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Abstract: The discovery of Helicobacter pylori (H. pylori) in the early 1980s by Nobel Prize winners
in medicine Robin Warren and Barry Marshall led to a revolution in physiopathology and conse-
quently in the treatment of peptic ulcer disease. Subsequently, H. pylori has also been linked to
non-gastrointestinal diseases, such as autoimmune thrombocytopenia, acne rosacea, and Raynaud’s
syndrome. In addition, several studies have shown an association with cardiovascular disease and
atherosclerosis. Our narrative review aims to investigate the connection between H. pylori infection,
gut microbiota, and extra-gastric diseases, with a particular emphasis on atherosclerosis. We con-
ducted an extensive search on PubMed, Google Scholar, and Scopus, using the keywords “H. pylori”,
“dysbiosis”, “microbiota”, “atherosclerosis”, “cardiovascular disease” in the last ten years. Atheroscle-
rosis is a complex condition in which the arteries thicken or harden due to plaque deposits in the
inner lining of an artery and is associated with several cardiovascular diseases. Recent research has
highlighted the role of the microbiota in the pathogenesis of this group of diseases. H. pylori is able to
both directly influence the onset of atherosclerosis and negatively modulate the microbiota. H. pylori
is an important factor in promoting atherosclerosis. Progress is being made in understanding the
underlying mechanisms, which could open the way to interesting new therapeutic perspectives.

Keywords: atherosclerosis; H. pylori; gut microbiota; Cag-A; inflammation

1. Methodology

In the present narrative review, we want to specifically focus on the interaction between
gut microbiota (GM) and H. pylori in extragastric diseases, and in particular atheroscle-
rosis. To this purpose, we have conducted a literature search on different databases
(PubMed, Google Scholar, Scopus), using the key terms “H. pylori”, “dysbiosis”, “micro-
biota”, “atherosclerosis”, “cardiovascular disease”. We focused our research on in vitro,
animal, and human study. For the critical analysis of our review, we examined the papers
published in the last ten years (2013–2023).

2. Cardiovascular Disease: Risk Factors

Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity
worldwide. According to the World Health Organization (WHO), approximately 18 million
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people die each year from CVDs or their complications [1]. Over the last seventy years, the
incidence of CVDs has increased, replacing communicable diseases as the first cause of
death in the general population [2]. Several studies have investigated the risk factors for
this group of diseases [3–5]. While it is not possible to change any of these factors, there are
others that can be the target of interventions, such us smoking and diet [6,7]. Diet has been
associated with CVDs in many studies. For example, a 2020 study by Xu et al. found that
individuals with a healthier diet had a lower risk of developing CVDs. The Mediterranean
diet has been associated with a protective effect against the development of CVDs [8], while
the Western diet appears to instead promote this group of disorders [9–11]. While the first
studies conducted on this topic suggested a direct link between high fat consumption and
atherosclerosis and lipid accumulation in general, the relationship between cardiovascular
health and diet seems to be more complicated [11]. Diet affects mitochondrial function, but
its influence on inflammation also seems to play a significant role. In mice, for example, it
has been observed that a Western diet is able to single-handedly alter inflammatory path-
ways and innate immune responses and promotes the proliferation of myeloid progenitor
cells [12]. Some components of the Western diet, such as fatty acids and triglycerides, are
directly associated with inflammatory diseases. It has been observed, for instance, that
these elements can trigger inflammation, for instance, through the activation of the NLP3
inflammasome and Toll-like receptor (TLR)-4 [13–15]. The effects of diet on the immune
system are also strongly influenced by the gut microbiota (GM).

