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Abstract: MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of
atherosclerotic coronary artery disease (CAD) development. Objective: To evaluate the expression
of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1,
WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries
(INOCA). Method: The cross-sectional observational study comprised 94 subjects. The expression of
miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6,
and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25%
men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers
without risk factors for cardiovascular diseases (CVD). Results: Higher levels of WNT1 (0.189 [0.184;
0.193] ng/mL vs. 0.15 [0.15–0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07;
0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA
group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112;
0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001).
MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001),
whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012)
and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with
WNT1 (r = −0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive
correlation between miR-145 expression and the WNT4 protein level was observed in patients with
obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model
was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent
predictors of INOCA (p < 0.001 and p = 0.002, respectively). Conclusions: Activation of the canonical
cascade of WNT-β-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and
control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a
has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved
in the development of coronary artery obstruction, presumably through the regulation of the WNT4
protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the
type of coronary artery lesion.
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1. Introduction

According to the World Health Organization, coronary artery disease (CAD) occupies a
leading position among the ten main causes of death in the world (2019) [1]. The morbidity
of CAD continues to remain at an extremely high level. In 2020, about 244.1 million people
worldwide suffered from CAD, and the death rate was 8.95 million [2]. The high prevalence of
CAD in the population is caused by many well-known factors. The epigenetic component is of
particular interest among them because of its important role in the regulation of atherosclerotic
lesions of the coronary arteries (CA) [3,4]. The effect of the WNT/β-catenin cascade on
the progression of atherosclerosis has been confirmed in several studies, and the regulation
of arterial calcification mediated by the WNT signaling pathway additionally confirms its
participation in the coronary lesions and the development of CAD [5,6].

The WNT cascade consists of 19 genes encoding lipoproteins of the WNT family [7] and
is divided into canonical and non-canonical pathways. The non-canonical WNT pathway
is independent of the β-catenin factor. In contrast, the canonical WNT pathway involves
the translocation of β-catenin into the nucleus with subsequent activation of various target
genes of such protein transcription factors as TCF, LEF (T-cell factor/lymphoid enhancer
factor), and others [8,9]. The canonical WNT pathways (for example, WNT1 and WNT3a)
mainly control cell proliferation and differentiation of myofibroblasts, thereby contributing
to fibrogenesis. In contrast, the non-canonical WNT pathways (for example, WNT4 and
WNT5a) regulate cell polarity and migration [10,11]. In vivo studies have established the
role of the WNT pathway at all stages of atherosclerosis development. However, much
of its pathogenesis remains poorly described or contradictory [12]. Wnt1 induces cardiac
fibroblast proliferation and expression of pro-fibrotic genes. WNT4 promotes smooth
muscle cell proliferation and migration. WNT1, WNT4, and WN7A expression significantly
increased after myocardium infarction [13]. It was experimentally demonstrated that
WNT5a limits the deposition of cholesterol in the arterial walls by activating the mechanism
of its reverse transport [14]. Recent studies have demonstrated the important role of
WNT5A in the regulation of endothelial permeability [15]. WNT5a suppresses vascular
smooth muscle cell (VSMC) apoptosis caused by oxidative stress by inducing WNT1-
inducible secreted protein-1 (WISP-1) [16]. WNT3A has an anti-inflammatory effect by
suppressing GSK3ß. Both WNT3A and WNT5A have been shown to activate nuclear
transcription factor (NF-KB) in mouse and human macrophages [17]. WNT5A activates
β-catenin-independent signaling in endothelial cells (EC) and enhances angiogenesis by
increasing their proliferation and survival [18,19].

Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-
density lipoprotein receptor (LDLR) family and influences the process of lipoprotein en-
docytosis [20]. Phosphorylation of LRP6 is involved in the activation of WNT/β-catenin
signaling [21]. Patients with the LRP6-R611C mutation had extremely high plasma choles-
terol levels, and common variants of the LRP6 gene were also associated with a moderate
increase in LDL cholesterol levels in plasma in the general population. LRP6 provides
key protection against dyslipidemia and atherosclerosis [22]. According to several stud-
ies, there is a negative correlation between LRP6 and the expression of various miRNAs.
Thus, ectopic overexpression of miR-21 by antagomirs (synthetic RNAs that are completely
complementary to specific miRNA targets and, therefore, can inactivate them) leads to
increased LRP6 protein levels. That causes the activation of the WNT signaling pathway
and consequently decreases inflammation and lipid deposition in the liver [23].

