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Abstract: Bone tissue engineering is a promising solution for advanced bone defect reconstruction
after severe trauma. In bone tissue engineering, scaffolds in three-dimensional (3D) structures
are crucial components for cell growth, migration, and infiltration. The three-dimensional printing
technique is well suited to manufacturing scaffolds since it can fabricate scaffolds with highly complex
designs under good internal structural control. In the current study, the 3D printing technique was
utilized to produce polylactic acid (PLA) scaffolds. BMSCs were seeded onto selected scaffolds, either
hydrogel-mixed or not, and cultivated in vitro to investigate the osteogenic potential in each group.
After osteogenic incubation in vitro, BMSC-seeded scaffolds were implanted onto rat cranium defects,
and bone regeneration was observed after 12 weeks. Our results demonstrated that BMSCs were able
to seed onto 3D-printed PLA scaffolds under high-resolution observation. Real-time PCR analysis
showed their osteogenic ability, which could be further improved after BMSCs were mixed with
hydrogel. The in vivo study showed significantly increased bone regeneration when rats’ cranium
defects were implanted with a hydrogel-mixed BMSC-seeded scaffold compared to the control and
those without cell or hydrogel groups. This study showed that 3D-printed PLA scaffolds are a
feasible option for BMSC cultivation and osteogenic differentiation. After mixing with hydrogel,
BMSC-seeded 3D-printed scaffolds can facilitate bone regeneration.

Keywords: bone tissue engineering; three-dimensional printer; three-dimensional printing scaffolds;
bone defect repair

1. Introduction

Reconstruction of craniofacial bone defects is challenging for surgeons. For now, autol-
ogous bone grafting is the most widely used procedure to restore bone defects. However,
the need to harvest autologous bone grafts increases the risk of donor site morbidities,
such as pain, infection, or nerve damage. Allogenic bone grafting is an alternative solution,
but the risks of immunologically mediated rejection, disease transmission, or infection are
major concerns of allograft failure [1–3]. To overcome the aforementioned disadvantages,
bone tissue engineering provides a potential option to regenerate bone defects via an ex
vivo cell culture, scaffolds, and growth factors [4–6].

A relevant selection of cells, biomaterial scaffold, and growth-stimulating signals
are three crucial components for a successful tissue engineering construct—the so-called
tissue engineering triad [7–10]. In bone tissue engineering, cells that possess osteogenic
potential, like adipose-derived stem cells (ASCs) and bone-marrow-derived mesenchymal
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stem cells (BMSCs), are the most commonly used cell sources [11,12]. The advantages of
ASCs include their accessibility and abundant resources for harvesting a large number
of cells under minor invasive procedures [13,14]. Despite the multiple differentiation
potential, the osteogenic differentiation efficacy of ASCs is less favorable compared to
BMSCs [1,15]. BMSCs are harvested from bone marrow aspiration, but lower cell yields
from the procedure require a longer time for cell expansion; meanwhile, the potential
morbidities from the procedure impede its clinical application [16]. However, BMSCs share
a closer differentiation lineage in osteogenesis with superior osteogenic ability and are,
therefore, extensively used in bone tissue engineering [1]. A previous study demonstrated
that a BMSC-seeded cryogel scaffold could effectively promote bone regeneration in rat
cranium defect models after 12 weeks of implantation [17].

Since bone has a three-dimensional (3D) configuration, scaffolds with a 3D struc-
ture play an important role in bone tissue engineering, especially in complex 3D bony
reconstruction. An ideal scaffold is composed of biocompatibility, biodegradability, and
osteoconduction with proper mechanical properties so that it mimics the bone structure
and acts as a temporary matrix for cell proliferation, extracellular matrix deposition, subse-
quent bone ingrowth, and eventually bone tissue regeneration [18–20]. Various scaffold
fabrication techniques have been proposed for bone tissue engineering, including fiber
bonding, phase separation, solvent casting, particulate leaching, membrane lamination,
molding, and foaming [21,22]. However, these techniques have the major disadvantage that
they do not have enough control over scaffold architecture, pore size, and pore network,
which generates inconsistent 3D scaffolds and results in less favorable cell migration and
infiltration [23,24].

