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Abstract: Excessive predominance of pathological species in the gut microbiota could increase the
production of inflammatory mediators at the gut level and, via modification of the gut–blood barrier,
at the systemic level. This pro-inflammatory state could, in turn, increase biological aging that
is generally proxied by telomere shortening. In this study, we present findings from a secondary
interaction analysis of gut microbiota, aging, and inflammatory marker data from a cohort of patients
with different diagnoses of severe mental disorders. We analyzed 15 controls, 35 patients with
schizophrenia (SCZ), and 31 patients with major depressive disorder (MDD) recruited among those
attending a community mental health center (50 males and 31 females, mean and median age 46.8 and
46.3 years, respectively). We performed 16S rRNA sequencing as well as measurement of telomere
length via quantitative fluorescence in situ hybridization and high-sensitivity C-reactive protein. We
applied statistical modeling with logistic regression to test for interaction between gut microbiota and
these markers. Our results showed statistically significant interactions between telomere length and
gut microbiota pointing to the genus Lachnostridium, which remained significantly associated with a
reduced likelihood of MDD even after adjustment for a series of covariates. Although exploratory,
these findings show that specific gut microbiota signatures overexpressing Lachnoclostridium and
interacting with biological aging could modulate the liability for MDD.

Keywords: interaction; biomarkers; metabolites; inflammation; aging

1. Introduction

Alterations in gut microbiota have been associated with the risk of severe mental
disorders (SMD) including major depressive disorder (MDD) and schizophrenia (SCZ) [1,2].
A recent meta-analysis highlighted the presence of a transdiagnostic pro-inflammatory pat-
tern of microbiota signatures in SMD [3]. Specifically, depleted levels of anti-inflammatory
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butyrate-producing bacteria Faecalibacterium and Coprococcus and enriched levels of pro-
inflammatory species Eggerthella were consistently shared between SCZ and MDD [3].
For instance, a higher abundance of Faecalibacterium has been associated with decreased
severity of depressive symptoms in MDD [4,5]. Similarly, Coprococcus was depleted in
depression, as shown by a large population cohort study [6]. Further, Eggerthella has a key
role in the metabolism of bile acids [7,8], which appear to be impaired in patients with
MDD [9] and SCZ [10]. Specifically, lower levels of secondary bile acid such as taurodeoxy-
cholic acid were associated with illness status and negatively correlated with symptom
severity in both disorders [9,10]. Importantly, the presence of decreased levels of secondary
bile acids has been correlated with higher levels of inflammation in in vitro models [11],
and might increase the permeability of the gut [12], a factor that permits translocation
of lipopolysaccharides (LPS) from the gut into the circulation [13]. This molecule can,
in turn, determine a systemic low-grade inflammation via the activation of the immune
system [13]. Interestingly, MDD patients with recent suicide attempts, which occurs more
frequently in patients with severe psychiatric disorders such as MDD and SCZ than the
general population, showed altered levels of markers of the integrity of the gut–blood
barrier [14], which in turn showed also a significant correlation with pro-inflammatory
interleukin 6 (IL-6).

Inflammation is also a key component of accelerated aging which is a frequent oc-
currence in severe psychiatric disorders, as shown by the excess morbidity and mortality
observed in these conditions [15]. Indeed, patients with severe psychiatric disorders show
up to 15 years of decreased life expectancy compared to the general population [15]. Part
of this excess mortality is explained by the increased risk of medical ailments in patients
with severe psychiatric disorders [16], as well as by the evidence that mental disorders
themselves increase the risk of a poor clinical outcome in physical diseases [17]. This bidirec-
tional association between psychical and mental disorders has several biological mediators
including genetic predisposition [18,19], increased inflammatory loading [20], and telomere
shortening [20,21]. The latter is considered a specific hallmark of cellular aging. In humans,
telomeric DNA is constituted by multiple (TTAGGG)n repeats ending in a single-stranded
overhang of the G-rich 3′ strand and telomere-associated shelterin proteins [22–24]. This
structure determines the integrity of the genome, ultimately protecting the chromosomes
from end-to-end fusions, misrepair, and degradation [22]. Accelerated telomere shortening
has been demonstrated in patients diagnosed with severe psychiatric disorders such as
SCZ [25] and MDD [26]. Our group has previously shown that patients with SCZ and
MDD have higher levels of inflammation and increased telomere shortening, which are
both more pronounced in the more severe forms of these disorders, i.e., treatment-resistant
ones [20]. Moreover, analysis of the gut microbiota composition in these cohorts showed
significant differences in SCZ [27] and MDD [28] when compared to healthy controls (HCs).