The expression of most components involved in signal transmission through the WNT
cascade is controlled by microRNAs (miRNAs), resulting in highly dynamic post-transcriptional
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regulation, and its aberrations ultimately lead to the development of diseases [24]. MiRNAs
can act as diagnostic markers of CVD associated with atherosclerosis [25]. According to the
research data, several of them have already been identified. For example, downregulation of
miR-21 in macrophages enhances the expression of proinflammatory cytokines TNF-a (tumor
necrosis factor-alpha), IL-6 (interleukin-6), and IL-1b (interleukin-1 beta). Moreover, protein
levels of COX-2 (cyclooxygenase-2) and the induced isoform of nitric oxide synthase (iNOS)
were increased in macrophages of bone marrow origin (BMDM) with miR-21 deficiency after
their treatment with lipopolysaccharides. Thus, miR-21 deficiency in hematopoietic cells con-
tributes to the progression of atherosclerosis and enhances plaque remodeling with thinning
of the fibrous capsule, which clinically leads to an increased number of adverse cardiovascular
events [26]. The other study revealed that miR-21 enhances the adhesion of monocytes to
endothelial cells and, consequently, leads to the development of inflammation of the vascular
wall [27]. It confirms the involvement of miR-21 in proinflammatory and proatherosclerotic
processes through activation of VCAM-1 (vascular cellular adhesion molecule-1), ICAM-1
(intercellular adhesion molecule 1), and MCP1 (monocyte chemotactic protein-1) by affect-
ing various signaling pathways [28]. Therefore, the role of miR-21 in the pathogenesis of
atherosclerosis remains controversial.

MiRNAs could be one of the most promising epigenetic markers not only for diagnosis
but also for determining the prognosis of CAD. MiRNAs are a class of small non-coding
RNAs of 18–25 nucleotides in length [29,30]. They can regulate the development of CAD
by regulating various processes, such as modulation of angiogenesis (miR-92a-3p, miR-939,
and miR-206), inflammatory reactions (miR-181a-5p, miR-181a-3p, miR-216a, and miR-383-
3p), leukocyte adhesion (miR-21 and miR-25), and vascular smooth muscle cell (VSMC)
activity (miR-574-5p) [11].

Sirtuin-1 (SIRT1) is a class III histone/protein deacetylase [31]. Its overexpression can
increase cell proliferation and significantly suppress apoptosis. Overexpression of SIRT1 has
been confirmed to inhibit the contraction and proliferation of VSMC [32]. According to the
conducted studies, SIRT1 increases nitric oxide (NO) production by activating endothelial
nitric oxide synthase (eNOS), which leads to vasodilation and a decrease in endothelial
dysfunction degree [33,34]. Overexpression of miR-34a and miR-217 contributes to the
progression of endothelial dysfunction by suppressing SIRT1 [35,36]. SIRT1 is involved
in the regulation of oxidative stress processes. Also, it suppresses inflammation in the
vascular wall by reducing the activity of NF-κB (nuclear factor kappa-light-chain-enhancer
of activated B cells) [37]. In the experimental model, it was established that SIRT1 regulates
autophagy and apoptosis of ischemic cardiomyocytes by activating AMP-activated protein
kinase (AMPK) and also suppresses the production of foam cells and, thereby, prevents the
progression of atherosclerosis [38].

It seems promising to conduct a study on the epigenetic regulation of the WNT
signaling cascade by miRNAs in the cardiovascular system, including atherosclerosis of
CA, which eventually leads to the development of severe complications (acute myocardial
infarction, left ventricular aneurysm, acute and chronic heart failure, sudden cardiac death).
In this study, we address the role of miR-21a, miR-145, and miR-221 and their correlations
with protein levels of some members of the WNT and SIRT1 cascade.

According to the literature, there is limited data on miRNA expression in patients with
CAD, including ischemia with no obstructive coronary arteries (INOCA) [39,40]. It should
be noted that in these studies, the concentrations of proteins of the WNT signaling pathway
in patients with non-obstructive CAD were not additionally studied, and the analysis of
the possible relationship between the expression of miRNAs and WNT proteins, SIRT1 and
LRP6 in these groups of patients was not carried out.

