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Abstract: Degenerative lumbar spinal disease (DLSD), including spondylolisthesis and spinal steno-
sis, is increasing due to the aging population. Along with the disease severity, lumbar interbody
fusion (LIF) is a mainstay of surgical treatment through decompression, the restoration of interver-
tebral heights, and the stabilization of motion segments. Currently, pseudoarthrosis after LIF is an
important and unsolved issue, which is closely related to osteobiologies. Of the many signaling
pathways, the bone morphogenetic protein (BMP) signaling pathway contributes to osteoblast dif-
ferentiation, which is generally regulated by SMAD proteins as common in the TGF-β superfamily.
BMP-2 and -4 are also inter-connected with Wnt/β-catenin, Notch, and FGF signaling pathways.
With the potent potential for osteoinduction in BMP-2 and -4, the combination of allogenous bone
and recombinant human BMPs (rhBMPs) is currently an ideal fusion material, which has equalized
or improved fusion rates compared to traditional materials. However, safety issues in the dosage
of BMP remain, so overcoming current limitations will provide significant advancement in spine
surgery. In the future, translational research and the application of clinical study will be important to
overcome the current limitations of spinal surgery.

Keywords: spine; fusion; bone morphogenetic proteins; osteoblast; mesenchymal stem cells

1. Introduction

Degenerative lumbar spinal disease (DLSD), one of the most common prevalent
musculoskeletal disorders, is a leading cause of disability in the world [1,2]. Lower back
pain, as the main symptom of DLSD, has been the greatest contributor to the Global Burden
of Diseases, representing 7.7% of all years lived with disabilities [1]. In 2020, the prevalence
of lower back pain was estimated to include more than half a billion people worldwide,
which was expected to significantly increase by 2050 due to the aging population, especially
in Asia and Africa [1]. DLSD encompasses any degenerative conditions in the lumbar spine,
such as spondylolisthesis, disc degeneration, and spinal stenosis [3,4]. Among the various
treatment options for DLSD, posterior lumbar interbody fusion (PLIF) is considered an
effective surgical method to decompress the spinal canals, restore the intervertebral heights,
and stabilize the painful motion segments [4]. With the surgical development of PLIF,
minimally invasive techniques such as transforaminal lumbar interbody fusion (TLIF) and
oblique lumbar interbody fusion (OLIF) have gained popularity, with the merits of early
postoperative recovery and the reduction of surgery-related complications [5]. However,
pseudarthrosis after lumbar interbody fusion is an important unsolved issue [3,6,7].

Achieving complete fusion in interbody segments is challenging for spine surgery [4,8].
While various techniques, including the addition of interbody cages and bone graft substi-
tutes, contribute to achieving a high fusion rate, there are currently many limitations [5,9].
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In this narrative review, we described the osteobiologies and current techniques for spinal
fusion, from biological mechanisms to clinical applications.

2. The Mechanisms for Bone Regeneration

The bone regeneration process has historically been studied with the repair of fracture
as a unique ability of our body by restoring it to its pre-injured functions [10]. In bone biol-
ogy, homeostasis is regulated by two main cellular components: osteoblasts (bone-forming
cells) and osteoclasts (bone-resorbing cells) [11]. Furthermore, various inflammatory cells
and cytokines dynamically interact with these cells in bone environments, which are re-
sponsible for their repair capacity. For the bone regeneration process, previous studies have
emphasized the role of osteoblasts with morphogen gradients such as bone morphogenetic
proteins (BMPs) [8,10,12,13].