Nevertheless, little is known about the interplay between psychiatric disorders and
markers of inflammation, accelerated aging, and variation in gut microbiota. It is biolog-
ically plausible that these could be the driving factors accentuating psychopathological
symptoms in severe psychiatric disorders [29]. Here, we present findings from an inter-
action analysis of gut microbiota, aging, and inflammatory marker data from a cohort of
patients with different diagnoses of severe mental disorders which were previously and
separately published by our group [20,27,28].

2. Results
2.1. Characteristics of the Sample

The sample analyzed in this work was previously described elsewhere [20]. Here we
present an interaction analysis based on data from individuals for whom all molecular
measures were available (Table 1). Age and sex were significantly different among groups.
Smoking and alcohol consumption were significantly more prevalent among SCZ and
MDD patients as compared with HCs. Body mass index (BMI) was significantly higher
and physical activity was lower in SCZ and MDD patients compared to HCs. No signif-
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icant differences emerged in the family history of mental disorders or cardiometabolic
comorbidities. Dieting styles were also not statistically different between groups (data
in Supplementary Table S1). Considering the pilot nature of our investigation, in the
following sections we reported findings from the models either including or not the effect
of covariates. The results of the controlled models are presented in Section 2.2.3.

Table 1. Comparison of the main clinical and sociodemographic characteristics of the three samples
(MDD, SCZ, and HCs).

Variable Level MDD
(N = 31)

SCZ
(N = 35)

HCs
(N = 15) p-Value

Age (years) Mean (SD) 51.9 (12.9) 46.8 (12.2) 36.3 (9.1) <0.001 *

Sex—N (%)
Males 9 (29.0) 31 (88.6) 10 (66.7)

<0.001 #
Females 22 (71.0) 4 (11.4) 5 (33.3)

BMI (Kg/m2) Mean (SD) 25.2 (5.0) 27.1 (4.2) 22.4 (2.2) <0.001 *

Family history of mental
disorders—N (%)

No 12 (41.4) 18 (51.4) 10 (66.7)
0.280 #

Yes 17 (58.6) 17 (48.6) 5 (33.3)

Smoking habits—N (%)
Non-smoker 16 (51.6) 8 (22.9) 11 (73.3)

0.008 #Smoker 9 (29.0) 20 (57.1) 2 (13.3)
Ex-smoker 6 (19.4) 7 (20.0) 2 (13.3)

Drink habits—N (%) ˆ

None 17 (54.8) 23 (65.8) 3 (21.4)

0.137 #One occasional drink 12 (38.7) 11 (31.6) 10 (71.4)
1–2 drinks per day 1 (3.2) 1 (2.9) 1 (7.1)

more than 1/2 L per day 1 (3.2) 0 (0.0) 0 (0.0)

Physical activity—N (%) No 20 (64.5) 23 (65.7) 4 (26.7)
0.024 #

Yes 11 (35.5) 12 (34.3) 11 (73.3)

Cardiometabolic
comorbidities—N (%)

No 23 (74.2) 23 (65.7) 13 (86.7)
0.305 #

Yes 8 (25.8) 12 (34.3) 2 (13.3)

Age at onset (years) Mean (SD) 35.5 (7,13) 25.6 (7.6) NA <0.001 *

Disease duration (years) Mean (SD) 16.4 (12.3) 20.8 (11.9) NA 0.144 *

History of suicide
attempts—N (%)

No 25 (80.6) 27 (77.1) NA
0.77 #

Yes 6 (19.4) 8 (22.9) NA

Abbreviations: FGA = first-generation antipsychotic; FISH = quantitative fluorescent in situ hybridization;
HCs = healthy controls; hsCRP = high-sensitivity C-reactive protein; IQR = interquartile range; MDD = major
depressive disorder; N = number; NA = not available; SCZ = schizophrenia; SGA = second-generation antipsy-
chotic; TGA = third-generation antipsychotic. * ANOVA or Kruskal–Wallis for non-normally distributed data;
# chi-square test; ˆ 1 missing value for HCs.

