cases. MNA is associated with an aggressive phenotype, treatment resistance, and poor
prognosis [1,2]. Treatment of high-risk NB involves intense genotoxic multiagent chemo-
and radiation therapy [3,4]. About half of the high-risk patients relapse. Tragically, for
survivors, genotoxic therapies can cause severe treatment-related morbidities, including
hearing loss, infertility, endocrine deficiencies, and secondary cancers [5].

In recent years, the field of epigenetics has garnered significant attention in cancer
research, unraveling the intricate regulatory mechanisms that dictate gene expression
patterns beyond the DNA sequence itself. Epigenetic modifications, including DNA methy-
lation, histone modifications, and chromatin remodeling, play fundamental roles in cellular
development, differentiation, and disease pathogenesis [6]. Moreover, aberrant epigenetic
alterations have been increasingly implicated in various cancers, providing a promising
avenue for targeted therapeutic interventions [7].

In the context of MNA NB, understanding the interplay between genetic and epige-
netic factors is of utmost importance. Epigenetic modifications have been recognized as
crucial determinants of MYCN expression levels during neural crest development and in
NB development [8]. Epigenetic modifications can indeed modulate the accessibility of
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transcriptional machinery to the MYCN locus, consequently influencing downstream gene
networks involved in cell proliferation, differentiation, and apoptosis. Moreover, MYCN
itself can regulate epigenetic processes in MNA NB. In this review, we summarize the latest
advances in understanding the epigenetic dysregulation in MNA NB, and we highlight
new therapeutic avenues targeting epigenetics for this high-risk pediatric malignancy.

2. Epigenetic Regulation of MYCN Expression during Neural Crest Development
2.1. Neural Crest (NC) and NB Development

Neural crest cells (NCC) arise at the neural plate border during gastrulation and
neurulation in the third week of human development. NCCs undergo a series of devel-
opmental processes, including specification, migration, differentiation, and maturation.
These processes are tightly regulated by gene regulatory networks involving various tran-
scription factors (TFs) activated by bone morphogenetic proteins (BMPs), fibroblast growth
factors (FGFs), wingless-type (WNT), and Notch signaling pathways (Figure 1) [9–12].
These inductive signals from the surrounding tissues activate the expression of NCC spec-
ifiers in the neural folds and define cells with NC identity. During neurulation, NCCs
undergo epithelial-to-mesenchymal transition (EMT) and migrate extensively to distant
locations in the embryo [13]. Throughout their migration, NCCs continuously respond
to environmental cues, giving rise to diverse lineages and cell types that contribute to
specific organ systems, such as the peripheral nervous system [14,15]. Notably, NC-derived
cells persist into adulthood and possess stemness properties, potentially playing important
roles not only in tissue regeneration but also in the initiation of cancer [16]. Information
regarding the development of the neural crest is comprehensively outlined in multiple
review papers [13,15,17,18].
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Figure 1. Neural crest development. The figure highlights key gene regulatory networks shaping
neural crest induction, NCC specification, migration, and differentiation. The graph illustrates
varying MYCN protein expression levels during normal NCC development (black line) and in MNA
NB (red line). MYCN amplification might occur during early NCC migration or sympathetic lineage
specification, leading to NB formation. Epigenetic mechanisms (miRNAs, histone methylation, and
chromatin remodeling) regulating MYCN expression are also captured [9–37]. (SG: sympathetic
ganglia). Created with Biorender.com, accessed on 3 November 2023.
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NB specifically originates from the sympathetic lineage of NCCs [1,17]. Instead of
differentiating into mature sympathetic neurons, NB cells maintain a more primitive and
undifferentiated state, contributing to tumor heterogeneity and resistance to differentiation-
inducing therapies [2,19]. Two distinct phenotypic subpopulations can be identified:
adrenergic-type (ADRN) cells committed to the sympathetic lineage and undifferentiated
mesenchymal-type (MES) cells resembling NC-derived precursors (Figure 2). These sub-
populations exhibit different gene expression signatures and can interconvert via epigenetic
reprogramming, mimicking cells from different stages of lineage differentiation [17,18].
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Figure 2. Early stages of NB development from NCCs. NB tumors exhibit two super-enhancer
(SE)-associated cell types: committed adrenergic (ADRN) and undifferentiated mesenchymal (MES)
cell types, originating from bipotent progenitors. These cells can spontaneously interconvert into
one another via epigenetic mechanisms. This bidirectional conversion is controlled by core regula-
tory circuitries, where core TFs bind to their own SEs and each other’s SEs, creating feed-forward
transcriptional loops that underlie lineage identity. The main core ADRN and MES SE-associated
TFs are listed in the blue boxes. SEs were identified using genome-wide profiling of histone H3
lysine 27 acetylation (H3K27ac) enhancer signature in NB tumors and cell lines [18,25]. Created with
Biorender.com, accessed on 5 October 2023.

2.2. MYCN Levels during Neural Crest and MNA NB Development

One of the master regulators of NCC development is the MYCN TF. The expression
levels of MYCN vary during NCC development (Figure 1). During early nervous system
development, MYCN is excluded from NCC stem cells, and MYC, a paralogue of MYCN, is
transcribed, maintaining the multipotent NCC progenitors [17]. Later, MYCN is expressed
in the migratory and post-migratory NCCs. MYCN initially exhibits a uniform expression
pattern in migrating NCCs, but then its expression is subsequently downregulated to very
low levels before the cells gather to form the ganglia, with later re-expression in NC-derived
lineages [26]. After migration, MYCN expression becomes specifically limited to cells that
are actively engaged in neuronal differentiation. This suggests that MYCN expression is
a critical factor that influences whether NCCs become neurons or adopt a non-neuronal
fate [27]. Indeed, its re-expression is associated with the maintenance of neural fate and
the promotion of differentiation and functionality of sympathetic neurons [17,18,20,21].
Notably, MYCN is essential for inhibiting neuronal differentiation during neurogenesis,
with limited impact on progenitor cell apoptosis [3,22]. MYCN was found to be re-expressed
in differentiating sympathetic ganglia (SG) following the initiation of expression of lineage-
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determining transcription factors (TF) such as PHOX2B and HAND2 [23,24]. However,
the role of MYCN extends beyond migration and differentiation, as it also influences cell
growth and apoptosis during murine sympathoadrenal (SA) development. After birth,
MYCN is not expressed in the SG and is nearly entirely absent in all tissues of adult
mice [24,25].

Aberrations in MYCN expression influence NC cell fate decisions, impairing the
normal processes of neuronal differentiation and migration. In mice, loss of MYCN results
in decreased size of the entire nervous system, along with a reduction in the number of
mature neurons in the spinal ganglia [17]. Notably, enforced expression of MYCN in mouse
migrating NCCs leads to the development of NB-like tumors, while its overexpression
in SA progenitors is not sufficient for neoplasia [30,38]. Patients with low-risk NB do not
exhibit MNA nor progression to more metastatic and invasive disease, indicating that
MNA serves as an early and potentially initiating event in the development of high-risk
NB tumors [4].

The importance of MYCN in NB development is supported by findings from geneti-
cally engineered animal models of NB. Transgenic mice expressing perinatal MYCN under
the tyrosine hydroxylase (TH) promoter, which is active in early migrating sympathetic
precursors, spontaneously develop morphologically and phenotypically similar tumors to
high-risk NB in humans [20,39,40]. The development of NB in these models is dependent
on MYCN dosage, as MYCN alone is sufficient to drive NB formation [19,21]. In zebrafish
models, ectopic MYCN expression in sympathetic precursor cells hinders the development
of chromaffin cells, leading to NB formation [21,41]. Altogether, these findings suggest that
the early exposure of NCCs to elevated MYCN levels is what could play a significant role
in triggering the onset of MNA NB.

