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Abstract: Nitrogen (N), the most important macro-nutrient for plant growth and development, is a
key factor that determines crop yield. Yet its excessive applications pollute the environment and are
expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable
agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-
related traits at the seedling stage under optimum N (N+) and N deficiency (N−) treatments to dissect
the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide
association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited
significant and positive correlations with NUE under N− conditions (r = 0.33 to 0.43, p < 0.05). A
total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-
related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under
contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport
and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance
index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived
QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the
genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL
architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic
breeding tools to achieve superior NUE in flax under low N input.

Keywords: Linum usitatissimum; nitrogen use efficiency; GWAS; RNA-seq; genomic selection

1. Introduction

Nitrogen (N) is the most important mineral nutrient for plant growth and development,
and it is key in determining yield in non-N-fixing crops [1]. In the last four decades,
a twofold increase in food production was only achieved through a disproportionate
sevenfold increase in the use of N fertilizer [2]. In 2018, 186 million tons of N fertilizer were
utilized globally [3]. Given the world’s projected human population by 2050, a further
threefold increase in N input will be needed to fulfill the global food demand [4]. Although
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N has the most direct impact on crop production, plants can only uptake and use 30–40%
of the applied N [5]. The unused N, lost in the atmosphere and through groundwater and
rivers, causes environmental pollution [5,6]. Moreover, chemical N production greatly
depends on fossil energy, contributing to additional greenhouse emissions and raising
fertilizer costs [7]. Generally, low N use efficiency (NUE) in crops leads to excessive use of
N fertilizer, which is not environment-friendly or cost-effective for food production [3,5].

NUE is defined as crop yield per unit of available N in the soil [8] and consists of
two main components: N uptake efficiency (NupE), which includes traits such as root
architecture and transporter activity; and N utilization efficiency (NutE), which includes
all the processes related to the plant’s capacity to assimilate and remobilize N into the
seeds [9,10]. It is of strategic importance to improve crops’ NUE because a mere 1% increase
in NUE would translate into ~$2.3 B USD annual savings in N fertilizer costs, while also
reducing the environmental footprint [11].

Plants uptake N from the soil mainly as nitrate (NO3
−), ammonium (NH4

+) or as
amino acids under specific soil conditions [12,13]. A plant’s response to N involves multiple
genes that control root/shoot growth, N metabolism, and N content. In Arabidopsis, four
families of nitrate transporters, NRT1, NRT2, CLC and SLAC/SLAH, have been characterized
by Masclaux-Daubresse et al. [9]. Among the NRT1 gene family, NRT1.1 plays roles in NO3

−

uptake and translocation from roots to shoots [14]. In addition to NRT1.1, NRT1.2 and
NAXT1 have also been reported to be involved in NO3

− uptake with NRT1.2 and NAXT1
ensuring influx and efflux activities, respectively [15]. NRT1.8, NRT1.5 and NRT1.9 were
described as major transporters for long-distance NO3

− distribution. NRT1.8 is known to
modulate NO3

− loading into the xylem parenchyma cells within the vascular system [16],
whereas NRT1.9 mediates NO3

− loading into the root phloem, thereby influencing NO3
−

translocation and distribution [17]. NRT1.11 and NRT1.12 are expressed in mature leaves
and mediate NO3

− distribution to young tissues [18]. Once NO3
− is absorbed by roots, it

is first reduced to nitrite (NO2
−) by a cytosolic nitrate reductase (NR), and then to NH4

+

by a nitrite reductase (NiR) [19]. Together with glutamate synthase (GOGAT), glutamine
synthetase (GS), a key enzyme in N assimilation and remobilization, forms the GS-GOGAT
cycle in which inorganic NH4

+ is converted into glutamine [19]. In addition to the transport
and assimilation genes, many transcription factors are involved in the regulation of NUE
(reviewed by Masclaux-Daubresse [9]; Hudson [20]; Alvarez [21]; Luo [13]). The extensive
nature of this gene network illustrates the complexity of N response, NUE regulation, and
its underlying genetic mechanisms, making conventional plant breeding progress slow and
success not guaranteed.