The aim of the study: Epigenetic regulation of WNT-family proteins by miRNA-21a,
miRNA-145, and miRNA-221 can mediate coronary artery disease pathogenesis. We aimed
to evaluate the levels of these miRNAs, WNT-proteins (WNT1, -3a, -4, -5a), and LRP6 in
adults with coronary artery disease against a control population.
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2. Results
2.1. Basic Clinical Characteristics

All plasma samples were obtained from patients hospitalized in the cardiology de-
partment with chest pain and shortness of breath who have undergone physical activity
tests (stress Echo-CG, myocardial scintigraphy, and cardiac MRI with stress test) to verify
the diagnosis of CAD. Patients with confirmed myocardial ischemia further underwent
imaging of the CA (coronary angiography or MSCT of the coronary arteries) to address
the need for their revascularization. The study included 64 patients, who were divided
into two groups depending on the degree of CA obstruction: group 1—patients with hemo-
dynamically insignificant stenosis (INOCA, stenosis < 50%), and group 2—patients with
CA obstruction (obstructive CAD, stenosis > 50%). The third group (control) comprised
30 healthy volunteers without CVD risk factors. The design of the study is presented
in Figure 1.
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Figure 1. The design of the study.

The general clinical and demographic characteristics of the groups are summarized in
Table 1. The investigated groups differed in age and BMI from the control group. In the
group of patients with INOCA, women prevailed in a ratio 3:1 (75% women vs. 25% men).
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Table 1. Basic clinical characteristics.

All CAD
(n = 64)

INOCA
(n = 20)

Obstructive CAD
(n = 44)

Control
(n = 30) p-Value

Men (%) 33 (51.6) 5 (25) 28 (63.6) 10 (33.3) 0.004 *
p INOCA–obstructive CAD = 0.012
p obstructive CAD–Control = 0.021Women (%) 31 (48.4) 15 (75) 16 (36.4) 20 (66.7)

Age (year) 65 [59; 71] 66.5
[62.8; 71.2]

64.0
[56.5; 71]

28.5
[26; 39.2]

<0.001 *
p control–INOCA < 0.001

p control–obstructive CAD < 0.001

BMI (kg/m2) 26.7 [24.9; 28.8] 26.20 [25.67; 30.40] 26.23 [24.68; 28.68] 21.95 [20.75; 25.23]
<0.001 *

p control–INOCA = 0.003
p control–obstructive CAD = 0.003

Smoking (%) 9 (14) 3 (15.0) 6 (13.6) - 0.879

Hemoglobin (g/L) 142 [133; 152] 142 [134; 151] 144 [133; 152] 136 [129; 152] 0.459

Glucose (mmol/L) 5.5 [5.17; 5.8] 5.60 [5.2; 6.21] 5.40 [5.1; 5.63] 4.9 [4.59; 5.35] <0.001

Creatinine (µmol/L) 89 [78.2; 99.2] 83.4 [74.8; 96.3] 89.80 [81; 101.8] 82 [77.7; 87] 0.106

Total cholesterol (mmol/L) 4.39 ± 1.36 5.11 ± 1.51 3.85 ± 0.95 4.87 ± 0.77
<0.001 *

p INOCA– obstructive CAD = 0.005
p obstructive CAD–Control < 0.001

LDL (mmol/L) 2.36 [1.85; 2.97] 2.89 [4.34; 3.62] 2.12 [1.79; 2.48] 2.54 [2.28; 3.21]
<0.001 *

p obstructive CAD–INOCA < 0.001
p control–obstructive CAD = 0.049

HDL (mmol/L) 1.15 [1.02; 1.36] 1.27 [1.06; 1.37] 1.11 [1.02; 1.33] 1.62 [1.35; 1.9]
<0.001 *

p control–INOCA = 0.015
p control–obstructive CAD < 0.001

* Statistically significant p < 0.05; n—number of patients in the group; CAD—coronary artery disease; INOCA—ischemia with no obstructive coronary arteries; BMI—body mass index;
LDL—low density lipoproteins; HDL—high density lipoproteins.
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All patients received the recommended therapy according to the national and inter-
national clinical guidelines (Table 2). The differences in total cholesterol and low-density
lipoproteins (LDL) levels between the groups are most likely determined by the better
results in reducing the level of total cholesterol and LDL in patients with obstructive CAD
who were treated with higher doses of statins. The analysis of the daily dose of statins
revealed statistically significant differences (p = 0.02) between the groups depending on the
type of CA lesions.