2.3. Epigenetic Regulation of MYCN Expression during NC Development and Implications for
MNA NB

Several epigenetic mechanisms involved in NC development are known to be dis-
rupted in NB genesis.

MicroRNAs (miRNAs) play important regulatory roles during NC development, where
they work in coordination with other regulatory mechanisms to fine-tune gene expression and
ensure the proper development of NCCs into diverse cell types, including neurons. MYCN
influences the expression of multiple miRNAs and is itself subject to miRNA regulation. This
feedback mechanism is disrupted in NB, where upregulated levels of MYCN coincide with
altered expression of specific miRNA clusters [28,29]. In normal NC development, miR-200b,
miR-17~92, miR-20a, and miR-204 are known to be involved in NC induction/specification,
while miR-34a, let-7, and miR-204 play roles in NCC EMT and migration (Figure 1, Table 1) [42].
Together, they contribute to NCC identity by inhibiting specific growth signaling pathways,
eventually regulating key TFs such as MYCN. In the context of MNA NB, let-7, miR-34a,
miR-200b, and miR-204 are tumor suppressor miRNAs found to be downregulated, while
miR-17-92 and miR-20a are oncogenic miRNAs that are upregulated [29,31,32]. As MYCN
levels need to be tightly controlled to ensure proper development, dysregulation in the
MYCN-miRNA interplay could thereby impact the balance between cell proliferation and
differentiation of NCCs, potentially leading to tumorigenesis.

Investigation of histone modifications at the MYCN gene between normal and NB
cells during mouse sympathetic cervical ganglia (SCG) development (E11.5) revealed a
failure in the shift of histone marks from active H3K4me3 (trimethylation of lysine residue
K4 on histone H3) to repressive H3K27me3 (trimethylation of lysine residue K27 on histone
H3) [34]. Indeed, as mentioned earlier, MYCN expression is gradually downregulated to
low levels for differentiation in normal development, consistent with a change to repressive
H3K27me3 marks. Therefore, a lack of proper epigenetic repression during SCG develop-
ment could lead to sustained expression of MYCN, potentially resulting in uncontrolled
cell proliferation and NB formation [34].
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Table 1. Epigenetic mechanisms in normal NC and in MNA NB development.

Epigenetic
Mechanism

Role in Normal NC Development Aberration in MNA NB Citation

miR-200b NC induction/specification Tumor suppressor; downregulated [28,32,42]

miR-17~92 NC induction/specification Oncogenic; upregulated [28,29,42]

miR-20a NC induction/specification Oncogenic; upregulated [28,29,42]

miR-204 NC induction/specification, NCC
EMT/migration

Tumor suppressor; downregulated [28,42]

miR-34a NCC EMT/migration Tumor suppressor; downregulated [28,29,31,32,42]

let-7 NCC EMT/migration Tumor suppressor; downregulated [28,29,42]

Histone
modifications of
the MYCN gene

Shift from active H3K4me3 to repressive
H3K27me3 mark for MYCN downregulation
during neuronal differentiation/maturation

The active H3K4me3 mark is kept;
MYCN expression is sustained

[34]

EZH2 Controls the expression of genes crucial for
neuronal differentiation/maturation via
histone methylation, H3K27me3 is associated
with gene repression

Recruitment of PRC2 by MYCN for
EZH2-mediated epigenetic silencing

[35,37]

Enhancer of Zeste Homolog 2 (EZH2), a core catalytic subunit of the Polycomb Repres-
sive Complex 2 (PRC2), is a histone methyltransferase (HMT) that represses transcription
via H3K27me3 [43]. The comparison of transcriptomes between wild-type (WT) and
early-stage cancer cells from TH-MYCN mice (at E13.5) demonstrated a significant down-
regulation of PRC2 target genes, indicated by an increase in H3K27me3 levels around
their promoters. Specific inhibition of EZH2 reversed the repression of target genes and
eventually suppressed in vivo tumor growth in TH-MYCN mice [35,36]. Moreover, a
physical interaction between MYCN and EZH2 was reported, suggesting recruitment of
PRC2 by MYCN at specific genomic loci for EZH2-mediated epigenetic silencing of target
genes [35,37] (Table 1).

Collectively, these findings indicate that MNA NB initiation occurs during early migra-
tion or sympathetic lineage specification and necessitates continued perinatal expression of
MYCN for tumorigenesis [20]. Persistent expression of MYCN in maturing sympathetic
precursor cells can inhibit apoptotic signaling and sustain proliferation, thereby promoting
NB development [21].

3. Altered Epigenetic Mechanisms in MNA Neuroblastoma

MYCN, in addition to its classical function as a TF, also plays a critical role in tu-
morigenesis via epigenetic regulation. In fact, MYCN has been shown to control multiple
epigenetic mechanisms, including DNA methylation, histone modifications, miRNAs, and
chromatin remodeling by directly regulating the transcription of epigenetic modifiers or
via protein–protein interactions. The interplay between MYCN and chromatin-modifying
mechanisms strongly influences disease progression and metastasis, highlighting these
processes as key therapeutic vulnerabilities in MNA NB [44,45].

3.1. DNA Methylation in MNA NB

Methylation of DNA is one of several epigenetic mechanisms that cells use to alter
gene expression. CpG islands (CGIs) are specific genomic regions characterized by a high
frequency of cytosine–guanine (CpG) dinucleotides. These regions are often associated
with gene promoters, transcription start sites, and first exons. DNA methylation at CpG
islands is a crucial epigenetic mechanism implicated in cell fate determination during
development, generally leading to gene silencing [45].

MYCN has been shown to bind to numerous promoters and CpG islands (CGIs) in NB,
suggesting direct control of potential tumor suppressor genes via DNA methylation [6,44].
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Specifically, methylation of caspase 8 (CASP8) and members of the Ras association domain
family (RASSF) and protocadherin beta cluster (PCDHB) families have been extensively
studied and linked to MNA [46–49]. Indeed, loss of CASP8 by methylation is believed to al-
low for unhinged cell proliferation and therefore contribute to MNA NB tumorigenesis [49].
However, the correlation between CASP8 methylation and MNA has been questioned by
other groups [46,50].

Moreover, MYCN single-copy and MNA NB cell lines exhibit distinct promoter methy-
lation patterns for genes like histone H3.1 (HIST1H3C) and acetyl-CoA synthetase short-
chain family member 3 (ACSS3). Specifically, HIST1H3C methylation is associated with
both overall and event-free survival [51]. The exception to the methylation pattern includes
the hypomethylation of nuclear receptor 4A3 (NR4A3) exon 3 in MNA cells, which may
be associated with a better prognosis [52], and the dual role of CD44 methylation in both
MNA and non-MNA NB [53–55].

Various studies suggest a CpG island methylator phenotype (CIMP) in NB, which is
linked to poor survival. Both Japanese and German studies showed that MNA is linked to
the CIMP+ phenotype [48,56], where among others, methylation levels of PCDHB CGIs
defined the CIMP+ phenotype. Giwa et al., via differential methylation analysis of MNA
versus non-MNA NB (TARGET data), identified 663 differentially methylated CpGs and
14 highly methylated genes associated with MNA in NB, suggesting that MNA alters
the methylation landscape in NB and that this landscape differs from that in non-MNA
NB [50]. In addition, Lalchungnunga et al. performed a genome-wide methylation analy-
sis of the TARGET study and identified five distinct DNA-methylation-based molecular
subgroups, where one subgroup is strongly associated with MNA [57]. The differentially
methylated regions unique to the MNA subgroup contain 291 candidate genes, including
TERT (cg11625005). In addition, MNA NB showed higher TERT expression compared to
non-MNA NB.