A variety of traits contributing to NUE in plants have been evaluated in many bi-
parental populations and the associated QTL studies have been reported [22–24]. At the
seedling stage, QTL studies have focused on NUE-related traits and their associations with
root system architecture (RSA) traits. In maize, 184 NUE-related QTLs and 147 RSA-related
QTLs were identified [10]. Similarly, five and six stable pleiotropic QTL influencing RSA-
NUE traits were reported in rapeseed and wheat, respectively. In the adult plant stage,
QTL studies have focused on yield-related traits, such as grain and biomass N content,
physiological traits and their correlations to NupE and NutE [22,24,25]. In maize, Hirel [25]
identified one QTL that collocated with NUE, yield, nitrate content, nitrate reductase and
glutamine synthetase activities, and suggested a co-regulation of these traits.

Recently, genome-wide association studies (GWAS) have become a benchmark ap-
proach for fine-mapping QTL and postulating candidate genes. GWAS models are pow-
erful tools for detecting QTLs by taking advantage of historical recombination events
accumulated in diverse germplasm collections [26]. For NUE-related traits, GWAS have
been conducted in wheat (Triticum aestivum) [27,28], winter rapeseed (Brassica napus) [7],
maize [29] and Indian mustard [30]. In rapeseed seedlings, 14 QTL clusters were associated
with 13 root- and biomass-related traits and NUE [31].

Whereas GWAS can identify putative genes associated with its detected QTLs, the
gene expression patterns require further validation through gene expression studies, and
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RNA sequencing (RNAseq) is a prime approach for such a validation. By combining GWAS
and RNA-seq data, gene expression patterns for putative functional genes located within
GWAS-identified QTL intervals have been reported and the involved biological processes
more strongly validated than either strategy taken alone [32–34]. By cross-referencing the
DEGs and GWAS-derived QTL-associated candidate genes, functional genes associated
with harvest index-related traits in Brassica napus (rapeseed) [34], genes that co-modulate
root traits and yield under drought in flax (Linum usitatissimum) [35], and genes that regulate
root growth and NUE under depleted N conditions in rapeseed [31] have been reported.

Genomic selection (GS) is a strategy that is well suited to improve quantitative traits,
particularly those with low heritability, as it makes use of all marker effects across the
genome to calculate genomic estimated breeding values (GEBVs) for individuals’ selec-
tion [36]. In traditional GS, prediction models of phenotypic traits using genome-wide
markers are constructed based on a training population and then applied to test popu-
lations [37]. Using these models, the genetic effect values of unobserved individuals are
predicted, allowing the use of some small-effect markers that would otherwise remain
undetected in GWAS. An alternative strategy to genome-wide markers to predict GEBVs is
to make use of markers obtained from GWAS, a variation of GS known as GWAS-assisted
GS. GWAS removes a large proportion of unrelated markers, resulting in a limited num-
ber of favorable genetic loci linked to the trait of interest [38]. The predictive ability of
GWAS-derived markers has been reported to be similar or superior to that attained using
genome-wide markers in rice, citrus and flax [39–42].

Flax (Linum usitatissimum L.) is an important cash crop traditionally used as a natural
fiber or oilseed crop with many health promoting attributes [43]. Its seed contains 40–45%
oil, 20–25% protein, 20% insoluble fiber, 10% soluble fiber (mucilage) and 1% lignan sec-
oisolariciresinol diglucosides (SDGs) [44]. Aside from being a rich source of functional
ingredients, flax is a profitable option for many crop rotation scenarios. High-yielding flax
production is achieved with 100–150 kg ha-1 of N, accounting for 35–50% of its total pro-
duction costs [45]. Therefore, an increased flax NUE will likely enhance its competitiveness
with other crops, while minimizing its environmental footprint. Genetic variation in N
accumulation, translocation and NUE has been reported in flax, and a moderate N supply
(50–90 kg ha−1) was found to be adequate for promoting a maximum N translocation, NUE
and oil production [46,47]. Whereas the detection of NUE variation in flax is promising,
studies using genomic approaches including GWAS, RNA-seq and GS to decipher the
genetic architecture of NUE have so far not been reported.