2.1. Cardiovascular Disease: The Role of Microbiota

The GM consists of all the microorganisms that live in our gut and is very dynamic
and complex [16]. It exerts several functions that can be broadly divided into metabolic,
mechanical, and immunological. The latter is particularly relevant to our topic, as a close
relationship has been observed between CVDs and inflammation, which is especially
significant in the case of atherosclerosis [17]. GM composition is associated with the
activation of various inflammatory processes, which in turn play a key role in promoting
CVDs. As described by Witkowski et al. [18], metabolites and bacterial products of GM are
able to activate the immune system through specific pathways, which determine specific
effects. In addition, the authors described a general state of dysbiosis in patients with CVDs.
Dysbiosis is a state of imbalance in which a relative abundance of some microbial species
compared to others is observed and is associated with a loss of microbial diversity [19].
Dysbiosis has different effects on the homeostasis of the organism and contributes to
the development of CVDs through different mechanisms. One of the most important
mechanisms by which the microbiota can promote microinflammation and subsequently
CVDs is the production of metabolites that interact with the host immune system. For
example, Lipopolysaccharide (LPS), which makes up the surface glycolipids of Gram-
negative bacteria, is produced by GM and leads to mild inflammation via activation of
various TLRs, particularly TLR-9, -2, and -4, which, as mentioned earlier, are key mediators
in fatty acid-induced inflammation. Proline-rich extensin-like receptor kinases (PERK5) are
instead activated by trimethylamine N-oxide (TMAO), which is derived from the product
of phosphatidylcholine, found in meat and dairy products, and has been associated with
cardio-renal axis changes [20]. The gut-kidney-heart axis is also affected by P-cresol sulfate
and indoxyl sulfate, which are uremic toxins whose metabolism can be modulated by the
composition of GM [21]. In this case, activation of the aryl hydrocarbon receptor (AHR)
expressed by various immune cells leads to an increase in reactive oxygen species (ROS) and
fibrosis, as well as impaired cardiac and renal function [22]. Phenylacetylglutamine (PAG)
is another GM metabolite, which can influence both kidney and CV health: it is metabolized
from phenylamine and determines the activation of adrenergic receptors, promoting high
blood pressure, endothelial dysfunction, and thrombosis [23]. However, GM may also exert
a protective function through the metabolism of bile acids, modulating the metabolism
of lipids and carbohydrates, and reducing inflammation by regulating the activation of
Takeda G-protein-coupled receptor (TGR)-5, liver X receptor (LXR), and farnesol X receptor
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(FXR) [24–26]. Other useful metabolites produced by GM are short-chain fatty acids (SCFAs).
GM metabolizes acetate, propionate, and butyrate, which can modulate G protein-coupled
receptors (GPR)-41 and -43 and olfactory receptor (Olfr)-78. GPR-41 and -43 appear to
have a protective effect against inflammation and obesity [27], while Olfr-78 directly affects
intestinal inflammation [28]. The metabolites described above can also affect the immune
system via the so-called “leaky gut”. In this condition, the intestinal barrier is disrupted,
allowing bacteria and their products to enter the bloodstream. It has been observed that
leaky gut may be associated with an increased risk of CVDs. In particular, those associated
with dysbiosis have been linked to the activation of inflammation, primarily through
the interleukin (IL)-1β pathway [18]. Some microorganisms of the intestinal microbiota,
particularly pathogens, may also directly affect cardiovascular health. In a study by Li
et al. [29], for instance, the presence of C. pneumoniae, P. gingivalis, H. pylori, Cytomegalovirus
(CMV), Epstein–Barr virus (EBV), human immunodeficiency virus (HIV), herpes simplex virus-1
(HSV-1), HSV-2 and hepatitis C virus (HCV), were all associated with an increased risk
of CVDs.