To overcome the aforementioned problems in previous scaffold fabrication techniques,
rapid prototyping techniques, and especially biocompatible 3D printing, are promising and
innovative options. Three-dimensional printing techniques are computerized fabrication
techniques that can produce complex 3D objects using data generated by computer-assisted
design (CAD) systems [20,25–27]. This technique employs inkjet technology to process
powder materials and print materials layer by layer to build up the full structure of desired
objects during fabrication [19]. Due to its capability to fabricate customized scaffolds with
controlled pore size and pore structure, it is well suited to generate scaffolds for bone tissue
engineering [20,23]. Various degradable polymers, including poly-acrylonitrile butadiene
styrene (ABS), polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid (PGA), and
chitosan, can be used to fabricate 3D scaffolds [28–33]. Among these materials, PLA is a
thermoplastic and biodegradable aliphatic polyester derived from a naturally organic acid
and possesses excellent mechanical properties, making it an ideal material in bone tissue
engineering [34–36].

Though PLA material provides desirable and tunable properties to manufacture cus-
tomized scaffolds for tissue engineering, there are still limitations regarding cell–surface
interaction because of its post-fabrication surface, hydrophobicity, and lack of recognizable
biochemical binding sites [21,37,38]. Several surface modification techniques are developed
to reduce barriers to cell adhesion, proliferation, and differentiation, such as topograph-
ical modification, protein adsorption, mineral coating, functional group incorporation,
and biomacromolecule immobilization [37,39]. Meanwhile, with the advancement of bio-
material characteristics in hydrogels, they provide opportunities for more finely tuned
characterization of cell responses to properties [40,41].

Despite the wide application of the 3D printing technique in bone tissue regeneration,
the most optimal scaffold design, material, and cell-surface modification are still under
investigation. Accordingly, this study aims to utilize the 3D printing technique to produce
biodegradable scaffolds for bone tissue engineering, and hydrogel was applied to construct
a bioactive environment. The osteogenic ability and bone regeneration potential of BMSCs
seeded with 3D-printed scaffolds were investigated via in vitro cultivation and an in vivo
rat cranium defect model.
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2. Results
2.1. Three-Dimensionally Printed PLA Scaffold

The PLA scaffold was designed using SolidWorks software, version 27 (Dassault
Systèmes SA, Vélizy-Villacoublay, France) as shown in Figure 1. During the process of
scaffold printing, we found that different input infill densities produced scaffolds with
different porosities. These 3D-printed scaffolds were observed under SEM to determine
filament width and pore size. Results showed that as infill density was lowered, the
filament width of the printed scaffolds decreased while the pore size increased. When
infill density was set to 100%, 80%, 70%, 68%, 66%, and 64%, the corresponding filament
width and pore size were 0.679 mm and 0.125 mm; 0.690 mm and 0.133 mm; 0.689 mm
and 0.128 mm; 0.645 mm and 0.165 mm; 0.637 mm and 0.181 mm; and 0.591 mm and
0.214 mm. If infill density was below 64%, the 3D printer would not be able to print intact
PLA scaffolds with acceptable porosity.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 16 
 

 

BMSCs seeded with 3D-printed scaffolds were investigated via in vitro cultivation and an 
in vivo rat cranium defect model. 

2. Results 
2.1. Three-Dimensionally Printed PLA Scaffold 

The PLA scaffold was designed using SolidWorks software, version 27 (Dassault Sys-
tèmes SA, Vélizy-Villacoublay, France) as shown in Figure 1. During the process of scaf-
fold printing, we found that different input infill densities produced scaffolds with differ-
ent porosities. These 3D-printed scaffolds were observed under SEM to determine fila-
ment width and pore size. Results showed that as infill density was lowered, the filament 
width of the printed scaffolds decreased while the pore size increased. When infill density 
was set to 100%, 80%, 70%, 68%, 66%, and 64%, the corresponding filament width and 
pore size were 0.679 mm and 0.125 mm; 0.690 mm and 0.133 mm; 0.689 mm and 0.128 mm; 
0.645 mm and 0.165 mm; 0.637 mm and 0.181 mm; and 0.591 mm and 0.214 mm. If infill 
density was below 64%, the 3D printer would not be able to print intact PLA scaffolds 
with acceptable porosity. 