Table 2. CAD patients’ therapy characteristics.

INOCA Obstructive CAD p-Value

ACE inhibitors 9 (45.0) 27 (62.8) 0.184
ARB II 6 (30.0) 10 (23.3) 0.567

Beta-blocker 17 (85.0) 34 (79.1) 0.737
Calcium channel blockers 11 (55.0) 18 (41.9) 0.33

Antiaggregants 16 (80.0) 40 (93.0) 0.195
Antiarrhythmic drugs 3 (10.3) 6 (20.0) 0.237

HMG-CoA reductase inhibitors 19 (95.0) 44 (100.0) 0.323
Anticoagulants 4 (15) 6 (13.6) 1.000

ACE inhibitors—angiotensin-converting enzyme inhibitors; ARB II—angiotensin II receptor blockers.

2.2. Concentration of WNT Proteins in Plasma

According to the results of the study, significant differences in the concentration of
WNT1, WNT3A, WNT4, WNT5a, and SIRT 1 were revealed not only when compared with
the control group but also between the variants of CADs (obstructive and non-obstructive).
When analyzing the results in the groups, higher levels of WNT1 and WNT3a proteins were
noted in patients with CAD and obstructive CA lesions. The obstructive CAD group was
markedly lower in WNT4 and WNT5a expression versus the INOCA and control groups,
which were almost identical. The level of SIRT1 was significantly higher in the INOCA
group (as well as in the control group) versus oCAD. The concentration of LRP6 in the
study groups did not differ significantly (Table 3).

Table 3. The concentration of WNT proteins in plasma.

Proteins Groups Concentration
(Me [Q1–Q3]) p-Value

LRP6, ng/mL
INOCA 13.02 [12.05–13.7]

0.075Obstructive CAD 11.60 [10.5–12.88]
Control 12.55 [10.28–14.17]

WNT1, ng/mL
INOCA 0.15 [0.15–0.16] <0.001 *

p obstructive CAD–INOCA < 0.001
p control–INOCA = 0.036
p control–CAD < 0.001

Obstructive CAD 0.189 [0.184–0.193]

Control 0.15 [0.15–0.184]

WNT3a, ng/mL
INOCA 0.115 [0.07–0.16] <0.001 *

p obstructive CAD–INOCA < 0.001
p control–INOCA < 0.001

Obstructive CAD 0.227 [0.181–0.252]
Control 0.25 [0.162–0.37]

WNT4, ng/mL
INOCA 0.345 [0.278–0.492] 0.015 *

p obstructive CAD–INOCA = 0.025
p control–obstructive CAD = 0.047

Obstructive CAD 0.203 [0.112–0.378]
Control 0.345 [0.232–0.528]

WNT5a, ng/mL
INOCA 0.17 [0.16–0.17] <0.001 *

p obstructive CAD–INOCA < 0.001
p control–obstructive CAD = 0.001

Obstructive CAD 0.01 [0.007–0.018]
Control 0.16 [0.015–0.17]

SIRT1, ng/mL
INOCA 1.09 [1.09–1.1] <0.001 *

p obstructive CAD–INOCA < 0.001
p control–INOCA = 0.012

p control–obstructive CAD = 0.007
Obstructive CAD 0.079 [0.066–0.104]

Control 1.09 [0.035–1.1]

* Statistically significant p < 0.05; CAD—coronary artery disease; INOCA—ischemia with no obstructive coronary
arteries; LRP6—LDL receptor-related protein 6; SIRT1—sirtuin 1.
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2.3. MiRNA Expression in Plasma of Patients with CAD

The expression level of miR-221 was significantly higher in all patients with CAD
(obstructive and non-obstructive) in comparison with the control group (p < 0.001). In
contrast, the expression of miR-21a was significantly higher in the control group than in
the obstructive CAD (p = 0.012) and INOCA (p = 0.003) (Figure 2). The expression level of
miR-145 was not significantly different between the groups (p = 0.069).
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Figure 2. MiR expression in plasma of CAD patients and healthy volunteers (control). All values
are presented as the median and CI. Statistically significant p < 0.05; CAD—coronary artery disease,
INOCA—ischemia with no obstructive coronary arteries.
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2.4. Correlations of WNT Proteins with Circulating miRNAs

Correlation analysis revealed weak associations between miR-21a expression and
protein levels of WNT1 (r = -0.32; p = 0.028) and moderate linkage with SIRT1 (r = 0.399;
p = 0.005) in patients with stable CAD (all CAD groups). MiR-145 expression was correlated
with WNT4 protein concentration in patients with CAD and hemodynamically significant
CA stenosis (r = 0.436; p = 0.016). However, no significant correlations between miRNA
expression and WNT proteins were determined in the group of INOCA.