Overall, DNA methylation is a critical epigenetic mechanism involved in the develop-
ment of MNA NB (Table 2). However, the relationship between MYCN and DNA methylation
in NB, along with the underlying molecular mechanisms, remains largely unexplored.

Table 2. DNA methylation patterns linked to MNA NB.

Gene Role Methylation Status in
MNA NB

Expression in
MNA NB

Citation

ABCB1, CACNA1G, CD44,
DUSP23, PRDM2, RBP1, CHD5,
NTRK1, KRT19, PRPH, CNR1,
QPCT, ASIC2, RGS5

Involved in NB-relevant
aberrant methylation

Hypermethylation Decreased [48]

CASP8 Cell apoptosis Hypermethylation Decreased [46,47,49,58]

CASR Calcium-sensing receptor Hypermethylation Decreased [59]

CD44 Glycoprotein involved in
cell–cell interactions,
adhesion, and migration

Hypermethylation Silenced [54,60]

CXCR4, GAL, LRRN1, ODC1,
TWIST1, WHSC1
DDX43, PRAME, TEX14,
TMEM108, NEK2, NPY

Involved in biology of
aggressive NB

Hypomethylation Increased [48]

DNAJC15, NTRK1, PYCARD Candidate biomarker genes Hypermethylation Decreased [61]

DUSP2, TP73, JAK2, MGMT,
HPN, RB1, TDGF1

Relevant roles in cancer
biology

Hypermethylation Increased/Decreased [62]

MIR34B, MIR34C MIR124-2 MiR-34b-3p, miR-34b-5p,
miR-34c-5p, and
miR-124-2-3p are tumor
suppressors

Hypermethylation Decreased [31,63,64]
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Table 2. Cont.

Gene Role Methylation Status in
MNA NB

Expression in
MNA NB

Citation

NR4A3 Critical gene for neuronal
development

Hypomethylation Decreased [52]

NXPH1, SOX2-OT, DLX5,
TFAP2D, CAVIN3, VAX2, TERT,
HHEX, KRT19, RNF207,
MIRLET7BHG, CHRNE,
DLX6-AS1, TMCO3

14 highly methylated genes
in MNA NB

Hypermethylation [50]

PCDHB family Cell–cell neural connection Methylation Unknown [48]

RASSF family Tumor suppressor proteins Hypermethylation Decreased/absent [47]

TFAP2B Transcription factor,
expression associated with
low-risk NB

Methylation Decreased [65]

ZAR1 Ovary-specific maternal
factor

Hypermethylation Increased [66]

ZNF206 Transcription factor
regulating embryonic stem
cell gene expression and
differentiation

Hypomethylation Unknown [67]

291 genes Candidate differentially
methylated regions unique
to NB subgroup associated
with MNA

[57]

3.2. Histone Modifications in MNA NB

Histone modifications, such as methylation, acetylation, phosphorylation, and sumoy-
lation of histones, can influence the accessibility of DNA to the transcriptional machinery.
Histone methylation can either activate or repress gene transcription, depending on which
histone and which amino acid residue is methylated. For instance, methylation of histone
H3 at lysine 4 (H3K4) is associated with gene activation, while methylation at H3K9 and
H3K27 is linked to gene repression. Conversely, the addition of acetyl groups to histone
tails generally results in a more open chromatin structure, facilitating increased gene tran-
scription and is typically associated with gene activation. On the other hand, deacetylation
is a hallmark of gene silencing.

3.2.1. Histone Acetylation

MYCN has been shown to impact histone acetylation, the marker of transcriptional
activation [68]. Importantly, MYCN can recruit histone acetyltransferases (HAT) to maintain
chromosome acetylation and thus enhance transcription, particularly of genes involved
in cell cycle progression and proliferation. The HAT E1A-binding protein (EP300) plays
a critical role in establishing H3K27ac marks at super-enhancers in high-risk NB. EP300
expression correlates with poor prognosis of NB patients and promotes cell proliferation
in MNA NB cell lines (Table 3) [69]. EP300 regulates enhancers via interactions with a
TF part of the ADRN lineage-defining core regulatory circuit (CRC) in NB, TFAP2β, and
is essential for high-risk NB growth. Interestingly, EP300 interacts with MYCN and can
modulate its stability via simultaneous regulation of its acetylation and ubiquitylation on
Lys 199 [70]. Loss of EP300 leads to a global loss of H3K27ac marks and loss of MYCN
protein expression [69].

MYCN is known to upregulate histone deacetylases (HDACs), including HDAC1/2/5
and sirtuin-1 (SIRT1), to promote gene repression and oncogenesis in both NB cell and
mouse models [71–73]. Indeed, MYCN upregulates HDAC2 to repress the tumor sup-
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pressor miR-183 [74]. Upregulation of HDAC5 results in the transcriptional repression
of tetraspanin CD9, which contributes to the invasion and metastasis of MNA NB [75].
Upregulation of SIRT1 also increases the protein stability of MYCN. SIRT1 binds to the Myc
homology box I domain of MYCN, leading to MYCN phosphorylation and stabilization [72].
MYCN in complex with MIZ1 and SP1 recruits HDAC1 to the tropomyosin receptor kinase
A (NTRK1) promoter and downregulates TrkA expression, which is usually associated with
spontaneous regression of NB [73].

Table 3. Regulators of histone marks in MNA NB.

Gene Role Methylation/Acetylation in MNA NB Expression in MNA
NB

Citation

EP300 HAT H3K27 acetylation Increased [69,70]

HDAC2 HDAC Deacetylates MIR183 promoter Increased [74]

HDAC5 HDAC Deacetylates CD9 Increased [75]

SIRT1 HDAC Deacetylation of tumor suppressors Increased [72]

HDAC1 HDAC Deacetylates NTRK1 promoter Unknown [73]

DOT1L HMT H3K79 methylation Increased [76]

EZH2 Catalytic subunit of PRC2 complex H3K27 trimethylation Increased [37,55]

KDM4B Histone demethylase H3K9me3/me2 demethylation Increased [77]

PRMT5 HMT H3R8 and H4R3 dimethylation Increased [78]

WDR5 Histone H3K4 presenter H3K4 trimethylation Increased [79]

3.2.2. Histone Methylation

EZH2, a subunit of PRC2, catalyzes the trimethylation of histone H3 lysine 27 (H3K27me3)
at target promoters for gene silencing. MYCN directly interacts with EZH2 via the Myc
homology box domain 3 [37]. MYCN was also found to interact with DOT1L, the sole known
HMT catalyzing H3K79 methylation [76]. In fact, DOT1L-mediated H3K79 methylation
at MYCN-responsive elements in target gene promoters is essential for MYCN-induced
transcriptional activation in MNA NB cells. The authors further demonstrated that DOT1L is
needed for MNA NB cell proliferation, and its suppression reduced NB tumor progression in
xenograft tumor models [76].