The objectives of the current study were to: (i) identify genetic loci associated with
21 NUE-related traits under optimal and deficient N conditions during the seedling stage
of a flax association panel; (ii) generate and combine GWAS and RNA-seq data to identify
candidate genes associated with root response under starved N conditions; and (iii) com-
pare QTL markers and genome-wide SNPs for their GS prediction accuracies for NUE_STI
dueing the seedling stage in flax.

2. Results
2.1. Variations in Root and Biomass Phenotypic Traits

The REML analysis showed that N treatment and genotype were significant (p < 0.001)
for all traits except for the root dry weight (Table S2). The interaction between treatment
and genotype was only found to be significant for shoot dry weight. Plants grown under
N+ condition had statistically higher mean values for all traits, except for root/shoot ratio
(R/S) and NUE, which showed higher mean values under N− conditions (Table 1). The
R/S was 0.490 under N− treatment whereas plants grown under N+ had 0.407 as an R/S.
The trait stability indices ranged from 76.1% (SDW_Index) to 87.3% (TRL_Index). The
coefficients of variation for all traits were higher in the N− than under N+ treatment and
ranged from 27.8 to 64.0% (Table 1). In general, the 21 NUE-related traits were normally
distributed or close to normality (Figure 1).
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Table 1. Phenotypic variation in 21 NUE-related traits under optimum and depleted N conditions
in flax.

Trait Mean Standard Deviation Range C.V. (%)

Total root length N+ (cm) 469.2 137.7 168.6–882.0 29.2
Total root length N− (cm) 407.2 156.8 171.0–870.9 38.3
Root volume N+ (cm3) 0.464 0.181 0.161–1.056 38.7
Root volume N− (cm3) 0.389 0.188 0.143–1.069 48.1
Number of root tips N+ 533.7 120.7 292.4–1060.4 22.5
Number of root tips N− 447.8 125.1 236.6–864.5 27.8
Plant dry weight N+ (mg) 105.7 52.9 11.8–390.9 49.8
Plant dry weight N− (mg) 86.4 53.3 6.8–405.8 61.5
Shoot dry weight N+ (mg) 77.1 41.3 9.1–290.6 53.3
Shoot dry weight N− (mg) 59.9 38.5 4.6–280.0 64.0
Root/shoot N+ 0.407 0.116 0.215–0.784 28.3
Root/shoot N− 0.490 0.158 0.188–0.862 32.0
TRL_Index (%) 87.3 21.6 53.1–172.4 24.7
RV_Index (%) 85.1 23.7 42.4–158.4 27.7
RT_Index (%) 84.6 16.9 53.9–131.8 19.9
PDW_Index (%) 80.1 21.1 28.7–156.9 26.2
SDW_Index (%) 76.1 22.9 22.9–166.7 30.0
NUE N+ 25.6 7.2 10.4–37.2 28.0
NUE N− 28.3 7.8 13.7–46.5 27.5
NUE_Index (%) 114.6 25.0 59.7–204.7 21.7
NUE_STI 1.17 0.571 0.23–2.55 48.5

TRL: total root length; RV: root volume; RT: number of root tips; PDW: plant dry weight; SDW: shoot dry weight;
NUE: nitrogen use efficiency; STI: stress tolerance index; C.V.: coefficient of variation.
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Moderate to high (p < 0.05) correlation coefficients (r) were observed between the
root and biomass traits, and the stability indices under both N treatments ranged from
0.18 to 0.99 (Figure S1). Some stability indices were significantly (p < 0.05) and negatively
correlated with R/S_N+, R/S_N− and NUE_N+. Root traits showed significant and
positive correlations with NUE and NUE_STI under both N conditions (r = 0.18 to 0.52,
p < 0.05). Root volume (RV_N−) and R/S_N− were the most contributing traits to higher
NUE under N stress, while R/S_N− and RV_N+ accounted for the most variation observed
for NUE_N+ (Figure S1). In contrast, biomass traits (SDW and PDW) did not show any
significant correlation with NUE_N−, NUE_N+ and NUE_STI.