2.1. Bone Homeostasis

Normal bone homeostasis is balanced by osteoblasts and osteoclasts (Figure 1A). Im-
portantly, these two cells have different lineages between mesenchymal stem cells (MSCs)
and hematopoietic stem cells (HSCs), respectively. MSCs, when induced by transcriptional
factors, such as SRY-box transcriptional factor 9 (SOX9), Runt-related transcriptional factor
2 (RUNX2), fibroblast growth factor (FGF), and BMP, differentiate into osteoprogenitor and
pre-osteoblast cells [10,14]. These cells, in turn, have the potential to differentiate further
into osteoblasts, osteocytes, and chondrocytes, which are primarily involved in bone and
cartilage formation. Of the many transcriptional factors, SOX9 and RUNX2 are the most
important factors, and dominance between SOX9 and RUNX2 in MSC-derived progeni-
tors determines their fates between chondrogenesis (SOX9 dominance) and osteogenesis
(RUNX2 dominance) [15]. Osteoblast lineage cells not only differentiate into osteocytes but
also promote bone mineralization by secreting hydroxyapatite and calcium (Figure 1B).
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Meanwhile, osteoclasts, which have the function of bone resorption, are large multinu-
cleated cells derived from HSC lineage [10]. Hematopoietic monocytes and macrophages
were differentiated into osteoclast precursors mediated by macrophage colony-stimulating
factor (M-CSF) [16]. M-CSF also proliferated the osteoclast precursors. Then, the osteoclast
precursors differentiated into mature osteoclasts mediated by the receptor activator of nu-
clear factor kappa-B ligand (RANKL). Thus, M-CSF and RANK-RANKL signaling within
bone environments is essential for osteoclastogenesis, which is initiated by the recruitment
of osteoclast precursors by osteoblasts that express RANKL (Figure 1B) [10,17].

The homeostasis between osteoblasts and osteoclasts is very important in physiological
bone environments [11]. If an imbalance between osteoclasts exists, it can develop into a
pathological process such as osteoporosis (the environment for osteoclast activity surpasses
osteoblast activity) or osteopetrosis (the environment for osteoblast activity surpasses
osteoclast activity) [11,18].

2.2. Bone Regeneration Process

The regeneration process of bone has been studied with the fracture healing phase [19].
It involves a series of coordinated events, including hematoma-forming inflammation, soft
callus formation, the hard callus stage, and bone remodeling (Figure 2) [8,20].
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Inflammation stages occur for more than a few days after fracture [21]. The most
important initial phase of the inflammation stages for bone regeneration is hematoma
formation and inflammatory exudation from the injured blood vessels at the breakage
location [21,22]. Injured soft tissues and degranulation of platelets release various cy-
tokines, which results in typical inflammation responses such as vasodilation, hyperemia,
polymorphonuclear neutrophils (PMNs), and macrophage migration and proliferation
(Figure 2A) [19].

The network of fibrin and reticulin fibrils in hematoma is gradually substituted with
granulation tissues (called soft calluses) and osteoclasts act to remove the necrotic bone at
the fragment’s ends [19]. For soft callus formation, the osteoprogenitor cells in the cam-
bium layer and endosteum are differentiated into osteoblasts, starting intramembranous
appositional bone growth (Figure 2B) [10,19]. When the gaps between bones are linked
with the soft callus, it starts to change the hard callus, called the hard callus stage [10].
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For intramembranous bone formation, the soft callus within the gap is developed into the
hard callus that is constituted with rigid calcified tissue by endochondral ossification [10].
Hard callus formation starts peripherally and progressively moves toward the center of the
fracture and the fracture gap (Figure 2C) [10].

Following the solid union of gaps with woven bones, the remodeling stage begins [19].
The woven bone undergoes gradual replacement with lamellar bone, facilitated by surface
erosion, condensation, and osteonal remodeling [19]. It persists from a few months to sev-
eral years until the bone’s morphology is fully restored to its original state (Figure 2D) [19].

2.3. Signaling Pathways for Bone Formation

Since the osteoblasts have a critical function in bone formation, many studies have
been focused on various osteoblast differentiation-related signaling pathways, which act
in a coordinated manner to bone development and fracture repair [8,12,17,20]. In this
review, we introduce the five representative signaling pathways, including Hedgehog,
Notch, Wnt/β-catenin, FGF, and BMP signaling (Figure 3). Among them, BMP signaling is
described in more detail in the next section.
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Hedgehog has been known to be an important morphogen in limb development
for the anteroposterior body axis [23]. The Hedgehog pathway also has a crucial role in
endochondral ossification [10]. Indian hedgehog (IHH) acts with parathyroid hormone-
related peptides in a negative feedback loop [24]. IHH binds smoothened homologue
(SMO), which blocks the cleavage of GLI3 to the GLI3 repressor (GLI3R) and activates
GLI2 to the GLI2 activator (GLI2A) [10]. It leads to the expression of SOX9 and RUNX2 in
osteoprogenitor cells, which are master regulators for osteoblast differentiation [25].