Recently, KDM4B, a demethylase involved in histone modifications, was found to be
highly expressed in MNA NB cells. KDM4B physically interacts with MYCN and prevents
the accumulation of repressive H3K9me2/me3 marks at chromatin loci of target genes.
Suppression of KDM4B leads to downregulation of major tumor genes, including miR-17-
92a-1 cluster host gene (MIR17HG), M-phase inducer phosphatase 1 (CDC25A), SRY-box 2
(SOX2), KIT ligand (KITLG), versican (VCAN), and syndecan 1 (SDC1), while suppressing
MYCN function in both NB cells and xenograft models [77]. Table 3 provides a summary
of the regulators of histone methylation and acetylation linked to MNA NB.

3.2.3. Histone Phosphorylation

MYCN is known to recruit Aurora-A to chromatin in the S-phase of the cell cycle,
which in turn phosphorylates histone H3 at Ser 10 and promotes the incorporation of
histone H3.3 into promoters, inhibiting accumulation of RNA:DNA hybrids (R-loops) [80].

3.3. Non-Coding RNAs and MNA NB

Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that do
not code for proteins but play essential roles in regulating gene expression and contributing
to various cellular processes, development, and disease. MYCN has been found to exert
its influence not only on protein-coding genes but also on non-protein-coding genes like
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microRNAs (miRNA) and long non-coding RNAs (lncRNAs). The deregulation of these
genes, driven by MYCN, significantly contributes to the development and progression of
NB [44,81]. These ncRNAs can also directly target the 3’ untranslated region (3’UTR) of
MYCN mRNA or act via indirect pathways to influence tumor progression [82].

3.3.1. miRNAs

MicroRNAs (miRNAs) are small single-stranded RNA molecules that regulate gene
expression by binding to target messenger RNA molecules [83]. MiRNAs can silence genes
via processes like mRNA cleavage, destabilization of mRNAs, and inhibition of protein
translation.

In MNA NB, MYCN is known to be predominantly a repressor of tumor suppressor
miRNA expression, although several miRNAs, including the miR-17-92 cluster, were found
to correlate with MYCN expression [29,84].

Several key tumor suppressor miRNAs are shown to be repressed by MYCN in the
context of MNA. Indeed, miR-184 or miR-542-5p overexpression in NB xenograft models
inhibited tumor growth and metastasis [29,85]. MYCN was also shown to activate critical
oncogenic miRNAs in NB and other solid tumors like non-small cell lung cancer and breast
cancer [86,87]. The functionally well-studied miRNAs, such as miR-9 and miR-421, are
directly activated by MYCN and are thought to contribute to NB tumorigenesis [88,89].

The interaction between MYCN and miRNAs is reciprocal, as miRNAs can directly
target and regulate the oncogene. In particular, miR-34a is the most extensively studied
miRNA that directly regulates MYCN expression and acts as a tumor suppressor by induc-
ing NB cell apoptosis [31,64]. MiR-506-3p was also found to regulate MYCN expression via
the zinc finger PLAGL2, which binds to the MYCN promoter region [82]. Other miRNAs
such as miR-15a-5p, miR-15b-5p, miR-16-5p, miR-101, miR-628-3p, and let-7 inhibit tumor
progression by negatively affecting MYCN expression [90,91]. Indeed, the LIN28B–let-
7–MYCN axis is known to play a critical role in sustaining the oncogenic phenotype in
NB [92]. LIN28B is a protein that binds small RNA and functions as a negative regulator
of let-7 miRNA tumor suppressors. LIN28B can maintain high levels of MYCN mRNA
and protein levels via downregulation of let-7 miRNA in MNA but also in non-MNA NB
tumors [92,93].

The interaction between MYCN and different miRNAs varies depending on their
specific characteristics, and the expression of miRNAs is thereby influenced by MYCN
status [45]. Indeed, a study performed on NB patients identified a set of 38 differentially
expressed miRNAs between the low/intermediate and the high-risk groups [94].

MYCN direct binding to miRNAs loci at the proximal region is thought to be the
mechanism for activation or repression of miRNAs in NB, as observed with the miR-17-92
cluster for example [95]. As mentioned above, MYCN also has the ability to activate DNA
methyltransferases (DNMTs), which can eventually modify the promoters of miRNAs in
NB. For example, miR-34b-3p, miR-34b-5p, miR-34c-5p, and miR-124-2-3p are found to be
downregulated by hypermethylation in a subset of high-risk NB patients [31,63,64]. Other
miRNAs such as miR-106b-5, miR-202, miR-204, let-7, miR-17-5p, and miR-26a-5p have
also been reported to be regulated by MYCN in NB [33,92,96,97].

Overall, miRNAs are considered great biomarker candidates, and their modulation
holds potential as a novel therapeutic strategy for NB treatment. Several reviews extensively
describe the role of miRNAs in NB and their involvement in prognosis, drug response,
and resistance [28,83,98]. Specific miRNAs involved in MYCN regulation in MNA NB are
summarized in Table 4.
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Table 4. MYCN-related miRNAs and their function in NB.

miRNA Expression in MNA NB Associated Function Citation

let-7 Downregulated Tumor suppressor. Controls sympathetic
neurogenesis; promotes neuronal differentiation [29,99,100]

miR-7 Upregulated Oncogenic. Involved in cortical development and
embryonic stem cell differentiation [101,102]

miR-9 Upregulated Oncogenic. Regulates neurogenesis (neuronal
migration and differentiation) [88,103]

miR-15a-5p Downregulated Tumor suppressor. Antiangiogenic in the brain [90,104]

miR-15b-5p Downregulated Tumor suppressor [90]

miR-16-5p Downregulated Tumor suppressor. Antiangiogenic in the brain [90,104]

miR-17-5p Upregulated Oncogenic. Master regulator of neurogenesis in both
developmental and adult brains [29,105]

miR-19a-3p Upregulated
Oncogenic. Enriched in NPCs and downregulated
during neuronal development in the adult
hippocampus

[29,106]

miR-19b-3p Downregulated
Tumor suppressor. Enriched in NPCs and
downregulated during neuronal development in the
adult hippocampus

[106,107]

miR-20a-5p Upregulated Oncogenic. Inhibits cyclin D1 level, involved in
differentiation and proliferation of cortical progenitors [29,108]

miR-26a Downregulated Tumor suppressor. Regulates neural differentiation [92,109]

miR-29 (miR-29a-3p,
miR-29b-3p, miR-29c) Downregulated Tumor suppressor. Inhibits apoptotic neural death by

targeting the proapoptotic protein BCL2 [49,101,110]

miR-34a Downregulated Tumor suppressor. Regulates neural stem/progenitor
cell differentiation [31,64,111]

miR-34c-5p Upregulated/Downregulated Oncogenic/Tumor suppressor. Regulates neural
stem/progenitor cell differentiation

[29,31,64,
112]

miR-93-5p Downregulated
Tumor suppressor.
Maintenance/proliferation/differentiation of NSCs;
downregulated in mature neurons

[29,113]

miR-98-5p Downregulated Tumor suppressor [114]

miR-101-3p Downregulated Tumor suppressor. Involved in neuronal plasticity [91,115]

miR-106a-5p Upregulated Oncogenic [116]

miR-106b-5 Upregulated Oncogenic. Involved in NSC proliferation and
differentiation [96,117]

miR-107 Downregulated
Tumor suppressor. Involved in differentiation of
neuronal cells; interacts with dicer to control the
biogenesis of miR-9