 
Figure 1. (A) The design of PLA scaffold using SolidWorks software, version 27. (B) Gross view of 
PLA scaffold and under SEM with infill rate (C) 64%; (D) 66%; (E) 68%; (F) 70%; (G) 80%; and (H) 
100%. Scale bar = 2 mm. 

Printed PLA scaffolds underwent a degradation test in distilled water and were re-
trieved on weeks 2, 4, and 8. Weights were recorded and weight loss percentages were 
calculated. The measured weight slightly decreased during the test, and the calculated 
weight loss percentage only slightly increased. These scaffolds were implanted into the 
subcutaneous layer of nude rats’ dorsal skin and retrieved at 2, 4, and 8 weeks for in vivo 
degradation profiles. Likewise, there were no significant changes noted in scaffold structure 
before and after implantation. 

2.2. Surface Modification of PLA Scaffolds by Hydrogel 
A cell suspension containing BMSCs was mixed with hydrogel and gently pipetted 

onto PLA scaffold with infill rates of 70% and 100% and observed under SEM as shown in 
Figure 2. Under SEM magnification, hydrogel infiltrated into the PLA scaffold and dis-
tributed more evenly when the scaffold was printed at a 70% infill rate. Meanwhile, higher 
cell density was noted in Live/Dead staining after 4 days of incubation at a 70% infill rate 
for the BMSC-seeded PLA scaffold. These findings implied better surface modification 
when utilizing hydrogel in scaffolds printed at a 70% infill rate. 

Figure 1. (A) The design of PLA scaffold using SolidWorks software, version 27. (B) Gross view
of PLA scaffold and under SEM with infill rate (C) 64%; (D) 66%; (E) 68%; (F) 70%; (G) 80%; and
(H) 100%. Scale bar = 2 mm.

Printed PLA scaffolds underwent a degradation test in distilled water and were
retrieved on weeks 2, 4, and 8. Weights were recorded and weight loss percentages were
calculated. The measured weight slightly decreased during the test, and the calculated
weight loss percentage only slightly increased. These scaffolds were implanted into the
subcutaneous layer of nude rats’ dorsal skin and retrieved at 2, 4, and 8 weeks for in vivo
degradation profiles. Likewise, there were no significant changes noted in scaffold structure
before and after implantation.

2.2. Surface Modification of PLA Scaffolds by Hydrogel

A cell suspension containing BMSCs was mixed with hydrogel and gently pipetted
onto PLA scaffold with infill rates of 70% and 100% and observed under SEM as shown
in Figure 2. Under SEM magnification, hydrogel infiltrated into the PLA scaffold and
distributed more evenly when the scaffold was printed at a 70% infill rate. Meanwhile,
higher cell density was noted in Live/Dead staining after 4 days of incubation at a 70% infill
rate for the BMSC-seeded PLA scaffold. These findings implied better surface modification
when utilizing hydrogel in scaffolds printed at a 70% infill rate.

2.3. BMSCs Viability in PLA Scaffolds

BMSCs with or without hydrogel were seeded onto PLA scaffolds printed at an infill
rate of 70% and were cultured in osteo-inductive media. These scaffolds were observed
under SEM on days 7, 14, 21, and 28 (Figure 3). Under SEM 500-fold magnification, BMSCs
were able to seed onto PLA scaffolds evenly in the BMSC-only group. Spindle-shaped
BMSCs adhered to scaffold surface and edges with cell colonies found within pores. Cell
density was found to increase with time. These findings demonstrated the ability of BMSCs
to grow on a PLA scaffold. In the other group, BMSCs mixed with hydrogel were also
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distributed onto the scaffold surface and edges evenly, and spindle-shaped cells could be
found at these sites by day 7. However, cells within scaffold pores did not possess the
spindle shape and remained in a granular shape until day 21.
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Cell-seeded PLA scaffolds incubated under osteo-inductive conditions were observed
with confocal fluorescence microscopy after Live/Dead assay staining on days 7, 14, 21, and
28. Cell viability could be interpreted according to fluorescence color under microscopy,
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where red represented dead cells and green represented live cells (Figure 4). Cells adhered
to scaffold surfaces with little dead cells noted, which implies that PLA scaffold can be used
for cell culture without endangering cell growth. PLA scaffolds were cut in a sagittal section
and observed under microscopy. Cells proliferated in the sagittal plane during incubation
showing that the porosity of scaffolds allowed cells to migrate inward. Meanwhile, cell-
seeded scaffold mixed with hydrogel demonstrated better inward growth ability. ImageJ
software, version 1.54f (National Institute of Health, Bethesda, MD, USA) was used to
analyze Live/Dead cell counts and hydrogel-mixed BMSC-seeded scaffold had a higher
live cell count during the incubation period.
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2.4. Osteogenic Potential of BMSCs Cultured in PLA Scaffolds