2.2. Interaction Analysis

High-sensitivity C-reactive protein (hsCRP) was significantly different among groups
(F2 = 2.947, p = 0.05) while telomere length (TL) was not significant (F2 = 0.267,
p = 0.767. In the interaction analysis with microbiota, hsCRP did not yield any statis-
tically significant results across all considered taxa and the disorders (either MDD or SCZ,
case–control status). However, we found several statistically significant interactions with
TL and bacterial organisms’ relative abundance across taxa in fecal samples. The methodol-
ogy for interaction analyses between continuous variables, 16S metagenomics, and disease
status has been recently published [30], but, to our knowledge, this is the first application
of interaction testing between 16S metagenomics and blood biomarkers in psychiatric
disorders. Considering the pilot nature of our investigation, the findings were not corrected
for multiple comparisons.

2.2.1. Interaction Analysis in MDD

The phylum Actinobacteria showed a significant interaction with TL and was associated
with MDD (OR = 1.005, 95% CI [1.000, 1.010]; p = 0.042). At the genus level, Lachnoclostridium
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showed a significant interaction with TL and was associated with HCs (OR = 0.981, 95% CI
[0.968, 0.994]; p = 0.005). These results are illustrated in Table 2.

Table 2. Interaction analysis of TL with bacteria according to different levels of taxa in MDD
versus HCs.

Phylum Interaction

p OR CI Low CI High

Actinobacteria 0.042 * 1.005 1.000 1.010

Genus Interaction

p OR CI Low CI High
Lachnoclostridium 0.005 * 0.981 0.968 0.994

* Statistically significant p-value. Abbreviations: CI: confidence interval; OR: odds ratio.

2.2.2. Interaction Analysis in SCZ

At the family level, the interaction of Veillonellaceae with TL was associated with HCs
(OR= 0.996, 95% CI [0.993, 0.999]; p = 0.02). At the genus level, Dialister showed a significant
interaction with TL in SCZ (OR= 0.996, 95% CI [0.992, 0.999]; p = 0.024). All these results
are outlined in Table 3.

Table 3. Interaction analysis of TL with bacteria according to different levels of taxa for the prediction
of illness status in SCZ versus HCs.

Family Interaction

p OR CI Low CI High

Veillonellaceae 0.02 * 0.996 0.993 0.999

Genus Interaction

p OR CI Low CI High
Dialister 0.024 * 0.996 0.992 0.999

* Statistically significant p-value. Abbreviations: CI: confidence interval; OR: odds ratio.

2.2.3. Adjusting for Possible Bias-Inducing Covariates

To check the internal validity of our tests, we considered possible covariates in our
analysis. A Mann–Whitney U test was performed on the independent groups, HCs, MDD,
and SCZ. Among the variables described in Section 2.1 showing significant differences
among groups, only age was statistically significant (p = 0.045) between HCs (median = 37.7)
and MDD (median = 54.5), whereas only BMI was significantly different (p < 0.001) between
HCs (median = 22.7) and SCZ (median = 27.1). Finally, only BMI was significantly different
(p = 0.002) between HCs (median = 22.7) and SCZ (median = 26.4). After introducing the
significant covariates into the binary logistic regression model, only the model with MDD
and HCs at the genus level based on the interaction between the relative abundance of
bacterium Lachnoclostridium and TL remained significant (OR = 0.985, 95% CI [0.973, 0.996];
p = 0.001). These results are illustrated in Table 4.

Table 4. Interaction analysis of TL with the genus Lachnoclostridium for the prediction of illness status
in MDD versus HCs including age as a covariate.

TL Age Bacterium Interaction

p OR CI
Low

CI
High p OR CI

Low
CI

High p OR CI
Low

CI
High p OR CI

Low
CI

High

0.053 1.02 0.999 1.04 <0.001 * 1.017 1.01 1.03 0.001 * 3.28 1.36 7.92 0.001 * 0.985 0.973 0.996

* Statistically significant p-value. Abbreviations: CI: confidence interval; OR: odds ratio.
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3. Discussion

Here, we presented the findings of a secondary analysis aimed at identifying statis-
tically significant interactions between levels of markers of accelerated aging (TL) and
inflammation (hsCRP) and variation in gut microbiota in modulating the risk of SCZ
and MDD. We did not find any significant interaction between levels of hsCRP and gut
microbiota. However, we found statistically significant interactions between TL and gut
microbiota, including the genus Lachnostridium, which remained significant even after
adjustment for covariates.