Univariate logistic regression determined concentrations of LRP6 and WNT3a as
significant predictors of INOCA. The results of univariate logistic regression are presented
in Table 4.

Table 4. Univariate logistic regression analysis between obstructive CAD and INOCA groups.

Factor/Predictor B OR (95%CI)
Exp (B) [95%CI] p-Value

miR-21a (REU) −2.568 0.077 [0.001. 5.757] p = 0.244
miR-145 (REU) −2.02 0.133 [0.0. 62.492] p = 0.520
miR-221 (REU) −1.122 0.326 [0.0. 283.87] p = 0.745
LRP6 (ng/mL) 0.475 1.608 [1.037. 2.494] p = 0.034 *

WNT1 (ng/mL) −1808.16 0.0 [0.0. inf] p = 0.999
WNT3A (ng/mL) −30.917 0.0 [0.0. 0.00005] p = 0.001 *
WNT4 (ng/mL) −0.321 0.725 [0.368. 1.429] p = 0.354
WNT5a (ng/mL) 2.466 11.775 [0.298. 465.105] p = 0.188
SIRT1 (ng/mL) 64.169 7.38e + 27 [0.0. inf] p = 0.994

Age (years) 0.036 1.037 [0.969. 1.11] p = 0.297
Smoking (n) 0.111 1.117 [0.25. 5.005] p = 0.884

Gender (male/female) −1.658 0.191 [0.058. 0.622] p = 0.006 *
BMI (kg/m2) 0.041 1.042 [0.891. 1.218] p = 0.605

Hypertension (n) 0.329 1.39 [0.136. 14.255] p = 0.781
Dyslipidemia (n) 0.329 1.39 [0.136. 14.255] p = 0.781
Angina pain (n) 0.542 1.719 [0.417. 7.084] p = 0.454

Myocardial infarction (n) −1.923 0.146 [0.03. 0.708] p = 0.017 *
ACE inhibitors −0.724 0.485 [0.165. 1.422] p = 0.187

ARB II 0.347 1.415 [0.43. 4.647] p = 0.568
Beta blockers 0.405 1.499 [0.359. 6.271] p = 0.579

Calcium channel blockers 0.529 1.697 [0.583. 4.945] p = 0.332
Antiaggregant −1.204 0.3 [0.06. 1.494] p = 0.142

Statins −21.683 0.0 [0.0. inf] p = 0.999
Fasting glucose (mmol/l) −0.021 0.979 [0.898. 1.067] p = 0.635

* Statistically significant p < 0.05; CAD—coronary artery disease, INOCA—ischemia with no obstructive coronary
arteries; LRP6—LDL receptor-related protein 6; SIRT1—sirtuin 1; BMI—body mass index; ACE inhibitors—
angiotensin-converting enzyme inhibitors; ARB II—angiotensin II receptor blockers.

Multivariate regression analysis allowed for obtaining a mathematical model predict-
ing the type of coronary lesion. Table 5 demonstrates that WNT3a and LRP6 are significant
independent predictors of the degree of CA obstruction.

Table 5. Multivariate logistic regression analysis between CAD and INOCA groups.

Variables Coef (B) Exp (B) p-Value

LRP6, ng/mL 0.451 1.57 [1.17. 2.09] p = 0.002 *
WNT3a, ng/mL −34.4454 0.0 [0.0. 0.00001] p < 0.001

* Statistically significant p < 0.05.