Quantitative real-time PCR analysis was carried out after 7, 14, 21, and 28 days of
culturing to evaluate the expression of osteocalcin (OCN), alkaline phosphatase (ALP),
collagen type I (Col 1), and Runx-2. In the BMSC-seeded PLA scaffold (PLA + BMSC) group,
expression of the above genes increased during incubation, and the level of gene expression
was higher in hydrogel-mixed BMSC-seeded PLA scaffold (PLA + GEL + BMSC) group.
(Figure 5).

2.5. In Vivo Bone Regeneration Study

After 7 days of culture in osteo-inductive media, both groups of BMSC-seeded PLA
scaffolds were implanted into rat cranium defects. Bone regeneration was examined by
micro-CT on day 1 and at weeks 4, 8, and 12 after implantation procedures (Figure 6). After
12 weeks of follow-up, micro-CT showed bone regeneration in cranium defects. More
bone regeneration was noted in defects implanted with hydrogel-mixed BMSC-seeded PLA
scaffolds (PLA + GEL + BMSC) than those implanted with BMSC-seeded PLA scaffolds
(PLA + BMSC). The defect volume was measured in each group. At post-implantation day
1, the volume of defects without implantations (defect) was 4.9 mm2; for those implanted
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with PLA scaffold (PLA), it was 4.98 mm2; for those with BMSC-seeded PLA scaffold
(PLA + BMSC), it was 4.91 mm2; for those with hydrogel-mixed BMSC-seeded PLA scaffold
(PLA + GEL + BMSC), it was 4.91 mm2. After 12 weeks, the defect volume of each group
was as follows: defect—2.49 mm2; PLA—2.94 mm2; PLA + BMSC—2.93 mm2; PLA + GEL
+ BMSC—1.92 mm2.
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Cranium defect volume was calculated using the ITK-SNAP software, version 4.0.2
(Penn Image Computing and Science Laboratory (PICSL), Philadelphia, PA, USA). The
defect volume in the PLA + GEL + BMSC group was less when compared to other groups.
PLA group defect volume was larger than other groups at post-implantation week 4, but its
volume was close to the PLA + BMSC group by week 12. The defect volume in the defect
group was larger than PLA + GEL + BMSC group but less than PLA and PLA + BMSC
groups. The regeneration rate in each group was calculated with the below formula:

Regeneration rate (%) = [volume (1 day) − volume (12 week)]/volume (1 day) × 100%

The calculated regeneration rate in the PLA + GEL + BMSC group was the best among
the groups, followed by the defect-only group. Regeneration rates in PLA and PLA + BMSC
groups were similar.

The cranium defects of interest were retrieved for cross-section after 12 weeks of
in vivo implantation study. Each specimen was processed with hematoxylin and eosin
(H&E) and Masson’s Trichrome stain for histology study. Histologically, the area of Mas-
son’s Trichrome stain that matched with the H&E stain represented the bone regeneration
status in each group (Figure 7).
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3. Discussion

A 3D-printed PLA scaffold is a feasible solution in terms of BMSC cultivation and
application in bone regeneration. The rat cranium defect implanted with a hydrogel-mixed
BMSC-seeded PLA scaffold shows increased bone regeneration after 12 weeks of in vivo
incubation. The application of hydrogel can facilitate BMSCs cultivation on 3DP scaffolds
and thus improve bone regeneration when implanting scaffolds in vivo.