Our analysis showed that Actinobacteria significantly interacted with TL in MDD. A
recent systematic review showed that most gut microbiota studies in MDD have found an
increase in the relative proportion of Actinobacteria in patients with MDD compared to HCs
(four out of five studies) [31]. Interestingly, the study by Chen et al. [32] found an increase
in the relative abundance of Actinobacteria in older patients with MDD compared to age-
matched HCs, presumably with accelerated aging and therefore shorter telomere length.
This would be in line with our finding that TL interacted with Actinobacteria in MDD. At
the genus level, we found that Lachnoclostridium interacted significantly with the TL in HCs
compared to MDD. Age was identified as a potential covariate and therefore the interaction
model was adjusted for age, remaining significant. This finding is consistent with a
recent microbiome-wide analysis in 1333 individuals of the Rotterdam study showing an
association (replicated in a large independent sample) of Lachnoclostridium with depressive
symptoms [33], and with the recent multi-ethnic analysis by Bosch et al. [34]. Interestingly,
and in line with the interaction identified with TL, this genus is associated with immune-
inflamed gene expression profiles in tumors [35].

The phylum Veillonellaceae was found to significantly interact with TL in SCZ. This is
in line with a number of findings [36,37] showing the association of this phylum with SCZ.
Dialister is a genus of the family of Veilonellaceae indicating potentially that the observer
effect at the phylum level is driven by these bacteria at the genus level. Of interest, a
relatively large case–control study found that the abundance of Dialister invisus, which is a
key driver of tyrosine biosynthesis, was positively associated with measures of cognition
in patients with SCZ [38]. Although cognition was not tested in our study sample, it
is generally assumed that it declines with age, a result that would be in line with our
interaction findings.

These findings should be interpreted in the context of a series of limitations. First,
and mainly, the cross-sectional design did not allow us to establish causality (i.e., whether
the interaction between TL and microbiota is relevant for the onset of MDD, or results
from the development of an illness-related pathological process). The relatively small
sample size could have impacted the statistical power leading to a decreased sensitivity
and specificity of our findings. Nonetheless, covariates were included, and we reported
both the unadjusted and adjusted findings. It is worth noting that these types of exploratory
studies are necessary to provide evidence of the potential magnitude of the main effects as
well as interaction effects and enable us to design future experimental studies, including
performing more accurate power analyses. In this context, this study should be considered
as a hypothesis generator, exploring the validity of a multimodal approach with interaction
testing in modulating the risk of MDD and SCZ. Finally, dietary habits, although accurately
collected at the moment of stool specimen sampling, were not under a standardized
protocol, leading to substantial heterogeneity.

4. Materials and Methods
4.1. Sample

The molecular data analyzed in this study were available for a sample comprising
15 HCs, 35 patients with SCZ, and 31 patients with MDD recruited among those attending
the community mental health center of the Unit of Psychiatry of the Department of Medical
Science and Public Health, University of Cagliari and University Hospital Agency of
Cagliari, and the Unit of Clinical Pharmacology, University Hospital Agency, Cagliari, Italy.
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The sample characteristics are reported in Table 1. The recruitment process was based on
the inclusion and exclusion criteria described in Manchia et al. [39]. Briefly, the diagnosis
was made according to DSM-IV criteria and the Structured Clinical Interview for DSM
IV-TR Axis I Disorders (SCID) [40]. Exclusion criteria comprised the presence of acute
infections, chronic autoimmune inflammatory conditions, diagnosis of any eating disorders,
post-traumatic stress disorder, substance use disorders, neurological disorders, traumatic
brain injury, or severe medical conditions (such as cancer or HIV infection). All patients
had been followed up longitudinally with periodic assessments (typically monthly) of
their psychopathological status, which included the use of standard psychometric tools in
certain cases, since the illness onset. HCs had no personal or familial history of psychiatric
disorders in the first degree and were recruited based on the same exclusion criteria
described for patients. HCs were administered the Italian version of the SCID-I/NP 26 to
rule out the presence of Axis I psychiatric disorders [40]. Patients and controls were all
from the same geographical area (the island of Sardinia, Italy), Caucasians, and of Italian
origin. The research protocol followed the principles of the Declaration of Helsinki and was
approved by the Ethics Committee of the University of Cagliari, Italy (approval number:
348/FC/2013 and PG/2018/11693). All participants signed informed written consent after
a detailed description of the study procedures.