[32,118]

miR-124-2-3p Downregulated Tumor suppressor. Involved in neuronal identity;
regulates adult neurogenesis [63,119]

miR-145-5p Downregulated Tumor suppressor. Crucial for fate determination of
neurons [120,121]

miR-183 Downregulated Tumor suppressor. Regulates sensory neurons [74,122]

miR-184 Downregulated Tumor suppressor. Involved in neural stem cell
proliferation and differentiation [85,123]

miR-193b-3p Downregulated Tumor suppressor [124]
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Table 4. Cont.

miRNA Expression in MNA NB Associated Function Citation

miR-200b-3p Downregulated Tumor suppressor. Controls postnatal forebrain
neurogenesis [32,125]

miR-202 Downregulated Tumor suppressor [33]

miR-204 Downregulated Tumor suppressor. Involved in adult somatic stem cell
maintenance [97,126]

miR-335-3p Downregulated Tumor suppressor. Implicated in self-renewal of NSCs
via inhibition of the p53 signaling pathway [127,128]

miR-380-5p Upregulated Oncogenic [129]

miR-421 Upregulated Oncogenic. Involved in NSC self-renewal via the
PINK1/HDAC3/FOXO3 axis [89,130]

miR-449 Downregulated
Tumor suppressor. Essential for brain development; a
key regulator of mitotic spindle orientation during
neurogenesis

[131,132]

miR-488-5p Downregulated Tumor suppressor [29]

miR-497 Downregulated Tumor suppressor [133]

miR-542-3p Downregulated Tumor suppressor. Involved in neural development
and astrogliogenesis differentiation [29,134]

miR-542-5p Downregulated Tumor suppressor. Involved in neural development
and astrogliogenesis differentiation [29,134]

miR-628-3p Downregulated Tumor suppressor [135]

3.3.2. LncRNAs

LncRNAs are a class of RNA molecules that are longer than 200 nucleotides which
are often associated with chromatin-modifying complexes. Although very little is known
about the role of lncRNAs in NB, a study identified “non-coding RNA expressed in
aggressive neuroblastoma” (ncRAN; also known as small nucleolar RNA host gene 16,
SNHG16) and lncUSMycN, as being associated with aggressive MNA NBs and poor
prognosis (Table 5) [136,137]. LncUSMycN is located at the 2p 130-kb amplicon that is
co-amplified with MYCN and is found to upregulate MYCN mRNA expression via binding
to NonO protein. Knocking down of lncUSMycN expression was shown to reduce MYCN
at the mRNA and protein level, thereby inhibiting MNA NB cell proliferation and tumor
growth in in vitro and in vivo NB models, respectively [136]. In addition, overexpression
of small nucleolar RNA host gene 1 (SNHG1) is also linked to MNA NB. SNHG1 might
downregulate miR338-3p, which in turn leads to PLK4 overexpression, thus promoting
proliferation, migration, and invasion [138]. Another lncRNA upregulated by MYCN
is the “lncRNA highly expressed in neuroblastoma 1” (lncNB1), and it is linked to poor
prognosis. LncNB1 upregulates E2F1 expression by binding RPL35, which leads to the
transcription of DEPDC1B [139]. In addition, neuroblastoma differentiation marker 29
(NDM29) might be downregulated in MNA NB, and overexpression of NDM29 in MNA
NB cells leads to differentiation [140].

Moreover, transcribed ultraconserved regions (T-UCRs), a novel subgroup of lncRNAs,
have been discovered to be abnormally expressed in NB. These RNA transcripts are highly
conserved across human, rat, and mouse genomes. Specific UCR expression profiles can be
correlated with prognosis in high-risk patients and MNA status in NB [84].

Furthermore, the MYCN opposite-strand (MYCNOS) lncRNA, specifically MYCNOS-01
and 02, were found to regulate MYCN protein expression [141]. MYCNOS-02 interacts with
specific binding partners like Ras GTPase-activating protein 1 (G3BP1) and recruits 11-zinc
finger protein (CTCF) to the MYCN promoter, resulting in increased MYCN expression.
This positive regulation of MYCN by MYCNOS-02 leads to suppressed differentiation and
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increased growth, invasion, and metastasis of NB cells. On the other hand, silencing of
MYCNOS-01 in MNA NB cell lines had a similar effect to MYCN reduction, suggesting the
potential of these two lncRNAs as therapeutic targets [141,142].

3.3.3. circRNAs

Circular RNAs (circRNAs) are a type of RNA molecule where the 3′ and 5′ ends
are joined together in a closed-loop structure. This circular formation is produced via a
mechanism known as back-splicing, where a downstream splice donor site is joined to an
upstream splice acceptor site, resulting in a circRNA molecule. They have been implicated
in various cellular processes, including acting as microRNA sponges and regulating gene
expression.

In a study characterizing circRNAs in NB cell lines, seven were located within MNA
regions and were upregulated: hsa_circ_0003287, hsa_circ_0008083, hsa_circ_0052767,
hsa_circ_0000978, hsa_circ_0117720, chr2:15467874|15567918, and hsa_circ_0008261 [41].
Importantly, has_circ_0000978 was also identified as a potential prognostic biomarker
of acute myeloid leukemia resistance [143]. Investigating the global circRNA landscape
in NB, Fuchs et al. highlighted a distinct circRNA expression profile in MNA NB [144].
They showed that MYCN suppresses circRNA expression via the DHX9 RNA helicase.
In addition, circARID1A was identified as promoting the proliferation and survival of NB
cells via its direct interaction with the KH-type splicing regulatory RNA-binding protein
(KHSRP) [144]. Importantly, this circRNA is derived from the ARID1 SWI/SNF tumor
suppressor gene, which is almost always mutated in MNA NB, as described in Section 3.6.
below [145,146]. Together, these studies highlight the importance of MYCN regulating
circRNAs and their contribution to NB pathogenesis (Table 5).

Table 5. LncRNAs and circRNAs in MNA NB.

Non-Coding RNA Expression in MNA NB Associated Function Citation

ncRAN Upregulated Oncogenic [137]

lncUSMycN Co-amplified with MYCN Oncogenic; upregulates MYCN mRNA expression
via binding to NonO

[136]

SNHG1 Upregulated Oncogenic; downregulates miR338-3p, leading to
PLK4 overexpression

[138]

lncNB1 Upregulated Upregulates E2F1 expression by binding RPL35,
leading to transcription of DEPDC1B

[139]

NDM29 Downregulated Induces differentiation of MNA NB cells when
overexpressed

[140]

T-UCRs (uc.347, uc.350,
uc.279, uc.460, uc.379, uc.446
and uc.364)

Upregulated Oncogenic; involved in proliferation, apoptosis, and
differentiation

[84]

MYCNOS-01 Co-amplified with MYCN Oncogenic; regulates MYCN protein expression [141,142]

MYCNOS-02 Co-amplified with MYCN Oncogenic; interacts with G3BP1 and recruits CTCF
to the MYCN promoter, thereby increasing MYCN
expression. Suppresses differentiation and increases
growth, invasion, and metastasis of NB cells

[141]

circ_0003287, circ_0008083,
circ_0052767, circ_0000978,
circ_0117720,
chr2:15467874|15567918,
circ_0008261

Upregulated Oncogenic [41]

circARID1A Upregulated Oncogenic; promotes proliferation and survival of
NB cells via direct interaction with KHSRP

[144]
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3.4. Super-Enhancers as Epigenetic Modifiers Regulating MYCN in NB

Enhancers are DNA sequences that can increase the transcriptional activity of nearby
genes. Super enhancers (SEs) have a higher density of TF binding sites compared to
typical enhancers. They are particularly associated with genes that control cell fate and
cell-type-specific functions. The formation of SEs involves the binding of TFs, co-activators,
and chromatin regulators to the DNA. This assembly of regulatory proteins leads to a
highly accessible and active chromatin state, facilitating robust and specific gene expres-
sion, including oncogenes such as MYCN [147]. As mentioned earlier in Section 2.1, NB
consists of two distinct cellular identities: committed ADRN and undifferentiated MES cell
types [148]. These cells can switch between each other, leading to cellular and intra-tumoral
heterogeneity. Both identities are shown to be associated with a distinct SE landscape.
Most NB tumors show ADRN characteristics, but some exhibit MES features, especially in
metastatic and relapsed cases associated with chemotherapy resistance (Figure 2) [148].