PLA is a thermoplastic and biodegradable polymer commonly used as a 3D print-
ing material. Its strong biomechanical properties make it ideal for bone tissue engineer-
ing [34–36]. In our study, we used PLA as our 3D printing biomaterial and found that
different infill densities would produce scaffolds with different porosity. The 3D printer
could not successfully print an intact scaffold if the infill density was set below 64%. We
chose a scaffold printed at 70% infill density and produced a scaffold with a filament width
of 0.689 mm and pore size of 0.128 mm as our in vivo study scaffold. An in vitro hydrolytic
degradation test showed a limited change in scaffold appearance and scaffold with a slight
weight loss. In a previous study, the PLA material showed water absorbability which
indirectly determined its hydrolytic degradation. However, its water absorption slightly
increased when immersed in distilled water as a function of time, and the weight loss rate
was less than 1% after the hydrolytic degradation test [42]. These findings suggest the
biodegradability of the PLA scaffold, but that the degradation rate is relatively slow.

BMSCs are multipotential cells with powerful replicating capacity and have been
reported to differentiate into bone, endothelium, adipose tissue, cartilage, muscle, and the
brain [16,43,44]. Among these differentiation potentials, BMSC has a closer differentiation
lineage for osteogenesis [1]. Immunologically, BMSC is able to modulate immune reactions
in vitro and escape from immune surveillance in vivo in previous studies [45,46]. These
properties make it an ideal source for tissue regeneration, especially in the field of bone
tissue engineering. In this study, BMSCs were extracted from rats’ femurs and seeded onto
printed PLA scaffolds. Under SEM observations, spindle-shaped BMSCs were distributed
and grown on scaffolds evenly. Though granular-shaped cells were observed in hydrogel-
mixed BMSC-seeded PLA scaffolds, live cell amount still increased and inward growth
along scaffold pores was seen as a function of time in both groups. These findings suggest
that 3D-printed PLA scaffolds are biocompatible for BMSC adhesion and growth, and
hydrogel does not endanger cell expansion. The granular cells observed under SEM could
be the result of cells wrapped in hydrogel.

The osteogenic differentiation of BMSCs includes three phases: proliferation, matrix
maturation, and mineralization [47]. During the early stages of osteogenic differentiation,
Runx2 is regarded as one of the most important transcription factors and has become a
marker of early osteogenic differentiation. Once Runx2 is activated, cells are regarded as
pre-osteoblasts and enter the cell proliferation phase. As osteoblast maturation progresses,
these cells exit the cell cycle and begin to differentiate while maturing extracellular matrix
with alkaline phosphatase (ALP) and the collagen type I alpha I chain (COL1A1). During
the mineralization phase, cells gradually differentiate into mature osteoblasts as enriched
osteocalcin (OCN) promotes mineral substance deposition [48–51]. In this study, we used
a real-time PCR technique to detect gene expression after seeding BMSCs onto the PLA
scaffold. The results showed that the level of RUNX-2, ALP, COL1A1, and OCN expression
increases over the duration of osteo-inductive culturing, and the hydrogel-mixed BMSC-
seeded scaffold showed a significantly increased level of osteogenic gene expression among
the experimental groups.

Cell-seeded PLA scaffolds were implanted onto surgically created cranium defects of
rats. Micro-CT and cross-sectioning were conducted to evaluate bone regeneration after
12 weeks of in vivo implantation. The regeneration rate of defects implanted with the
hydrogel-mixed BMSC-seeded PLA scaffold was 60%, and the rate of defects implanted
with BMSC-seeded scaffold was only 40.4%, similar to defects implanted with scaffold-only
PLA, and lower than the control group. Previous studies have reported good tolerance of
PLA materials to mesenchymal stem cells and the ability to promote cell adhesion onto
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scaffolds cultured in vitro with osteogenic differentiation potential [52,53]. These results
are consistent with this study. However, when implanting PLA scaffolds onto rat cranium
defects, groups implanted with scaffold-only PLA or BMSC-seeded PLA scaffold did not
see accelerated bone regeneration in our animal model. Diomede et al. reported that a 3D-
printed PLA scaffold showed no cytotoxicity but did not exhibit osteogenic inductivity after
being implanted in rats with cortical calvaria bone defects after 6 weeks of in vivo study [54].
Han et al. also demonstrated that PLA scaffolds showed good biocompatibility but poor
osteogenic capacity when implanting scaffolds into rats with tibia bone defects [55].