Compared to other signaling pathways, Notch signaling is a negative regulator of
osteoblast differentiation [10]. Notch receptors initially interact with Jagged (JAG) or
Delta-like protein (DLL) families by direct cell-to-cell contact [10]. This leads to proteolytic
cleavage of the γ-secretase complex, which releases Notch intracellular domain (NCID) [10].
The NCID interaction with RPBJ and Mastermind-like protein 1 (MAML1) induces the
expression of Notch target genes, including Hairy and Enhancer of Split (HES) and HES-
related with YRPW motif (HEY), which inhibits osteoblast differentiation [10].

Wnt/β-catenin signaling acts as a positive regulator of osteoblast differentiation [10].
The Wnt ligand binds Frizzled (FZD; a cell surface receptor) and low-density lipoprotein
receptor-related protein 5 (LRP 5) or LRP6, which leads to β-catenin accumulation in
the cytoplasm [26]. It allows for translocation to the nucleus expressing RUNX2 and
osterix (OSX) [26]. The expression of RUNX2 and OSX enables the differentiation of
osteoblasts [26]. The role of β-catenin is important for various signaling pathways for
osteoblast differentiation because it stimulates transcriptional activity by interacting with
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the T cell factor (TCF)/lymphoid enhancing factor (LEF) [27]. Thus, the presence of
β-catenin is also essential for osteoblast differentiation in the Hedgehog pathway [10].

FGFs are known as a family of signaling proteins that are crucial for normal de-
velopment [8]. For osteoblast differentiation, FGF initially binds with the extracellular
ligand-binding domain of the fibroblast growth factor receptor (FGFR), which leads to the
phosphorylation of tyrosine kinase in the FGFR intracellular domain [10,28]. It activates the
intracellular signaling cascade, including Ras/MAPK, PI3K/AKT, JAK/STAT, and protein
kinase (PKC) pathways [10]. For fusion as a bone regeneration process, FGF2, among the
more than 20 types of FGFs, has been shown to have superior osteogenic effects with a com-
bination of BMP2 [8,10]. Thus, FGF2 is currently recognized as enhancing the BMP-induced
bone regeneration process in the inflammatory and endochondral bone formation stages.

3. Bone Morphogenetic Proteins and Their Related Mechanisms

Since the discovery of BMP in 1958 by Marshall Urist, it has been well known as a
potent inducer of bone formation [29]. BMPs are a member of the transforming growth
factor (TGF)-β superfamily and researchers have identified more than 20 BMP lineages,
with BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, and BMP-9 recognized for their role in bone
formation [13]. Since TGF-β not only recruits MSCs but also promotes the proliferation
and differentiation of osteoprogenitor cells, the functions of BMPs are embryogenesis,
cell differentiation, and skeletal development [10,13]. In particular, in bone regeneration,
they also help with the endochondral bone formation stage [8]. The functions of the BMP
subtypes are summarized in the next section. In this section, we describe the basic concepts
of BMPs in the view of molecular and cellular pathways.

3.1. BMP Lineage

It is historical to deal with BMP lineages and pathways because evolutionary records
for multi-cellular animals have been suggested in many developmental processes of body
axis determination [30]. Phylogenetic analysis provided the similarity in full-length protein
sequences of human and fly orthologues (Figure 4A) [30,31]. Evolutionary conservation is
notable for active mature signaling proteins after post-translational modifications of the
pre- and pro-peptide domains [32].
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3.2. BMP Signaling Pathway for Osteoblast Differentiation