2.2. The Case of Atherosclerosis

Atherosclerosis is a complex disease characterized by the presence of plaques in the
arteries composed of cholesterol, fat, and blood cells [30]. While atherosclerosis has his-
torically been considered primarily a consequence of lifestyle and diet, other hypotheses
have been formulated, and some authors suggest that atherosclerosis may be considered
an inflammatory disorder. Low-density lipoprotein (LDL) cholesterol, hypertension, and
smoking are among the most important risk factors for atherosclerosis, but inflammation is
a prerequisite for the development of the disease. Inflammation plays an important role in
endothelial dysfunction. When the endothelium is damaged, it begins to express several re-
ceptors (e.g., vascular cell adhesion molecule 1-VCAM-1-, Intercellular Adhesion Molecule
1-ICAM-1-, E- and P-selectin), all of which are capable of attracting various immune cells
that further promote the inflammatory process. The cellular components present at the
site of action promote the accumulation of oxidized LDL, which increases the size of the
plaque [31]. As the process progresses, macrophages invade the vessel and promote plaque
rupture by degrading collagen and expressing matrix metalloproteinases (MMPs) [32]. An-
other aspect that must be considered is the role of different specific inflammatory pathways
in the development of atherosclerosis. Whereas the Janus kinase (JAK)-signal transducer
of activators of transcription (STAT) pathway (JAK-STAT) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) are usually activated by cytokine cascades,
TLR-4, another major component of inflammation leading to atherosclerosis, is primarily
activated by bacterial byproducts, more specifically by LPS [33]. The discovery of the
importance of TLR-4 in the pathogenesis of atherosclerosis prompted research on the role
of infections and the gut microbiota in this disease. As mentioned above, several pathogens
have been linked to the development of CVDs and atherosclerosis [29]. Interestingly, one of
the bacteria involved in the pathogenesis of atherosclerosis, Porphyromonas gingivalis, which
is associated with the development of periodontal disease, appears to induce activation of
the NF-κB inflammatory pathway, in addition to TLR-4 [34]. Another finding confirming
the importance of infection is the observation that bacterial DNA may be present in the
atherosclerotic plaque [35]. C. pneumoniae and H. pylori are among the most prevalent.

However, it appears that the microbiota in general plays an important role in the develop-
ment of atherosclerosis, through three different mechanisms, as shown by Jonsson et al. [35].
The first mechanism is the role of GM in the metabolism of cholesterol and lipids, and the
second is the production of specific metabolites that can promote or inhibit the atheroscle-
rotic process. Finally, the composition of GM itself has been linked to the development of
atherosclerosis. Several studies have shown that the presence of Proteobacteria, Actinobac-
teria, and Firmicutes is associated with an increased risk of atherosclerosis, whereas Bac-
teroidetes are more abundant in individuals who do not have atherosclerosis [36]. Overall,
it appears that GM composition can promote the onset and progression of atherosclerosis
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through both metabolic and immunological pathways, in which H. pylori plays a significant
role. These mechanisms are also involved in the onset of other extra-intestinal disorders
associated with this infection, as discussed below.

3. H. pylori: Not Only Gastritis

H. pylori is a Gram-negative, microaerophilic, spiral-shaped bacterium first discovered
in 1982 by Barry J. Marshall and Robin Warren, who subsequently understood its role in the
pathogenesis of gastritis and peptic ulcers [37]. H. pylori is usually found in the stomach,
and although it is considered an extracellular bacterium, it can be localized under the
mucus layer of the gastric epithelium, which allows it to survive in the extremely hostile
environment of the stomach [38]. H. pylori uses several strategies to invade the gastric
mucosa. A key component for mucosal colonization is the use of its flagella, which allow it
to colonize the epithelium, as it has been observed that loss of flagellar function prevents
colonization [39]. Another key component in adhesion and colonization is chemotaxis.
T1pA, B, C, D, and CheA kinase are among the various receptors that allow bacteria to
individualize the areas where urea, histidine, glutamine, glycine, and arginine have higher
concentrations, while avoiding chemo repellent substances (e.g., bile acids) [40]. H. pylori
also expresses adhesion molecules such as blood group antigen-binding adhesin A (BabA),
which enable it to bind to Lewis H-1 antigens [41]. Finally, H. pylori can also bind to
cell adhesion molecules related to carcinoembryonic antigen (CEACAM) 1, 3, 5, and 6
via the HopQ protein, which has also been associated with differences in virulence [42].
The classic manifestation of H. pylori is gastric disease, especially gastritis and peptic
ulcer [43]. Patients with H. pylori infection also have a high incidence of dyspepsia, anemia,
idiopathic thrombocytopenic purpura, and gastric mucosa-associated lymphoid tissue
(MALT) lymphoma and gastric carcinoma [43,44]. H. pylori has been identified as one of the
major factors in the development of gastric carcinoma, both through inflammation, acting
particularly on the Th17 pathway, and hypergastrinemia [45]. Interestingly, however, it
also appears to have a protective effect in esophageal cancer, although the mechanisms
are not entirely clear [46]. Although the most common pathological manifestation of
H. pylori is peptic disease, this does not mean that it cannot affect or even determine
disorders in other systems and organs [47]. H. pylori has indeed been linked to respiratory,
endocrine, cardiovascular, dermatological, neurological, gastrointestinal disorders [48,49].
In respiratory diseases, for example, H. pylori can have positive or negative effects. H. pylori
usually promotes a Th1 and Th17 response in the immune system, while inhibiting the Th2
response; the latter has been associated with the development of allergic diseases [50]. In
infants, for example, it has been observed that early exposure to H. pylori has a protective
effect on the development of asthma [51]. However, other authors have observed that
adults infected with H. pylori have an increased risk of asthma [52]. H. pylori infection has
also been studied in the context of chronic obstructive pulmonary disease. In this case,
infection appears to be associated with worse disease status at baseline, although there
are no statistically significant differences in disease progression [53]. Finally, infection also
appears to affect the progression of lung cancer, particularly non-small cell lung cancer. In
a study by Oster et al. [54], infection with H. pylori was found to be associated with poorer
treatment outcomes, particularly in patients undergoing immunotherapy.