Several disadvantages of PLA material have been reported regarding its application in
tissue engineering, including the slow degradation rate and the release of acidic degradation
products [56,57]. As an ideal scaffold for bone tissue engineering should be characterized
by a balanced resorption rate to provide space for newly forming bone tissue, [52] slow
degradation of the material may occupy the space for tissue regeneration. Meanwhile,
the release and accumulation of degradation acidic products from the PLA scaffold may
decrease the surrounding tissue pH level and cause an inflammatory response, affecting
cell growth and tissue regeneration [57,58]. To improve osteogenic capacity, several studies
have been conducted to investigate better modification of PLA scaffold [59,60]. In this study,
the hydrogel-mixed BMSC-seeded PLA scaffold increased bone regeneration after 12 weeks
of implantation. Hydrogels have been widely used in the field of tissue engineering for
their ability to replicate extracellular matrix (ECM)-like properties, providing a hydrated
and mechanically stable environment while encapsulating cells to improve better adhesion
or proliferation [61,62]. Improved cell proliferation, osteogenic differentiation, and bone
regeneration were noted in the present study after mixing hydrogel with BMSC-seeded
scaffolds, indicating a benefit from the properties of hydrogels.

The 3D printing technique offers an effective way to fabricate scaffolds for tissue
engineering, and these 3DP scaffolds are one of the most promising approaches for hard-
tissue regeneration and repair [63–65]. PLA provides desirable characteristics for tissue
engineering, but there are limitations stemming from their poor surface properties, bulk
properties, hydrophobicity, and lack of recognizable biochemical binding sites, which are
necessary for cell–surface interaction [37,63]. To overcome these problems, many efforts
have been directed at modifying the surface of the scaffolds, and hydrogels with advanced
biomaterial characteristics are one of the solutions [37]. Bai et al. injected supramolecular
hydrogels into the inner pores of a 3D printing porous metal scaffold and results showed
significant change in the morphology of BMSCs, subsequent osteogenic differentiation, and
cell proliferation [66]. Previous studies have shown that a PLA scaffold coated with gelatin
could enhance its physicochemical properties and favor osteoblast differentiation [67,68].
In this study, we mixed a hydrogel with BMSCs and seeded them onto a 3D-printed
PLA scaffold. Under SEM observation, the hydrogel was able to distribute evenly within
scaffold pores, and subsequent results also showed better BMSC osteogenic differentiation,
cell proliferation, and bone regeneration in vivo and in vitro, which implies the possible
benefit of using a hydrogel to physically modify the scaffold surface, creating a bioactive
environment and promoting bone regeneration.

There are limitations to our study. We aimed to verify the outcome of bone regenera-
tion using 3D-printed scaffolds in BMSCs osteogenic differentiation. Though an in vivo
study showed that bone regeneration improved after implantation of hydrogel-mixed
BMSC-seeded PLA scaffolds, when PLA scaffolds or BMSC-seeded PLA scaffolds were
implanted, bone regeneration was even slower than the control group, which implies
possible interference in bone regeneration process. In hydrogel-mixed BMSC-seeded scaf-
folds, better osteogenic differentiation and bone regeneration were observed. Under SEM
observation, the hydrogel was able to distribute within the porous structure of the PLA
scaffold. We postulated a possible surface modification process between the hydrogel and
PLA scaffold. However, we were not able to prove this viewpoint from the current study,
and further comprehensive studies are warranted to investigate the optimal material and
environment to satisfy bone regeneration for a BMSC-seeded scaffold implanted in vivo.
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4. Materials and Methods
4.1. BMSCs Extraction and Expansion from Rats

BMSCs were extracted from 6-to-8-week-old Lewis rats and cultured. In brief, femurs
were carefully harvested from experimental rats under anesthesia. Sterile low glucose
Dulbecco’s Modified Eagle Medium (DMEM) was irrigated into the bone marrow cavity
2–3 times to fully flush out bone marrow cells. Bone marrow cells were then transferred
onto a 15 cm Petri dish evenly, followed by culturing within a carbon dioxide incubator
(5% CO2, 37 ◦C). The culture medium was replaced every 3 to 4 days. BMSCs gradually
formed cell colonies after 7–10 days.