This ROC curve predicts coronary lesions in patients with stable CAD (cut-off = 0.35)
with sensitivity 83.3% [66.7%; 95.5%], specificity 83.3% [71.0%; 93.3%], ROC-AUC = 92.6%
[82.9%; 99.0%]. If the cut-off is >0.35, then we can assume the probability of obstructive
CAD (Figure 3).
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3. Discussion

Atherosclerosis of the CA is a multifactorial disease, and epigenetic factors regulating
signal transmission through the WNT cascade play a significant role in its development
and progression. The involvement of the WNT signaling cascade has been established
in the pathogenesis of atherosclerosis in all stages. Dysregulations of the WNT signaling
during oxidative stress and/or inflammation may be a common molecular mechanism
contributing to the development of atherosclerosis, insulin resistance, and hyperlipidemia,
whose frequencies increase with age [8].

In the present study, the highest concentrations of WNT1 and WNT3a proteins were
determined in a group of patients with obstructive CAD. According to the results of
Wang et al., inhibition of WNT1 signaling by SIRT6 promotes lipophagy and increases
plaque stability [41]. At the same time, according to Brown et al., the WNT3a protein is
expressed in atherosclerotic plaques of human CA. It is actively involved in the inhibition
of VSMC apoptosis induced by oxidative stress [42]. Thus, higher levels of WNT1 and
WNT3a may be associated with the development of significant stenosis of CA. In addition,
according to the studies, the upregulation of WNT4 under the influence of platelet-derived
growth factor-BB (PDGF-BB) promotes VSMC proliferation through the frizzled-1 receptor
and β-catenin, which explains the close correlation between WNT4 and the progression
of stenosing atherosclerosis [43,44]. According to the results of our study, a correlation
between WNT5a protein and the levels of total cholesterol and LDL was revealed.

MiRNAs are involved in the regulation of various members of the WNT cascade, and,
on the other hand, the expression of miRNAs themselves is regulated with the participation
of the WNT signaling cascade [45].

According to our data, miR-21a expression was correlated with the level of SIRT1 in
patients with CAD (obstructive and INOCA). However, these variables were inversely
proportional in the control group. The SIRT1 participates in a cascade of reactions that
prevent excessive endothelium damage under the influence of oxidative stress and in-
flammation and thus has cardioprotective properties. Finally, SIRT1 reduces oxidative
stress, which is one of the most important factors contributing to the development of
atherosclerosis [46]. According to experimental data, overexpression of SIRT1 from low
(2.5-fold) to moderate (7.5-fold) prevents myocardial hypertrophy, development of apopto-
sis/fibrosis, and heart failure and decreases expression of aging markers. However, the
high level of SIRT1 (12.5-fold) promotes apoptosis, hypertrophy, and decreased contrac-
tile function of the myocardium. Thus, it is possible that moderate expression of SIRT1
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induces myocardial resistance to oxidative stress and apoptosis and has a protective effect,
whereas high concentrations have the opposite effect in vivo [36]. Based on the data of our
investigation and the available results of other studies obtained mainly experimentally, it
would be difficult to unambiguously define the role of miR-21a expression and the level
of SIRT1 in CAD. Therefore, further investigations and the commencement of large-scale
fundamental research are needed.

A number of miRNAs regulate the differentiation of cardiomyocytes in cardiac and
mesenchymal stem cells by modulating the expression of sFRP2 (secreted frizzled-related
protein 2) and β-catenin, respectively [46–48]. Being involved in the process of atherogene-
sis, miRNAs can also act as diagnostic markers of CVD associated with atherosclerosis [25].
Bazan et al. have confirmed the role of circulating miR-221 and miR-222 in the thickening
of intima, which is the initial stage of atherosclerotic plaque formation. Thus, decreased
expression of miR-221 and miR-222 may lead to inhibition of VSMC proliferation and,
consequently, to thinning of the fibrous covering of the atherosclerotic plaque and its
damage [49]. In our work, we determined significantly higher miR-221 expression in pa-
tients with obstructive CAD and INOCA than in the control group. That is understandable,
given the role of this miRNA in the processes of atherogenesis.

The current study revealed a positive correlation between miR-145 expression and
WNT4 protein level in a group of patients with obstructive CA lesions. Similar results were
obtained by Knoka et al. in 2020. Thus, they confirmed an association of miR-145 expression
with the increase of the necrolipid nucleus of an atherosclerotic plaque in patients with
stable CAD [50]. In addition, it is known that there is a close correlation between the WNT4
protein level and the development of stenosing atherosclerosis. It should be noted that
alternative results were also obtained. Thus, according to the investigation of Gao et al.,
lower expression of miR-145 causes multivessel CA lesions in patients with CAD [51].