As mentioned earlier, H. pylori has shown a protective effect on esophageal cancer, but
it also has other effects on the gastrointestinal tract. For example, H. pylori has been observed
to be associated with nonalcoholic fatty liver disease (NAFDL) [55]. The hypothesis is
that H. pylori promotes inflammation, which is associated with metabolic syndrome and
obesity [56]. Another interesting association that has been observed is that between H. pylori
infection and HCV. It has been noted that the prevalence of H. pylori is higher in HCV
patients than in the general population, and Okushin et al. [56] have observed that the
infection is associated with hepatocellular carcinoma (HCC), even though the nature of the
association is not yet clear. The effects of H. pylori on the gastrointestinal system are also
mediated by the microbiota, which is more diverse in infected individuals. Although the
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implications of this observation are not clear, chronic low grade inflammation promoted by
H. pylori is thought to promote host resilience to changes in the composition of GM and to
gastrointestinal disease [57].

In a study by Lolekha et al. [58], eradication of H. pylori was found to improve motor
functions in patients with Parkinson’s disease. In Alzheimer’s disease, H. pylori has been
associated with the acceleration of disease progression [59,60]. Another disease in which
H. pylori appears to promote development and progression is Guillain–Barré syndrome
(GBS). GBS is a complex disease characterized by acute ascending paralytic neuropathy.
Patients usually develop the disease after an infection, usually an upper respiratory tract
infection [61]. Dardiotis et al. [62] found that H. pylori antibodies in serum and cerebrospinal
fluid were significantly more abundant in patients with GBS than in the general population.
In contrast, the role of H. pylori in multiple sclerosis is controversial. Several authors have
observed that the prevalence of H. pylori is lower in patients with multiple sclerosis than
in the general population. It has been hypothesized that early infection in childhood may
help prevent the development of autoimmune diseases (“hygiene hypothesis”) [63,64].
However, a meta-analysis by Arjmandi et al. [65], found that active H. pylori infection may
promote the development of multiple sclerosis. H. pylori infection also appears to be linked
to a more common ailment in the general population, headaches. The association has been
known for over twenty years [66] and in a recent study by Bawand et al. [67] it has even
been observed that detection and eradication of the infection is an effective treatment for
patients suffering from migraine.

The links between H. pylori and cardiovascular disease, especially atherosclerosis,
are discussed in the following section. In Figure 1 a short summary of the extra gastric
manifestations of H. pylori.
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Figure 1. Extra gastric manifestations of H. pylori. COPD: chronic obstructive pulmonary disease;
GBS: Guillain–Barré syndrome; HCC: hepatocellular carcinoma; HIV: human immunodeficiency virus;
MS: multiple sclerosis; NAFDL: non-alcoholic liver disease; NSCLC: non-small cell lung carcinoma.