4.2. PLA Scaffold Preparation

Polylactic acid (3DXTech PLA, BDXTECH) filament was employed as the base material
for 3D printing. PLA scaffold was designed in a cylinder shape and 4-layer vertical stacking
fashions using SolidWorks software, version 27 (Dassault Systèmes SA, Vélizy-Villacoublay,
France) with a diameter of 4 mm, height of 1.6 mm and infill line distance of 0.4 mm
to create a uniform square porous structure. The diameter of the printed filaments was
400 µm, with a filament spacing of 410 µm. Subsequently, NewCreator K software, V1.57.49
(ROKIT Healthcare, Seoul, Korea) was used for further slicing, converting the design into a
gcode file. The manufacturing of the 3D-printed scaffold was accomplished through the
process of Fused Deposition Modeling (FDM), employing the ROKIT INVIVO Premium
hot-melt air-extrusion 3D printer. The scaffold was constructed layer by layer along a
predetermined path. The nozzle’s movement speed was approximately 5 mm/s, and the
extrusion temperature of the 3D printer’s nozzle was set at 190 ◦C. The height of each cross-
section of the scaffold was 0.4 mm, and the filaments between printing layers were oriented
at a 90◦ angle. The scaffold consisted of 4 layers. Scaffolds were printed in different infill
densities and each structure was examined under a scanning electron microscope (SEM)
to determine appropriate settings. Meanwhile, BMSCs were seeded onto printed scaffold
and live and dead analysis was conducted to determine the optimal scaffold. Eventually,
experimental PLA scaffolds were printed in 70% infill density with a filament width of
0.689 mm and a pore size of 0.128 mm.

4.3. In Vitro Test
4.3.1. Cell Cultures

BMSCs isolated from Lewis rats were divided into two groups for experimentation. In
the first group, a cell suspension containing 7.5 × 105 BMSCs was carefully pipetted onto
printed PLA scaffolds. Conversely, in the second group, a cell suspension with the same
cell concentration was mixed with a hydrogel composed of 4 mL GelMA (gelatin modified
with methacryloyl groups) and 1 mL Gel-linker (GEL, Rokit Healthcare, Seoul, Korea). The
cell suspension was evenly mixed with 4 mL GelMA, followed by the addition of 1 mL
Gel-linker before being gently pipetted onto the printed PLA scaffolds prior to hydrogel
crosslinking. Subsequent to cell seeding, BMSCs were cultured in low glucose DMEM for
4 days, followed by a 28-day period of osteo-inductive culturing. Sampling for further
observations was conducted on days 7, 14, 21, and 28.

4.3.2. Scaffold Degradation Test

Dry weight of prepared scaffolds (Wi) was measured and then incubated into 37 ◦C
3 mL distilled water. Scaffolds in each group were retrieved at weeks 2, 4, and 8, and dried
at 100 ◦C. Weights of scaffolds after the degradation test (W0) were measured 24 h after
drying. Weight loss percentage was calculated as:

Weight loss (%) = ((Wi − W0)/W0) × 100
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4.3.3. SEM Observation

Each group of cell-seeded scaffolds was immersed in 2.5% glutaraldehyde for 3 h at
37 ◦C, and washed with PBS 3 times for 10 min. Washed scaffolds were fixed with 1%
ostium tetroxide (OsO4) for 2.5 h at 37 ◦C. After thoroughly washing with d2H2O, the
samples were dehydrated in ethanol in a sequential manner (50%, 70%, 80%, 90%, 95% and
100%). After drying in liquid CO2, these samples were observed by SEM after gold coating.

4.3.4. Live and Dead Test

Cell viability of cell-seeded scaffolds was verified using a Live/Dead cell viability
assay kit (Sigma, St. Louis, MO, USA) under the manufacturer’s protocols. The Live/Dead
staining solution was prepared with 1 µL reagent A (staining dead cells and emitting red
fluorescence) and 2 µL reagent B (staining viable cells and emitting green fluorescence)
in 1 mL PBS. After 30 min of reaction with the staining solution and thoroughly washing
with PBS, the samples were observed and imaged under a fluorescence microscope for
cell viability.