BMP-2 and BMP-4 have representative functions on osteoblast differentiation, which
are generally regulated by SMAD proteins as common in the TGF-β superfamily [13]. Thus,
the current concepts of the BMP signaling pathway were divided into SMAD-dependent
and SMAD-independent groups [8,10]. BMP signaling is initiated by the binding of BMP
ligands to the BMP receptors (BMPRs) located in cell surfaces, which are transmembrane
serine/threonine kinases [8]. There are two receptors in BMPR: Type 1 receptor (BMPR-1)
and Type 2 receptor (BMPR-2). Upon ligand binding, such as BMP-2 or BMP-4, BMP ligands
bring together and activate BMPR-1 and BMPR-2, forming a heteromeric receptor complex.
BMPR-2 phosphorylates BMPR-1 and, subsequently, BMPR-1 phosphorylates SMAD1,
SMAD5, and SMAD8 [8,10]. The phosphorylated SMADs form complexes with SMAD4,
and the SMAD complexes translocate into the nucleus, where they activate the transcription
of target genes such as RUNX2 and OSX [10]. The SMAD-independent pathway is mediated
by the activation of BMP-BMPR via MAPK, ERK, and JNK (Figure 4B) [8].

3.3. Crosstalk between BMP and Other Signaling Pathways

For osteoblast differentiation, BMP has many important roles in many signaling path-
ways (Figure 4C) [13,17]. Firstly, the dual roles of BMP are well known for Wnt signaling.
If BMP increases Dkk1 and SOST expression, it directly inhibits the Wnt signaling pathway,
which leads to inhibiting β-catenin signaling [33]. BMP also promotes the Wnt/β-catenin
signaling pathway, which is mediated by the formation of the β-catenin/TCF/LEF/RUNX2
complex from the antagonizing Dvl function [26,34]. Secondly, the BMP signaling pathway
has a synergistic effect on osteoblast differentiation with the FGF signaling pathway [35].
Since FGF-2 is essential for nuclei translocation mediated by BMP signaling, the osteogenic
effect of BMP-2 is enhanced with FGF [28]. Importantly, there were different characteristics
between FGF-2 and BMP-2. For the bone formation process, FGF-2 was related to osteoblast
proliferation, but it inhibits mineralization [36]. However, BMP-2 has a critical role in bone
mineralization, which is caused by its involvement in different stages of osteoblast differen-
tiation [10,13]. Third, in the crosstalk between BMP and Notch signaling, Notch signaling
was negatively associated with BMP-induced osteoblast differentiation [13]. Furthermore,
BMP-2 regulates the Notch pathway-related signaling pathway [37]. Lastly, PTH induces
the differentiation of MSCs by enhancing the BMP signaling pathway by endocytosis of the
LRP6/PTH1R complex (Figure 4C) [38].

4. Bone Graft Substitutes for Lumbar Interbody Fusions

The ideal bone replacement using bone graft substitutes is achieved by three properties
in bone: osteoconduction, osteoinduction, and osteogenesis [4]. These three properties are
essentially required for bone formation [20].

• Osteoconduction is defined as the physical property of scaffolding, which provides a
microstructure to allow for bone ingrowth [39].

• Osteoinduction is defined as the ability to induce the production of osteoblasts, includ-
ing substances and factors such as BMP [39].

• Osteogenesis is defined as a new bone formation cellular process from the differentia-
tion of the osteoprogenitor cells [39].

These three factors are unique properties in bone regeneration compared to other scar
tissues [39]. Therefore, in various fields, efforts to increase bone regenerative potential have
been studied by utilizing these three properties [20]. Tissue-engineered products, such
as nonbiodegradable polymeric implants, synthetic biodegradable polymer composites,
graphene nanoparticles, and 3D-printed nanocomposite scaffolds, have been introduced
but currently have limitations on clinical use [40–42]. In this section, we briefly describe
common bone graft substitutes for spinal fusion, including autogenous bone graft sub-
stitutes (autografts), allogenous bone graft substitutes (allografts), growth-factor-based
substitutes, and cell-based substitutes (Table 1).
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Table 1. The properties of bone graft substitutes in fusion.

Class
Potential Properties

Osteogenic Osteoconductive Osteoinductive

Autograft
(e.g., Cancellous bone of ICBG) +++ +++ +++

Allograft
(e.g., Freeze-dried bone, DBM) − + +/− (allobone)

++ (DBM)
Growth-factor-based substitutes

(e.g., rhBMP-7) − − ++

Autograft, autogenous bone graft substitutes; ICBG, iliac crest bone graft; Allograft, allogenous bone graft
substitutes; DBM, Demineralized bone matrix; rhBMP, Recombinant human bone morphogenetic protein.