4. H. pylori and Atherosclerosis

The first reports of a link between atherosclerosis and H. pylori date from the mid-1990s.
While there was no clear explanation of the underlying mechanisms at that time, some
authors began to suggest that the inflammation triggered by the infection might be the main
player in this relationship [68]. H. pylori can cause an inflammatory response via several
pathways. LPS is a component of the outer bacterial membrane of Gram-negative bacteria
and activates a Th1 response. However, in H. pylori infection, it has been observed that both
a Th1 and a Th2 immune response occur. The latter is likely activated by the dendritic cell-
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specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) lectin pathway,
which allows H. pylori to induce low-grade inflammation that is less damaging to the
gastric mucosa but facilitates colonization [69]. The Th1 immune response to H. pylori is
also mediated by other components of the bacterium, such as neutrophil-activating protein
(HP-NAP). These monomers are released after autolysis and directly activate monocytes
and neutrophil granulocytes, which promote the release of IL-8, macrophage inflammatory
protein (MIP)-1α, and MIP-1. Monocytes differentiate into dendritic cells (DCs) and begin
to produce IL-12 and IL-23. Developing inflammation stimulates mast cells, which begin
to produce IL-6 and TNF-α and promote differentiation of T lymphocytes toward Th1
patterns [70]. Vacuolating cytotoxin (VacA) is another key component in modulating the
immune response to H. pylori infection. On the one hand, it promotes the production of
cytokines such as TNF-α, MIP-1α, IL-1, IL-6, IL-10, and IL-13 by activating mast cells; at
the same time, it inhibits the proliferation and differentiation of T lymphocytes [71]. In
the following paragraphs we will discuss the most peculiar mechanisms through which
H. pylori and atherosclerosis are linked.

4.1. Cytotoxin-Associated Gene Antigen and Atherosclerosis

Cytotoxin-associated gene antigen (CagA) is an important virulence factor for H. pylori.
This protein is carried into host cells by the bacterial type IV secretion system where it
interacts with the host cellular regulation pathway [72].

CagA is able to restrict autophagy in host cells and instead promotes the production
of cytokines, specifically IL-1α, IL-8, and IL-18. The pathway by which CagA is able to
exert these effects is through the activation of c-Met, which activates the PI3K/AKT/mTOR
pathway. The inhibition of autophagy is also accompanied by the accumulation of the
sequestrosome (SQSTM)-1 protein, which increases the production of NF-κB-dependent
cytokines [73]. CagA is associated with low-grade chronic inflammation and, as reported
by Xia et al. [74], the induction of reactive oxygen species (ROS), which affect the endothe-
lium, and could explain why infection with CagA+ strains of H. pylori is more likely to
lead to atherosclerosis. Another hypothesis is that anti-CagA antibodies may cross-react
with smooth muscle proteins and other cell types responsible for the development of
atherosclerosis [75]. Other researchers have demonstrated that CagA antibodies cross-react
with two endothelial proteins that have not yet been characterized [76]. Nevertheless,
the cross-mimicry between H. pylori and host antigens has the potential to trigger the
inflammatory processes typically associated with the endothelial layer, contributing to the
development of atherosclerotic plaques. In particular, cross-reactivity may occur between
antibodies to lipopolysaccharide binding protein (LBP) and antibodies to H. pylori heat
shock protein 60 (HSP60) and antigens of the endothelium and arterial smooth muscle. In
such a scenario, the damage to the endothelium could be mediated by increased activation
of the complement protein response [77].