Indeed, the activation of MYCN in NB occurs via a process known as “enhancer hijack-
ing”, where structural rearrangements or translocations bring distal regulatory elements
into proximity with other genes, resulting in enhanced expression [149]. MNA in NB
involves the co-amplification of proximal enhancers driven by the noradrenergic CRC or
the loss of local gene regulatory elements due to ectopic enhancer hijacking [150]. MYCN
also interacts with Twist-related protein 1 (TWIST1) and Achaete-scute family bHLH TF 1
(ASCL1) at enhancers to activate developmental genes crucial for MYCN-dependent prolif-
eration and NB tumorigenesis [151,152].

Using genome-wide profiles of H3K27ac in primary and relapsed NB patients, Gartl-
gruber et al. identified four epigenetic subtypes driven by SEs. Specifically, three of these
subtypes are characterized by ADRN-specific signatures that align with known clinical
groups: MNA, non-MNA high-risk, and non-MNA low-risk NBs [153]. The fourth subtype
with MES features is linked to relapsed NB. This study also identified highly specific mod-
ules of CRC TFs associated with particular subtypes. Notably, the MNA CRC TF subtype
module includes MYCN, TWIST1, SRY-box TF 11 (SOX11), and T-box TF 2 (TBX2) [153].

To summarize, MNA allows stabilization of the CRC, thereby activating the MYCN
transcriptional regulatory network and promoting an immature neuroblast cell state [148,154].
Disrupting the MYCN enhancer regulatory axis and targeting SEs holds promise as therapeutic
strategies in NB, offering potential avenues to inhibit oncogenic transcription and inhibit
tumor growth [154,155].

3.5. Bromodomains in MNA NB

The bromodomain and extraterminal (BET) subfamily consists of proteins that possess
bromodomains, which recognize and bind to acetylated lysine residues on histones. These
proteins, including BRD2, BRD3, BRD4, and BRDT, play important roles in regulating gene
transcription and are involved in various cellular processes linked to chromatin remodeling.
BRD4 is known to have two distinct enzymatic functions: kinase and HAT activity. Indeed,
BRD4 plays a crucial role in regulating transcription via the phosphorylation of various in-
teracting partners, including RNA polymerase II (RNAPII) and MYC. BRD4 also acetylates
nucleosomes and influences chromatin architecture via its HAT activity [156]. Moreover,
BRD4 serves as a significant regulatory factor for active enhancers and SEs throughout the
genome. It has been demonstrated that BRD4 directly controls the MYC SE in acute myeloid
leukemia cells, highlighting its critical role in SE regulation. In MNA NB, the elevated levels
of MYCN promote increased histone acetylation, thereby creating more binding sites for
bromodomain proteins. Due to their involvement in cancer-related processes, BET proteins
have garnered significant attention as potential therapeutic targets. Several small molecule
inhibitors targeting BRD4 specifically have been developed and tested in preclinical and
clinical studies, showing promise as anti-tumor agents in NB [157–159].
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3.6. Chromatin Remodeling Complexes in MNA NB

Chromatin remodeling complexes depend on ATP to mobilize and restructure selected
nucleosomes. These multi-subunit protein complexes can be divided into four subfamilies:
switch/sucrose non-fermentable (SWI/SNF), imitation switch (ISWI), chromodomain heli-
case DNA-binding (CHD), and inositol 80 (INO80) chromatin remodelers. These complexes
are conserved across eukaryotes and are involved in dynamic changes of nucleosome
architecture, allowing better or less access to DNA by various cellular machinery, including
TFs and RNA polymerases.

Mammalian SWI/SNF complexes are part of three subfamilies: canonical BAF,
polybromo-associated BAF, and non-canonical BAF. Mutations or alterations in SWI/SNF
subunits are often associated with cancer, including NB [145,146]. ARID1A encodes a subunit
of the canonical BAF complex and is deleted on one allele in at least 87% of NB cases with
loss of chromosome 1p. The chromosome 1p36 region is almost always missing in MNA
NB, resulting in at least one-third of NB cases harboring haploinsufficiency for ARID1A.
Using a transgenic MYCN zebrafish model of high-risk NB, researchers demonstrated that
disrupting ARID1A enhances MYCN-induced cell proliferation in the SA lineage. In ARID1A
homozygous mutant MNA NB cell lines, the differentiation status shifted from adrenergic to
mesenchymal, resulting in increased invasiveness. This transition is orchestrated by modi-
fications in enhancer-driven gene expression via the modification of binding sites for both
BAF and PBAF complexes [146]. In line with those results, a more recent study investigated
the role of SMARCE1, a BAF subunit, in MNA NB [160]. SMARCE1 is located on chromo-
some 17q, which is frequently gained in NB and correlates with MNA and poor prognosis.
High SMARCE1 expression is found to correlate with poor prognosis and is necessary for
the proliferation and survival of MNA NB cells. Moreover, not only does MYCN directly
upregulate SMARCE1 transcription by binding to its promoter, but both proteins interact to
regulate MYCN target genes. These results underscore the possibility for SMARCE1 to modify
nucleosome structure and chromatin accessibility, aiding in the transcriptional regulation
of MYCN. Altogether, targeting chromatin modifiers belonging to the SWI/SNF complexes
could help restore normal gene expression patterns in MNA NB [160].

CHD5 is also encoded at 1p36, and it is frequently lost or silenced in high-risk NB [161].
CHD5 is a chromodomain-helicase-DNA-binding protein that forms a nucleosome remodel-
ing and deacetylation (NuRD) complex. It was shown that CHD5 induces the transcription
of neuronal genes and represses the transcription of Polycomb target genes by maintaining
H3K27me3 [162]. CHD5 function is required for neuronal differentiation, and loss of CHD5
is often observed in high-risk NB, including MNA NB. However, this is irrespective of
MYCN amplification [161].

4. Epigenetic Therapies for MNA NB

To date, there are not many studies on epigenetic drug targets for MNA NB. So far, the
major classes of epigenetic drugs that have shown promise in MNA NB are histone deacetylase
inhibitors (HDACi) and BET inhibitors (BETi), mostly in preclinical studies. A comprehensive
summary of the existing literature on epigenetic drugs and their corresponding targets in the
context of MNA NB is provided in Table 6 and illustrated in Figure 3.

4.1. HDAC and HAT Inhibitors in MNA NB

A compound screen performed by Krstic et al. revealed that NB cells are vulnerable
to various classes of epigenetic regulators, and they showed that C646, a CBP/p300 HAT
inhibitor, is specifically effective in reducing the viability of NB cells with MNA [163].