4.1. Autogenous Bone Graft Materials (Autografts)

In spinal fusion surgery as well as osteosynthesis for non-union, the autogenous
bone graft is considered the gold standard because autografts have all three properties
(osteoconduction, osteoinduction, and osteogenesis) [4]. Autografts are obtained from
various areas in spinal fusion surgery by a posterior approach. One method is to harvest
local lamina bone obtained in the process of removing the bone for posterior decompression
procedures [4]. These bones are likely to be accompanied by dead bone and/or severely
degenerated bones, making them decrease the bone’s regenerative potential [43]. On the
contrary, Park et al. clinically compared the union rates between autogenous ICBG and
local bone grafts in spinal fusion up to three levels, which showed local bone grafts are also
adequate options for lumbar spinal fusion surgeries [44]. Given the bone’s regenerative
potential, harvesting the iliac crest bone by approaching the posterior superior iliac spine is
the best option for autografts [4]. However, autogenous iliac crest bone grafts (ICBGs) have
some limitations as follows. Additional incisions to harvest the ICBG lead to donor site
morbidity (as reported up to 30%), which increases additional blood loss, operative time,
and complaints of donor site pain [4]. With the procedure being prone to complications
such as donor site pain, neuromas, and heterotopic ossifications after bone harvest, the
use of ICBGs has currently been shown to have a declining trend with the development of
other bone graft substitutes utilizing the principles of osteobiology [4]. Furthermore, local
bone grafts are also clinically well-used in lumbar spinal fusion surgeries with other bone
graft substitutes [45].

4.2. Allogenous Bone Graft Substitutes (Allografts)

Allografts were harvested from the cadavers so the amount of bone can readily be
secured, which is one of the merits compared to autografts [9]. It acts as an osteoconductive
potential that provides microstructures to regenerate the bone [20]. However, it has low
osteoinductive potential, and the allogenous bone itself does not work for osteogenesis
because there are no viable cells [20]. Despite the low potential of bone regeneration
compared to autografts, allografts are widely applied in lumbar spinal surgeries and have
been shown to have similar fusion rates and comparable clinical outcomes compared to
the use of autografts in randomized controlled trials [46]. In the current status of posterior
spinal fusion surgeries, allografts are contributed as autograft extenders because allografts
are used with autogenous local bone (lamina bone), which has comparable outcomes with
autogenous ICBGs only [39].

4.3. Demineralized Bone Matrix (DBM)

DBMs are medically approved biomaterials that an acid-extracted allogenous bone
graft substitutes from the human bone resources, and are commercially available in variable
forms from putty to gels [47]. They consist of type I collagen, non-collagenous proteins,
and growth factors that contribute to osteoconductive and osteoinductive potentials but
have a low level of osteoconductivity compared to mineralized allografts [47]. They have a
variety of osteoinductive potentials because they contain low doses of BMPs (up to 0.1%
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by weight) [47]. With the osteoinductive potential of DBMs, some studies have reported
increased fusion rates when supplementing the DBM with allografts in lumbar spinal
fusion surgeries [48,49]. Thus, DBMs are currently used as common adjuvants for fusion
materials.

4.4. Recombinant Human BMP (rhBMP)

After the elucidation of the role of BMP in endochondral bone formation, more than 20
subtypes of BMP have been studied and have various functions, not only in bone formation
but also in the regulation of other tissues such as cartilages (Table 2) [12,26].

Table 2. The functions of BMP subtypes.