A study by Amedei et al. also highlighted that CagA+ strains of H. pylori have a
higher capacity to induce IL-6 production [78]. IL-6 is reportedly associated with age-
ing of both vascular and myeloid cells, which may reinforce each other and promote
atherosclerosis [79,80]. Another effect of CagA that likely plays a role in atherosclerosis is
its ability to induce macrophage cell formation by downregulating the expression of the
transcription factors peroxisome proliferator-activated receptor (PPAR)γ and liver-X recep-
tor (LXR)α [81]. Recently, it has been shown that gastric epithelial cells injected with CagA
via the bacterial type IV secretion system, release exosomes containing this protein into the
systemic circulation. Exosomes facilitate the transport of CagA into endothelial cells [82]. In
a related study, the same research group showed that transgenic mice expressing the CagA
on their endothelial cells developed preatherogenic lesions in the aorta when exposed to a
high-fat diet. In contrast, non-transgenic mice exposed to the same dietary regimen did
not exhibit these changes. Specifically, the aorta of the transgenic mice showed an increase
in the thickness of the tunica media and a decrease in its elasticity, which were due to the
deposition of extracellular matrix and a decrease in the concentration of elastase in the
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wall. Furthermore, when the high-fat diet was administered for a longer period, mice with
CagA-expressing endothelial cells showed greater macrophage infiltration and develop-
ment of atherosclerotic plaques [83]. Infection with CagA-positive H. pylori strains has been
associated with the increased expression of endothelial adhesion molecules such as ICAM-1
and VCAM-1. These molecules are able to bind to circulating monocytes, which facilitates
the infiltration of the endothelium by macrophages. The increased expression of adhesion
molecules is triggered by the activation of the NLRP3/Caspase-1/IL-1β pathway. Conse-
quently, this activation leads to an increase in IL-6 production, which further promotes local
inflammation and contributes, in association with macrophage infiltrate, to the progression
of atherosclerosis [84]. Furthermore, in vitro experiments with human endothelial cells
expressing CagA showed morphological changes and activation of the proinflammatory
transcription factor STAT3, which is involved in the pathogenesis of atherosclerosis [83,85].
The presence of CagA in the vasa vasorum of the aorta in human patients was confirmed by
immunohistochemical staining performed on samples obtained after surgical asportation
of the aorta [86]. It has been shown that a peculiar polymorphism of IL-1 was related to
endothelial injury and to the risk of cardiovascular disease in CagA positive patients [86].
Another group of researchers confirmed these findings. They observed in an animal model
that gastric infection with CagA-positive H. pylori strains led to increased susceptibility to
intimal thickening in the arteries, which was associated with the release of CagA-containing
exosomes into the bloodstream. Remarkably, the damage that these exosomes caused to
the aortic wall appeared to be caused by the generation of ROS [74]. Shi et al. observed that
H. pylori was most important in individuals younger than 60 years and without other risk
factors. Specifically, H. pylori infection was associated with increased carotid intima-media
thickness, particularly in CagA+ strains [87]. Consequently, we can establish a link between
these studies and conclude that activation of the STAT3 system by CagA at the endothelial
level triggers an inflammatory response with the production of ROS. The ROS in turn
damage the arterial walls, attract macrophage infiltrates, and contribute to the deposition
of fat, eventually leading to the formation of atherosclerotic plaques [85]. It was also found
that the vesicles of the outer membrane of the bacterium can transport pathogenic factors
to the endothelium and thus promote the development of atherosclerosis [88].

4.2. H. pylori, Inflammation and Hypercholesterolemia

There are also other mechanisms linking atherosclerosis and H. pylori infection, among
which hypercholesterolaemia is one of the most significant. Numerous studies have shown
that levels of low-density lipoprotein (LDL) and plasma cholesterol are increased in indi-
viduals with H. pylori infection. This increase can be attributed to the affinity between CagA
and the LDL receptor (RLDL). The spread of CagA in the human body via exosomes from
the stomach could potentially cause it to bind to RLDL, preventing LDL cholesterol from
being effectively taken up by cells. This interference with the uptake of LDL cholesterol
from the bloodstream can lead to hypercholesterolaemia, which is an important risk factor
for atherosclerosis and cardiovascular disease [89]. On the contrary, H. pylori gastritis
has been associated with a reduction in high density lipoprotein (HDL) levels, which is a
protective factor against the occurrence of cardiovascular disease and atherosclerosis [90].