Based on the results of the ROC analysis, O’Sullivan et al. concluded that four miRNAs
(miR-15a-5p, miR-146a-5p, miR-16-5p, and miR-93-5p) were predictors of the stable CAD
development [52]. Zhang et al. suggested other miRNAs (miR-29a-3p, miR-574-3p, and
miR-574-5p with AUCs 0.830, 0.792, and 0.789, respectively) as potential markers for
noninvasive diagnosis of CAD [53]. Our study found no potential non-invasive diagnostic
markers of stable CAD among investigated miRNAs. It may be related to the insufficient
sample size. Therefore, the study on a larger number of samples is still required.

Today, there is an increasing amount of data on the efficacy of targeting miRNAs in
the treatment of diseases associated with atherosclerosis. MiRNAs could also be potential
targets for CAD therapy [54,55]. Some members of the WNT signaling cascade are also at-
tractive targets for therapeutic intervention by either low-molecular inhibitors or biological
drugs that mimic or modulate the components of extracellular regulation.

Based on the results of the multivariate regression analysis, we can assume WNT3a
and LRP6 are independent predictors of the type of CA lesion in patients with stable CAD.
Therefore, these components of the WNT and LRP6 signaling cascade may be potential
diagnostic biomarkers of stenosing atherosclerosis.

Our first results can be useful in comprehending the potential roles of miRNA. We
plan to continue further studies on the mechanisms of epigenetic regulation of the WNT
signaling pathway by miRNA, which may be associated with obstructive atherosclerosis of
CA. The development of novel strategies for the successful drug treatment of CAD patients
with different variants of CA lesions seems promising. Thus, this issue requires further
careful study and fundamental research.

4. Materials and Methods
4.1. Patient Population

A cross-sectional observational study included 94 subjects, who were eligible according
to the inclusion criteria and signed informed consent from 2020 to 2022. The study was
conducted in accordance with the Declaration of Helsinki and approved by the Ethics
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Committee of the Sechenov University (Number: 01–21, 22 January 2021). The study
included men and women aged 45–75 years with a verified CAD diagnosis.

The myocardial ischemia in hospitalized patients with stable angina or its analogs
was confirmed by using instrumental diagnostic methods, namely stress echocardiography
(echo-CG) or single-photon emission computed tomography (myocardial scintigraphy),
against the background of the exercise testing. Depending on the results of coronary an-
giogram (CAG) or multispiral computed tomography (CT), the patients were divided into
two groups: 20 patients with non-obstructive CA lesions (stenosis <50% or unchanged
CA); 44 patients with obstructive CAD (presence of hemodynamically significant CA
stenosis). The control group (n = 30) included healthy volunteers without CVD and risk
factors. Exclusion criteria were the following: diabetes mellitus, acute coronary syn-
drome, myocardial infarction, and stroke in the previous 3 months, chronic heart failure
III-IV functional class (NYHA), autoimmune and oncological diseases, signs and symp-
toms of liver disease in the decompensation stage, portal hypertension, uncontrolled
bronchial asthma and chronic obstructive pulmonary disease, gastric or duodenal ulcer
in the exacerbation stage, chronic pancreatitis in the exacerbation stage, malignant neo-
plasms, thyroid diseases, Cushing’s syndrome, acute renal failure, terminal renal failure
(GFR < 15 mm/min/1.73 m2), mental illness, alcoholism, drug addiction, substance abuse,
pregnancy, and breastfeeding.

4.2. Collection of Blood Samples and ELISA

Blood plasma samples were collected in tubes with EDTA K3 as an anticoagulant,
centrifuged for 20 min at 1000× g (1000 RCF), and further frozen in cryotubes at −80 ◦C.
To estimate the WNT protein levels, LRP6 and SIRT1 enzyme immunoassay (ELISA) was
performed on the ELISA analyzer Adaltis Personal Lab (Rome, Italy) using Cloud-Clone
Corp. kits (Wuhan, CCC, USA) (catalogue numbers: SEL821Hu, SEL817Hu, SEP155Hu,
SED105Hu, SEP549Hu, SEE912Hu). The coefficient of variation (CV) for the sets was 10%
and 12%, respectively.

All patients have undergone standard biochemical tests, including indicators of the
lipid spectrum, glucose, and uric acid.