Class Class Functions

BMP-1 Metalloprotease Regulation of the formation of the extracellular matrix
(ECM) via acting on procollagen I, II, and III

BMP-2 TGP-β family Key role in osteoblast differentiation,
cartilage and bone morphogenesis, heart formation

BMP-3 TGP-β family Ostegenin, inhibition of osteogenesis

BMP-4 TGP-β family Regulation of the formation of teeth, limbs, and bone from
mesoderms. An important role in fracture repair

BMP-5 TGP-β family Cartilage development

BMP-6 TGP-β family Osteoblast differentiation, chondrogenesis
A role in joint integrity in adults

BMP-7 TGP-β family Osteogenic protein-1 (OP-1), osteoblast differentiation,
development of kidney and eye

BMP-8 TGP-β family Osteogenic protein-1 (OP-1),
bone and cartilage development

BMP, bone morphogenetic protein; TGF, transforming growth factor.

For these various subtypes of BMPs, rhBMP-2 and rhBMP-7 are clinically approved for
use in humans [50]. BMP-2 and -7 are water-soluble and need a carrier to have an effective
function during surgical procedures [13,50]. Carriers also have osteoconductive properties,
so choosing the proper carrier can magnify the bone’s regenerative potential [8]. The use of
rhBMP-7 (OP-1) is approved by the US Food and Drug Administration (FDA) for revisional
spine fusion surgery under Humanitarian Device Exemptions but it has been withdrawn
from the market [8]. rhBMP-2 was approved by the US FDA in 2002 for anterior lumbar
interbody fusion (ALIF) with a titanium cage [4,8]. Many studies have demonstrated
improved fusion rates by using rhBMP-2, which is more beneficial for complication rates
compared to autogenous ICBGs [51]. Therefore, the off-label use of rhBMP-2 has been
expanded from ALIF to PLIF to cervical fusion [4,8].

The disadvantages of the current use of BMPs are potential side effects despite higher
fusion rates. BMP-related complications have been reported as inflammation, radiculopa-
thy, heterotopic ossifications, osteoclast activation, urogenital events, and wound-related
problems [52–56]. BMP-2 has preclinically demonstrated its induction of inflammatory
cytokines such as IL-1β, IL-6, and IL-10 [56]. Inflammatory edema after use of rhBMP-2
can lead to catastrophic manifestations from serous formation to cervical spine swelling to
airway obstruction to dysphagia [52]. Heterotopic ossification is also an important problem,
which is caused by its potential for bone formation [51,53,56]. If it occurs near the nerve,
radiculopathy or postoperative radiculitis may occur due to nerve compression. Interest-
ingly, osteoclast activation by BMP-2 was preclinically illustrated, which was caused by
the induction of RANKL and the repression of the Wnt signaling pathway [56]. Vertebral
osteolysis and cage subsidence after the use of rhBMP-2 are thought to be the results of
osteoclast activation by BMP-2 [53,56]. In addition, retrograde ejaculation and bladder
retention were also reported after ALIF surgery, which was caused by mechanical or in-
flammatory injury to the superior hypogastric plexus [54,55]. Moreover, wound-related
problems such as hematoma, wound dehiscence, and infection have been reported during
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the posterior approach from some pilot studies [56]. The mechanisms for high rates of
wound-related problems have not been elucidated yet.

Some side effects (i.e., BMP-related complications) are significantly correlated with
dosages of BMP, which were manifested in inflammatory edema, ectopic ossification,
radiculitis, seroma, and vertebral osteolysis [50]. Specifically, in the case of cervical spinal
fusion surgery using rhBMP-2, an inflammatory edema can lead to airway edema and
dysphagia, which have devastating conditions [57]. Furthermore, rhBMP-2 was reported
as leading to possible tumorigenesis despite low evidence in meta-analysis [58]. Spinal
fusion surgeries need to have a higher volume of use of rhBMP-2 compared to other non-
union surgeries, which can potentially lead to more complications [51,59]. Therefore, the
combined use of rhBMP-2 and an autogenous local bone graft is one of the treatment
choices to achieve comparable fusion rates and decrease potential side effects.

5. Current State and Future Aspects of Spinal Fusion

The current state of bone graft substitutes including BMP in spinal fusion are summa-
rized in Table 3.

Table 3. Summary of bone graft substitutes in spinal fusion.