Foam cells are essential for the initiation of the atherosclerotic process [91]. H. pylori
also induces other inflammatory responses in the host that are not always associated with
specific components of the bacterium but are nonetheless critical in promoting the inflam-
matory milieu that links atherosclerosis and H. pylori infection. Patients with H. pylori
infection have higher levels of IL-18. IL-18 is a proinflammatory cytokine that can modulate
IFN-γ production and NK cell activity while upregulating FasL expression. These various
functions have previously been linked to endothelial dysfunction associated with inflam-
matory kidney disease [92]. IL-18 is also part of the complex pathway involving the NLRP3
inflammasome and pyroptosis. Pyroptosis, a programmed cell death promoted by caspases,
is activated by the NLRP3 inflammasome in response to oxidative stress and ROS and deter-
mines downstream production of inflammatory proteins, such as IL-18. In an experiment
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described by Wu et al. [93], inhibition of this pathway was found to significantly reduce
the risk of atherosclerosis in smokers, highlighting its importance in the pathogenesis of
the disease. The interaction between NLRP3 and H. pylori also involves the production
of ROS. It has been observed that H. pylori infection is associated with an increase in the
levels of ROS through the activation of NADPH oxidase in an inflammation-independent
manner. The increase in levels of ROS is associated with activation of NF-κB pathway and
interferes with the activity of the PI3K/Akt pathway, a key component in the regulation of
important cellular activities [94]. As mentioned above, H. pylori can promote a change in the
composition of the microbiota (dysbiosis), leading to inflammation of the endothelium and
atherosclerosis [95]. While the inflammatory pathway that H. pylori can directly activate
offers an interesting explanation for how it may determine the onset of atherosclerosis, it is
worth noting that modulation of the microbiota may act as another factor in pathogenesis.
Specifically, H. pylori infection modulates the production of gastrokine (GKN)-1, a protein
involved in mucosal repair and healing. Patients infected with H. pylori have lower levels
of GKN-1, which may not only impair intestinal mucosal healing and promote the develop-
ment of leaky gut, but also directly affect intestinal eubiosis [96]. Interestingly, the effects of
H. pylori seem to mainly involve Firmicutes that can produce TMA and TMAO, which are
associated with endothelial dysfunction and atherosclerosis [97].

4.3. H. pylori: Interaction with Platelets Aggregation

Inflammation is not the only mechanism by which H. pylori may promote atherosclero-
sis. As described by Takeuchi et al. [98], H. pylori infection is capable of activating platelets,
although the mechanisms are not completely clear. One hypothesis suggests that H. pylori
may promote the interaction between von Willebrand factor and platelet surface glycopro-
teins Ib/IX through anti-H. pylori IgG and IgG receptors (FcgRIIA) [99]. Another theory is
that Lpp20, a lipoprotein bound to the outer membrane of the bacterium, can form immune
complexes with platelets to which the host immune system can respond and determine
platelet activation [100]. Lpp20 is normally found in extracellular vesicles, which have
been linked to the pathogenesis of atherosclerosis in H. pylori infections. An additional
mechanism that may be responsible for platelet activation by H. pylori is proposed based on
a study conducted in rabbits. This study highlights that platelet activation and aggregation
triggered by H. pylori ureases (specifically urease A and B) occurs via a different mechanism
that is not initiated by platelet aggregation factor (PAF). Instead, it involves the activation
of 12-lipoxygenase and L-type calcium channels [101].

4.4. H. pylori and Other Mechanisms Affecting Atherosclerosis

H. pylori has also been associated with alterations in lipid metabolism. In a study by
Wang et al., eradication was found to improve the lipid profile of patients with dyslipi-
demia [102]. H. pylori also significantly affects HDL levels, and HDL levels increase after
eradication [103]. Finally, homocysteine has also been investigated as a possible agent
through which H. pylori may be able to promote atherosclerosis. It has indeed been ob-
served that H. pylori infection can promote hyperomocysteinaemia, a known risk factor in
the development of atherosclerosis [104]. Yet, as some authors suggest, there is no available
evidence confirming the relationship between these two events [105]. A summary of the
different mechanisms linking atherosclerosis and H. pylori is reported in Table 1.
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Table 1. H. pylori and atherosclerosis: overview of pathogenic mechanisms.