4.3. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Assay

Blood total RNA, including miRNA, was extracted from samples using Qiazol (Qiagen,
Germany) following the manufacturers’ protocols. The concentration and purity of the
obtained RNA were estimated on the NanoDrop 2000 microvolume spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The process of extraction was repeated for
each sample until a sufficient amount of RNA was obtained for the next steps.

cDNA was synthesized using MiScript II RT Kit (Qiagen, Hilden, Germany) according
to the recommended protocol. To obtain cDNA, 300 ng of total RNA isolated from each
sample was used.

The expression level for each analyzed miRNA and the control was quantified in three
repetitions on the CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA)
by using the MiScript SYBR Green PCR Kit (Qiagen, Hilden, Germany; Catalogue number:
218073) according to the manufacturer’s recommended program (15 min at 95 ◦C, followed
by 40 cycles of 94 ◦C for 15 s, 55 ◦C for 30 s, and 70 ◦C for 30 s). Primers for miRNAs
were designed according to the instructions [56], and their sequences are listed in Table 6.
The presynthesized MiScript Primer Assay (Ce_miR-39_1, identification code MS00019789,
Qiagen, Germany) was used for the control. The obtained Ct values were normalized to
the exogenous control cel-miR-39-3p and analyzed using the 2−∆Ct method. The results are
presented as REU (relative units of expression).
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Table 6. Primer sequences for RT-PCR.

Primer Sequence

miR-21a 5′-TAGCTTATCAGACTGATGTTGAAAA-3′

miR-145 5′-TCCAGTTTTCCCAGGAATCCCT-3′

miR-221 5′-GACCTGGCATACAATGTAGATTTAAA-3′

4.4. Statistical Analysis

Statistical analysis of the results was performed using the program StatTech v.v. 3.1.10
(StatTech, Russia) and the free Python computing software environment (v.3.11). The nor-
mality of sample distribution was evaluated using the Shapiro–Wilk (n < 50) or Kolmogorov–
Smirnov (n > 50) tests. Quantitative variables with normal distribution were described
using arithmetic averages (M) and standard deviations (SD) with a 95% confidence interval
(95% CI). When the distribution of variables differed from the normal, quantitative data
were described using the median (Me) and the lower and upper quartiles (Q1; Q3). The
two groups were compared quantitatively with an abnormal distribution using the Mann–
Whitney U-test. Three or more groups were compared quantitatively with an abnormal
distribution using the Kruskal–Wallis test; the post-hoc testing was performed using the
Dunn test with Bonferroni adjustment. To estimate the diagnostic significance of quan-
titative variables in predicting a certain outcome, the ROC curve analysis method was
used. The cut-off value of the quantitative variable was determined to correspond to the
maximum Youden index.

Multiple logistic regression (MLR) was used to build a model for predicting the pres-
ence/absence of a characteristic. The choice of the method was based on the dichotomy of
the dependent variable and the fact that independent variables characterize both categorical
and quantitative characteristics. The independent variables were selected by step-by-step
reverse selection using Wald statistics as an exclusion criterion. The statistical significance
of the obtained model was determined using the criterion χ2. To estimate the quality of
the constructed model, the following criteria were used: ROC-AUC, accuracy, sensitivity,
specificity, and DCA analysis (decision curve analysis). Metrics were calculated together
with 95% CI. The 95% CI was calculated using the bootstrap method with a sample of
1000 instances. The threshold value was chosen in accordance with the maximization of
sensitivity and specificity.

5. Conclusions

In patients with obstructive CAD, higher levels of WNT1 and WNT3a proteins, which
are part of the canonical WNT-β-catenin pathway, were found. In contrast, the concen-
trations of WNT4 and WNT5a proteins belonging to the non-canonical WNT-β-catenin
pathway were higher in the INOCA and control groups. According to our data, the expres-
sion level of miR-21a positively correlated with the level of SIRT1 and negatively correlated
with WNT1 activity. Therefore, we can assume this microRNA’s possible contribution to
the atherosclerosis process in CAD. MiR-145 was positively correlated with WNT4, with
a decrease in the expression of which the progression of atherosclerosis has been proven
according to literature data.

The multivariate regression analysis allowed us to obtain a model that can predict
the type of CA lesion with high sensitivity and specificity. WNT3a and LRP6 can be used
as predictors.
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