Class Mechanisms Efficacy Limitations

ICBG All capabilities Traditional gold
standard Donor site morbidity

Allobone Osteoconductive capabilities Nearly not limited to
the graft amounts

Infection risk of
HBV or HCV

DBM Osteoinductive and
osteoconductive capabilities

Non-inferior to
autoBG

Higher rates of
spinal collapse

BMP

Stimulation of osteogenic
differentiation of MSCs and

new bone formation
(i.e., osteoinduction)

Superior fusion rate
in BMP/autoBG

Dosage and safety
concerns

MSCs Enhancement of spinal fusion
by osteogenic effect Not proven Not proven

Autograft, autogenous bone graft substitutes; ICBG, iliac crest bone graft; Allograft, allogenous bone graft
substitutes; DBM, Demineralized bone matrix; rhBMP, Recombinant human bone morphogenetic protein.

There were advantages and disadvantages in the selection of bone grafts. One of the
advantages of LIF (such as DLIF, OLIF, and ALIF) from the anterior or lateral approach is
direct access to the intervertebral discs [60,61]. This access made complete disc removal
possible and allowed for more efficient placement of the bone graft substitutes with large-
sized cages [61,62]. However, in the case of expected insufficient bone fusion, such as
the use of the current DBM and allograft only, it is essential to posterior instrumentation
to maintain spine stability [63]. Since many studies have currently provided the bone
formative potential from BMP, the development of rhBMP is closely related to the safety
and effectiveness of stand-alone LIFs in spine surgery [60,62,63]. In particular, in the usage
of BMP, safety issues are accumulating in spinal fusion which are correlated with the dosage
of BMP [64]. Interestingly, BMP-6 also has the ability to perform osteoblast differentiation
like other BMPs (BMP-2, -7). Since it has about 20-fold higher infinity to BMPR than BMP-7,
the clinical use of BMP-6 can significantly reduce the amount of BMP to achieve spinal
fusion [12]. However, the development of BMP-6 is at the pre-clinical stage, so future trials
should be needed.

Since MSCs can potentially differentiate into osteoblasts, they are a candidate for bone
formation considering their osteogenic property [14]. Activated BMP signaling leads to
the expression of osteogenic genes, especially Runx2, in MSCs. Runx2 orchestrates the
expression of genes associated with osteoblast differentiation, such as alkaline phosphatase
(ALP), osteopontin, osteocalcin, and collagen type I. Osteoblasts, differentiated from MSCs,
produce extracellular matrix proteins and facilitate mineralization, forming hydroxyapatite
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crystals. As osteoblasts mature, they become embedded in the mineralized matrix and
differentiate into osteocytes, contributing to bone remodeling and homeostasis. A phase
I/II single-arm prospective clinical trial showed that 80% of 11 patients achieved one-level
lumbar fusion with no adverse events with autologous MSCs, suggesting they are a feasible
option in the future [65]. Gan et al. also tried posterior spinal fusions with enriched
bone marrow-derived MSCs and porous β-tricalcium phosphate. They harvested enriched
MSCs from bone marrow in the bilateral iliac crests perioperatively, with the combination
of porous β-tricalcium phosphate granules [66]. In total, 95.1% of 41 cases had good
union rates from the use of bone marrow-derived MSCs [66]. However, there are several
challenges associated with MSC-based therapy. Firstly, MSCs obtained from different
sources or even within the same source can display variations in their characteristics,
potency, and differentiation potential, resulting in the limitation of the standardization [67].
Moreover, the potential for tumorigenicity, genetic instability, and unexpected side effects
demand thorough investigation in preclinical and clinical studies for long-term safety
issues [68]. Ongoing research has deepened our understanding of MSC biology, including
its immunomodulatory mechanisms, paracrine signaling, and interactions with the host
environment [69]. It is essential for optimizing therapeutic strategies. In conclusion, many
studies are currently promising MSC-based therapy but several issues must be addressed
through various clinical trials in the future.

6. Conclusions

With the development of mechanisms regarding osteobiologies, BMPs have been an
essential factor in achieving spinal fusion. However, safety issues in the dosage of BMP
remain, so overcoming current limitations will provide significant advancement in spine
surgery. Furthermore, MSC-based therapy can be an alternative option to spinal fusion
but great importance remains in the success of clinical studies. In the future, translational
research and the application of clinical studies will be important in the advancement of
spine surgery.
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