As already mentioned above, MNA in NB leads to the suppression of tumor suppressor
genes via the recruitment of DNMTs and increased expression of HDACs. Promising
preclinical studies using HDAC inhibitors in the TH-MYCN NB mouse model have been
conducted. Indeed, a positive feedback loop between MYCN and the HDAC SIRT1 has
been described, and treatment with the SIRT1 inhibitor cambinol was able to reduce
tumorigenesis in the transgenic NB model [72]. Additionally, trichostatin A, another HDAC
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inhibitor, restored the expression of the differentiation protein transglutaminase 2 (TG2),
usually repressed by MYCN in NB cells, resulting in reduced tumor volume in the same
mouse model [164].

Other HDAC inhibitors, such as MS-275, BL1521, and vorinostat (SAHA), were shown
to decrease the cell viability of several NB cell lines [165–167]. Specifically, SAHA treatment
is more efficient on cell lines carrying MNA and is extensively studied in clinical trials alone
or in combination with other drugs. It is the first HDACi that has been approved by the US
Food and Drug Administration (FDA), on 6 October 2006, for the treatment of cutaneous T
cell lymphoma [165,168]. Together with panobinostat, which is also FDA-approved, they
have successfully completed phase II of clinical trials in NB patients [169].

Other drugs targeting HDAC1/2/8, which are associated with poor prognosis in NB,
have sparked interest [170]. In fact, treatment with a small-molecule inhibitor of HDAC8
showed great inhibitory activity against NB growth in vitro and in vivo and enhanced
retinoic-acid-mediated differentiation [170].

Romidepsin (FK228), an HDAC1/2i FDA-approved drug, has been shown to be specif-
ically potent in MNA NB cells by increasing histone acetylation and thereby cell death via
caspase-dependent apoptosis [171]. Further, the grainyhead-like 1 (GRHL1) gene was iden-
tified as an early response gene following HDACi treatment, which is usually repressed by
MYCN via HDAC3. This TF, conserved throughout evolution, plays a crucial role in the
development of the nervous system in Drosophila [172]. Importantly, high levels of GRHL1 in
NB tumors correlate with event-free patient survival and favorable tumor biology [172].

One HAT inhibitor, JQAD1, has been recently investigated in pre-clinical trials on MNA
NB cells [69]. JQAD1 is a proteolysis-targeting chimera (PROTAC) compound, developed to
selectively degrade the HAT EP300. The role of EP300 in MNA NB is discussed in Section 3.2.1.
The small innovative PROTAC degrader showcases a time-dependent depletion of EP300,
resulting in rapid loss of MYCN expression and apoptosis of NB cells. Importantly, JQAD1
demonstrates low toxicity towards healthy cells while exerting growth-inhibitory effects of
NB tumor xenografts [69].

Altogether, these findings highly suggest that targeting HDACs and, to a lesser extent,
HATs, could be a potential approach to treat MNA NB.

4.2. HMT Inhibitors in MNA NB

As mentioned in Sections 2.3 and 3.2.2, the HMT EZH2 is a protein of major importance
during NB development. EZH2 levels are significantly higher in MNA cells than in non-
MNA cells and this leads to the inactivation of a tumor suppressor program in NB [55].
Multiple studies have provided evidence supporting the therapeutic validity of S-adenosyl-
methionine (SAM)-competitive EZH2 inhibitors in NB. SAM is a methyl donor for catalytic
reactions of HMTs. Overall, inhibiting EZH2 directly via the occupation of the site for
S-adenosyl-L-methionine (SAM) in the EZH2′s binding pocket inhibits MNA NB cell and
tumor growth.

For example, GSK343 significantly reduced tumor growth in a MNA xenograft mouse
model without noticeable toxicity [173]. Nonetheless, GSK343 is confined to pre-clinical
use due to its inadequate pharmacokinetic characteristics [174]. Tazemetostat (EPZ6438)
is an FDA-approved drug with high selectivity towards EZH2, which demonstrates a
significant reduction in tumor weight in the TH-MYCN mouse model with no related
adverse effect [35]. GSK126 also showed growth-inhibitory effects in in vitro and in vivo
MNA NB models [55,175], but phase II clinical trials were halted due to insufficient efficacy
in cancer patients [176]. Lastly, the effect of GSK126 was tested in combination with another
EZH2 inhibitor, JQEZ5. The combination increased apoptosis in MNA cells, and JQEZ5 alone
was able to significantly reduce tumor volume in an MNA xenograft mouse model [55].

In an immunology-related study, Seier and al. suggested exploring the use of H3K9
euchromatic histone-lysine methyltransferase (EHMT) inhibitors in combination with EZH2
inhibitors as an immunomodulation strategy for MNA NB treatment. Essentially, EHMT1
and EHMT2 were identified as key epigenetic factors involved in the malignancy of MNA
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NB and suppressors of interferon signaling. Inhibiting EHMT enhances the expression of
Th1-chemokines, therefore facilitating T-cell infiltration into the tumor microenvironment
and improving responsiveness to immune checkpoint blockade therapy [177]. Indeed, BIX-
01294, an EHMT2 inhibitor, was shown to specifically decrease global H3K9me2 levels [178].
EHMT2 inhibition not only restrains the proliferation of NB cells but also triggers their
apoptosis. BIX-01294 impedes MNA NB cell motility and invasion while concurrently
suppressing the expression of the MYCN oncogene. Moreover, EHMT2 inhibition was
found to synergize with doxorubicin, further hampering cell proliferation [178].

4.3. BET Inhibitors in MNA NB

Over the last few years, targeting BET family proteins has emerged as an eminent
strategy in the treatment of cancers and other diseases. These proteins have a close as-
sociation with the regulation of the MYC oncogene, making BET inhibitors effective in
MYC-dependent cancers. By reducing the expression of oncoproteins like MYC, they effec-
tively hinder the growth of malignant cells [179]. To date, targeting MYCN in MNA NB
with BET inhibitors has been tested in preclinical and clinical studies. Via high-throughput
pharmacological screening of more than 650 cancer cell lines, it was discovered that MNA
strongly predicts the cytotoxic response to the prototypic BRD4 inhibitor, JQ1 [180]. JQ1
disrupts the recruitment of BRD4 to the MYCN canonical promoter by competitively bind-
ing to acetyl lysine sites, resulting in the downregulation of MYCN and its transcriptional
outputs. In NB cells, JQ1 treatment leads to cell cycle arrest, apoptosis, and increased
differentiation. Importantly, cell lines harboring MNA were found to be more sensitive to
JQ1 than the non-amplified ones. Promising results were also observed in in vivo studies
using MNA NB xenograft models, showing a significant decrease in tumor volume and
increased overall survival without noticeable toxicity [180,181].
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Figure 3. Epigenetic drug targets explored for MNA NB. In the realm of epigenetic regulation,
inhibitors targeting three distinct epigenetic mechanisms: DNA methylation, histone methylation
or acetylation, and epigenetic readers have been investigated in pre-clinical or clinical trials for
MNA NB [35,55,69,72,164–169,171,173–175,177,178,180–186]. Created with Biorender.com, accessed
on 3 November 2023.
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Building upon these findings, three JQ1 derivatives (OTX015, I-BET726, and BMS-
986158) are currently under investigation, with BMS-986158 currently entering phase
I in clinical trials (NCT03936465). OTX015, an orally available inhibitor of BRD2/3/4,
demonstrates potent inhibition of tumor growth and increased overall survival in MNA
NB cells and xenograft models. OTX015 has been found to exhibit specific activity against
MYCN target genes, and this activity is correlated with high levels of MYCN expression
and MNA in several NB cell lines [182].