Pathogenic Pathway Effect Model Reference

LPS
Th1/Th2-activation

Low grade inflammation through DCSIGN/lectin
pathway

Murine [69]

HP-NAP

IL-8, IL-12, IL-23 ↑
MIP-1α, and MIP-1 ↑
Mast cell activation

Increased IL-6 and TNF-α

In vitro
Murine [70]

VacA TNF-α, MIP-1α, IL-1, IL-6, IL-10, and IL-1 ↑
Inhibited differentiation of T lymphocytes

In vitro
Murine
Human

[71]

CagA

Autophagy in host cells ↓
IL-1α, IL-6, IL-8, and IL-18 ↑

c-Met activation
PI3K/AKT/mTOR pathway activation

Accumulation of SQSTM1
ROS ↑

Cross-reactivity
PPARγ and LXRα ↑

Foam cells ↑

In vitro
Murine
Human

[73–75,78–81,91]

NLRP3

Pyroptosis ↑
ROS ↑

Activation NADPH oxidase
NF-κB pathway activation

PI3K/Akt pathway activation

In vitro
Murine [94]

GKN-1

Microbiota modulation
Leaky gut

Firmicutes↑
TMA/TMAO↑

Human [96]

Platelet activation
Interaction between von Willebrand factor and platelet

surface glycoproteins Ib/IX ↑
12-lipoxigenase pathway

Rabbit
Human [100,101]

Lpp20 Platelet immune complexes Human [100]

Extracellular vesicles
Outer membrane vesicles Transport of pathogenic factors Murine

Human [88,106]

Lipid metabolism HDL ↑ after eradication
In vitro
Murine
Human

[103]

5. Future Perspective

The importance of the association between H. pylori and atherosclerotic disease might
lead to the hypothesis that eradication could improve patient prognosis, but results are
inconsistent. While eradication should theoretically provide metabolic health benefits [107],
some studies have shown that eradication is associated with lower mortality and improved
CVD outcomes in younger patients. In patients over 65 years of age, these effects have not
been as clear [74]. In a study by Aydemir et al. [108], on the other hand, it appears that
eradication positively affects the synthesis of nitric oxide, which is an important regulator
of vascular tone, and it could have a positive effect on the progression of atherosclerosis.
Another interesting study by Iwai et al. [109] shows another positive effect after eradica-
tion. The authors found that in patients undergoing eradication therapy, HDL cholesterol
increased significantly, while LDL, platelets, and leukocytes were reduced. The LDL/HDL
ratio, which is an important marker of atherosclerosis risk, was thus significantly reduced.
Similar results were also observed by Kanbay et al. [110], who also found a decrease in
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C-reactive protein in patients after H. pylori eradication. Eradication also improves overall
endothelial health. In patients who had hypertension and were infected with H. pylori,
there was a decrease in blood pressure and an overall improvement in endothelial function
in those who responded to antibiotic therapy [111]. One aspect that must be considered
when discussing the potential benefits of eradication therapy is the high incidence of
antibiotic-resistant H. pylori strains in the general population [112]. In a recent review of the
literature, Nista et al. [113] observed for instance that in Italy the rate of antibiotic resistance
is so high to even be worth considering clarithromycin quadruple therapy as a first-line
treatment [113]. Antibiotic resistance is obviously a problem because of the difficulties it
creates to eradicate infection [114], but also because patients have to then undergo multiple
therapy lines, which creates problems in itself [115]. In particular, antibiotics have a dis-
ruptive effect on the GM, which, as discussed above, plays a role in the development of
atherosclerosis [116].

6. Conclusions

We described several mechanisms connecting H. pylori and the gut microbiota to
atherosclerosis. Based on the recent literature, it’s highly likely that H. pylori infection plays
a role in the development of atherosclerosis, either directly or indirectly by influencing
known risk factors. The conflicting results from clinical studies on the impact of eradi-
cating the infection on cardiovascular risk may be due to the adverse effects of antibiotic
treatments on the gut microbiota that can contribute to development of cardiovascular
disease. Therefore, further studies are needed to investigate not only H. pylori eradication
but also the potential intricate consequences of eradication therapy on atherosclerosis and
cardiovascular diseases.
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