4.3.5. Real-Time PCR

Cell-seeded PLA scaffolds were evaluated using real-time PCR on days 7, 14, 21,
and 28 during osteo-inductive culturing. Total RNA of each specimen was isolated with
Trizol (Invitrogen, Waltham, MA, USA) under the manufacturer’s instructions. RNA was
treated with a Reverse First-Strand cDNA Synthesis kit (Fermentas, Waltham, MA, USA),
and real-time PCR was carried out using an EZtime Real-Time PCR premix kit (Yeastern
biotech, New Taipei City, Taiwan) with 1 µL of cDNA for 30 cycles. The primers used for
osteogenic differentiation included collagen type I, osteocalcin, alkaline phosphatase, and
Runx-2. All experimental steps were repeated 3 times, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as an endogenous standard to normalize for input load
of cDNA between the samples

4.4. In Vivo Study of Bone Regeneration
4.4.1. In Vivo Animal Study

Lewis rats were used for an in vivo animal study. In total, 10 rats were used and
separated into two groups (n = 5). Three 4 mm diameter cranium defects were created
in each rat under anesthesia with standard operative procedures. In the first group, their
first cranium defects were left without any material transplanted; the second defects were
transplanted with printed PLA scaffold only; and the third defects were transplanted with
BMSC-seeded PLA scaffolds. In the second group, the first and second cranium defects
were managed the same as the first group, but their third cranium defects were transplanted
with the BMSC-seeded PLA scaffold mixed with hydrogel (4 mL GelMA (gelatin modified
with methacryloyl groups) + 1 mL Gel-linker) (GEL, Rokit Healthcare).

4.4.2. Micro-CT

To assess calvarial bone regeneration of experimental rats, micro-computed tomogra-
phy (CT) and imaging was carried out at week 4, 8, and 12 after implantation procedures.
The volume of bone regeneration was measured by OsiriX, version 8.0.1 (Pixmeo SARL,
Bernex, Switzerland) and ITK-SNAP software, version 4.0.2 (Penn Image Computing and
Science Laboratory (PICSL), Philadelphia, PA, USA).

4.4.3. Histological Examinations

The region of interest was dissected carefully until surrounding soft tissue was totally
removed at weeks 4, 8, and 12 after implantation procedures. Each tissue specimen
was decalcified with a decalcifying solution, followed by being embedded into paraffin
and cut into sections. Histology included hematoxylin and eosin (H&E) and Masson’s
Trichrome stain.



Int. J. Mol. Sci. 2023, 24, 17410 12 of 15

4.5. Statistical Evaluation

All data are presented as mean ± standard deviation (sd). Two-tailed nonparametric
Kruskal–Wallis tests and Dunn’s multiple comparison post hoc test were performed among
multiple groups using SPSS software, version 29 (SPSS Inc., Chicago, IL, USA). Statistical
significance is considered as p-value < 0.05.

5. Conclusions

In the presented study, we utilized the 3D printing technique to produce PLA scaf-
folds, and BMSCs were seeded onto selected scaffolds, either hydrogel-mixed or not, and
cultivated in vitro to investigate their osteogenic potential. After osteogenic incubation
in vitro, BMSC-seeded scaffolds were implanted onto rat cranium defects, and observed
bone regeneration over a 12-week period. Our results demonstrated that BMSCs were able
to seed onto 3D-printed PLA scaffolds under high-resolution observation and real-time
PCR analysis showed their osteogenic ability, which could be improved after mixing with
hydrogel. An in vivo study showed significantly increased bone regeneration when rat
cranium defects were implanted with hydrogel-mixed BMSC-seeded scaffold. This study
highlights that a 3D-printed PLA scaffold is a feasible option for BMSC cultivation and
osteogenic differentiation. After mixing with hydrogel, a BMSC-seeded 3D-printed scaffold
can facilitate bone regeneration. Further studies are warranted to investigate the most
optimal material and scaffold structure designs for bone regeneration.
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