4.2. Sampling Procedures

Fasting blood was collected in the morning using tubes containing Eparine for the
Q-FISH experiments, or ethylenediamine tetraacetic acid (EDTA: 1.5 mg/mL) for the ELISA
experiments. Blood was processed for the different protocols within 1 h of collection, during
which time it was stored at a controlled temperature (4 ◦C). At blood drawn, patients with
MDD were in the euthymic phase with an interval of at least six months from the last mood
episode, meeting the diagnostic criteria. Similarly, patients with SCZ were sampled after at
least six months from the last psychotic episode. Each study participant provided a fresh
stool sample in a tube containing a DNA stabilization buffer (Canvax Biotech, Valladolid,
Spain), from which DNA was extracted following the manufacturer’s instructions of the
QIAamp DNA Stool Mini Kit (Qiagen, Germantown, MD, USA). DNA was checked for
concentration and purity and stored at −30 ◦C until use.

4.3. Sequencing of Bacterial 16S rRNA Gene

An amount of 10 ng of each fecal DNA underwent library preparation for 16S rRNA
gene amplicon sequencing on an Illumina MiSeq device, as previously described [41].
Briefly, the V3-V4 region was amplified, samples were barcoded, and libraries were pooled
in equimolar concentrations and subjected to 2 × 300 paired-end sequencing. The de-
multiplexed reads generated by MiSeq were processed using the 16S metagenomics GAIA
2.0 software (http://www.metagenomics.cloud, Sequentia Biotech 2017; Benchmark of
Gaia 2.0 using published datasets available online at: http://gaia.sequentiabiotech.com/
benchmark, both accessed online on 21 May 2020), quality-controlled (i.e., trimming,
clipping, and adapter removal) based on FastQC and BBDuk, and mapped with BWA-
MEM against the custom databases (based on NCBI) to obtain the taxonomic profile of each
sample, as previously published [27]. Read pairs were processed to obtain the taxonomic
profile of each sample.

4.4. Peripheral Markers
4.4.1. Quantitative Fluorescence In Situ Hybridization (Q-FISH)

As described in Squassina et al. [20], Q-FISH was adopted to quantify the target
repetitive hexameric sequences (TTAGGG) located at the distal end of chromosomes. The
protocol was described in detail in Ref. [20].

http://www.metagenomics.cloud
http://gaia.sequentiabiotech.com/benchmark
http://gaia.sequentiabiotech.com/benchmark
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4.4.2. hsCRP

Each relevant aliquot was thawed once, immediately before running the respective
ELISA assay. Plasma levels of the C-reactive protein (CRP) were measured with high-
sensitivity ELISA sandwich kits (Origene: catalog number EA100881), as described in detail
in Ref. [20]. The detection limit of the ELISA kits used was 0.02–3.3 mg/L.

4.5. Statistical Analysis

To test for interaction between the three variables (illness status, relative abundance
of bacteria, and hsCRP or TL) a binomial logistic regression model was used in Ref. [42]
with a level of statistical significance set at 0.05. The methodology for interaction analyses
between continuous variables, 16S metagenomics, and disease status is described in detail
in Ref. [30]. The Mann–Whitney U test and chi-square test were used to compare clinical,
socio-demographic, and biological variables among the independent groups “HCs”, “MDD”
and “SCZ” as appropriate. The statistically different variables among groups were included
as covariates in the interaction tests to adjust for possible intercorrelations.

5. Conclusions

This pilot analysis showed that variation in the gut abundance of Lachnoclostridium
interacted significantly with TL in MDD. Specifically, we found that telomere length
interacted with the genus Lachnostridium in reducing the likelihood of MDD even after
adjustment for a series of covariates. These results should be considered exploratory given
their secondary nature and the cross-sectional study design. At the same time, these
findings point to the validity of using different sets of data for the analysis of risk estimates
in severe psychiatric disorders.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms242417618/s1.
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