Another small molecule BETi, GSK525762, exhibits anti-proliferative effects and cyto-
toxicity in NB cell models regardless of MYCN status, suggesting alternative mechanisms
of action. A phase I study involving hematological and solid tumor cancers has shown
therapeutic activity and tolerability of GSK525762, paving the way for potential translation
to NB clinical studies [183]. However, the predictive value of MYCN overexpression for
therapeutic response to GSK525762 remains unclear.

Additionally, preclinical studies exploring combinations of BET inhibitors with other
therapeutic agents, such as phosphoinositide 3-kinase (PI3K), cyclin-dependent kinase 7
(CDK7), mitogen-activated protein kinase (MEK), HDAC, and Aurora A inhibitors, have
shown synergistic effects, and potential to overcome resistance, and reduce treatment-
related toxicities [158,159,187,188]. These combinatorial approaches hold promise in maxi-
mizing treatment efficacy and addressing concerns regarding drug resistance and lack of
specificity associated with genotoxic treatments.

4.4. DNA Methyltransferase Inhibitors in MNA NB

Only very few hypomethylating agents have been tested so far in preclinical and phase
I clinical trials against NB. Decitabine and 5-azacytidine are DNMT inhibitors (DNMTi)
primarily used in the treatment of myelodysplastic syndromes (MDS). Decitabine was
found to epigenetically activate miR-34a when combined with retinoic acid, resulting in
MYCN downregulation in acute myeloid leukemia patients and cultured cells [184]. This is
particularly interesting since miR-34a is a tumor suppressor that is downregulated in the
context of MNA NB [31,64]. Decitabine was part of three phase I clinical trials involving
NB patients and is typically used in combination with chemotherapy to enhance its effec-
tiveness. However, when combined with doxorubicin, it seemed that doses of decitabine
that could have a substantial clinical impact were associated with poor tolerance [189].

Recently, two less toxic DNMTi, SGI-1027 and nanaomycin A, displayed enhanced NB
cell death when combined with doxorubicin, compared to doxorubicin alone. Even though
this effect was MYCN-independent, cell lines harboring MNA were at least 20 times more
sensitive to the DNMT3b inhibitor nanaomycin A [185]. In line with this finding, retinoic
acid treatment of MNA NB cells was shown to downregulate DNMT3b and upregulate
miR-26a/b, a DNMT targeting miRNA normally repressed by MYCN [186]. Therefore,
these results suggest that the downregulation of DNMTs leading to demethylation and
reactivation of specific genes and miRNAs might offer new alternatives of specific treatment
against MNA NB.

A table showcasing the comprehensive range of epigenetic drugs currently being ex-
plored in preclinical and clinical trials for the treatment of MNA NB is summarized in Table 6.

Table 6. Drugs and associated epigenetic targets in the context of MNA NB.

Name Drug Target in NB Effect on MYCN in
MNA NB

Clinical Status Citation

ARV-825 BRD4 inhibitor Downregulation Pre-clinical [190]

BIX-01294 EHMT2 (HMT)
inhibitor

Downregulation Pre-clinical [178]

BL1521 Pan-HDAC inhibitor Downregulation Pre-clinical [166,191]
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Table 6. Cont.

Name Drug Target in NB Effect on MYCN in
MNA NB

Clinical Status Citation

BMS-986158 BRD4 inhibitor Not specifically
characterized

Pre-clinical and clinical
Phase I:

- NCT03936465 (recruiting)

[169]

Cambinol SIRT1 (HDAC)
inhibitor

Not specifically
characterized

Pre-clinical [72]

Decitabine
(5-Azacytidine)

DNMT 1 inhibitor Not specifically
characterized

Pre-clinical and clinical
Phase I:

- NCT00075634 (completed)
- NCT01241162 (completed)
- NCT03236857 (completed)

[184,
192]

Entinostat (MS-275) HDAC I inhibitor Downregulation Pre-clinical [167]

GSK343, Tazemetostat
(EPZ6438), JQEZ5,
GSK126

EZH2 inhibitors Downregulation
(GSK343), others not
specifically
characterized

Pre-clinical and clinical
Phase II (EPZ6439):

- NCT03155620 (recruiting)

[35,55,
173,175,
193]

I-BET726 (GSK726) BRD4 inhibitor Downregulation Pre-clinical [194]

JQ1/OTX-015 BRD4 inhibitor Downregulation Pre-clinical [159]

JQAD1 EP300 (HAT) inhibitor Downregulation Pre-clinical [69]

Molibresib (GSK525762,
I-BET762)

BRD2/3/4 Downregulation Pre-clinical and clinical
Phase I:

- NCT01587703 (completed)

[195]

Panobinostat Pan-HDAC inhibitor Downregulation Pre-clinical and clinical
Phase II:

- NCT04897880 (terminated)

[159]

PCI-48012 HDAC 8 inhibitor Downregulation Pre-clinical [170]

Romidepsin (FK228) HDAC I inhibitor Not specifically
characterized

Pre-clinical [171]

SGC0946 DOT1L (HMT)
inhibitor

Unknown Pre-clinical [76]

SGI-1027, Nanaomycin
A

DNMT1/3 inhibitors Not specifically
characterized

Pre-clinical [185]

Trichostatin A HDAC I/II inhibitor Downregulation Pre-clinical [164]

Valproic acid (VPA) HDAC I inhibitor Downregulation Pre-clinical and clinical
Phase I:

- NCT01204450 (terminated)

[196]

Vorinostat (SAHA) HDAC I inhibitor Downregulation Pre-clinical and clinical
Phase I:

- NCT00217412 (completed)
- NCT01132911 (completed)
- NCT01019850 (completed)
- NCT01208454 (completed)
- NCT03332667 (active)
- NCT04308330 (recruiting)

Phase II:

- NCT02035137 (completed)
- NCT03561259 (recruiting)
- NCT02559778 (recruiting)

[165]
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5. Conclusions

Half of the children with high-risk NB do not respond to current treatments and
relapse. Genotoxic chemotherapy is the mainstay of therapy for high-risk NB as we lack
targeted treatments for this aggressive pediatric malignancy. Therefore, better and less toxic
treatments are desperately needed. Targeting epigenetic machinery is a promising approach
as MYCN regulates epigenetic processes. Epigenetic dysregulation is a hallmark of cancer,
including NB, and contributes to NB development, tumor growth, and progression. By
specifically targeting the aberrant epigenetic modifications, epigenetic drugs have the
potential to restore normal gene expression patterns, inhibit tumor growth, and overcome
drug resistance. The major classes of epigenetic drugs that have so far shown promise in
MNA NB are histone deacetylase inhibitors and BET inhibitors, with a more recent focus
on drug combination therapies.

Epigenetic drugs offer the advantage of potentially greater specificity, targeting cancer
cells while minimizing damage to normal cells. They can potentially enhance the efficacy
of conventional chemotherapy and reduce the reliance on highly toxic agents, thereby
mitigating some of the side effects associated with genotoxic treatments in young patients.
Additionally, exploring epigenetic drugs in high-risk NB may provide alternative treatment
options for patients who do not respond well to standard chemotherapy or who experience
disease relapse. However, further research and clinical trials are needed to establish their
safety, efficacy, and optimal use in the context of high-risk NB. Efforts are also being made
to identify biomarkers that can help predict patient response to epigenetic drugs and guide
personalized treatment decisions.

Moving forward, further research into novel treatment targets involving epigenetic-
related molecules and their interactions with MYCN holds promise. By focusing on
these avenues, we can advance our understanding and potentially discover more effective
therapies for MYCN-driven NB.
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