2.2. Genetic Structure and Linkage Disequilibrium

The genetic structure analysis grouped the 123 flax accessions into two clusters (C1
and C2) as revealed by STRUCTURE (Figure 2a). The neighbor-joining (NJ) clustering and
STRUCTURE produced similar outcomes, with the C2 accessions being the largest cluster
(Figure 2b).

The kinship heatmap based on the identity by state (IBS) values showed the presence
of three major clusters (Figure 2c). In general, intra group kinship was stronger than inter
group kinship relationships among the 123 accessions, and the inter group kinship values
were weaker than the intra group relationships.

The genome-wide LD decay was estimated to be 100 kb (r2 = 0.1) (Figure 2d). The
chromosome-specific LD decays (r2 = 0.1) varied from 50 kb on chromosomes 4, 7 and 8 to
200 kb on chromosome 13 (Figure S2). The LD decay used for grouping QTNs into QTL
(r2 > 0.3) for chromosomes harboring QTNs ranged from 10 kb on chromosome 4 to 40 kb
on chromosome 13 with a mean of 14.3 kb (Figure S2).

2.3. ML-GWAS of 21 NUE-Related Traits in Flax

The multi-locus methods identified 552 unique QTNs associated with at least one of the
21 traits (Figures 3 and S3). The mrMLM, FASTmrMLM, ISIS EM-BLASSO, FASTmrEMMA
and pLARmEB methods detected 64, 231, 91, 32 and 134 of the 552 QTNs, respectively, but
some were identified by more than one model. Mann–Whitney non-parametric U tests were
conducted on the 552 unique QTNs and the 76 non-significant ones were removed, resulting
in a subset of 476 QTNs (p < 0.05), which was subsequently merged into 359 QTL based
on the LD criteria (r2 > 0.3) as defined previously. The 359 QTL individually explained
0.11% to 23.07% of the phenotypic variation for the 21 NUE-related traits (Table S3). Of
these, 124 were detected by at least two models, and 40 were considered major QTLs
as they explained more than 10% of the phenotypic variation (R2). One hundred ten
QTLs were pleiotropic with at least two traits, which were generally highly correlated.
For example, QTL Lu13_19514686 was associated with eight traits, including NUE_N−,
RV_N−, PDW_N−, SDW_N−, TRL_N+, RV_N+, RT_N+ and PDW_N+, with correlation
coefficients ranging from 0.40 to 0.99 and an R2 ranging from 2.41 to 12.85% (Table S3,
Figure S1).

Simple regression analyses of QTLs for traits revealed moderate to high mean percent-
age of phenotypic variation explained (adjR2), with 0.61, 0.69 and 0.70 for traits under N−,
N+ and stability indices, respectively (Figures 4 and S4). QTLs identified under N− ex-
plained 42% (SDW_N−) to 75% (RT_N−) of the phenotypic variation, while QTLs detected
under N+ condition accounted for 56% (PDW_N+) to 78% (TRL_N+ and R/S_N+). QTLs
associated with stability indices explained 58% (PDW_Index) to 77% (TRL_Index) of the
traits’ variation (Figures 4 and S4).

The top 10% of accessions (12/123), corresponding to the group of accessions with
the highest NUE_N−, and the bottom 10%, corresponding to the group of accessions
with the lowest NUE_N−, showed an average NUE_N− of 38.2 (range 26.9 to 46.1) and
19.5 (range 13.7 to 24.7), respectively. Accessions with the highest NUE_N− had, on
average, 11 PQTLs (range 10 to 11) associated with this trait, while the genotypes with
the lowest NUE_N− had on average four PQTLs (ranging from two to five). The oilseed-
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type accession O_IRL_C_CN98192 from Ireland had the highest NUE_N− value of 46.1
and contained 331 PQTLs, whereas the Indian accession O_IND_C_CN98982 registered
a NUE_N− of 18.1 and had 261 PQTLs out of the 359 identified for the 21 NUE-related
traits. O_IRL_C_CN98192 and O_IND_C_CN98982 registered NUE_STI values of 2.55 and
0.33, respectively, suggesting that O_IRL_C_CN98192 has a high NUE and high nitrogen
responsive cultivar while O_IND_C_CN98982 has a low NUE and a low nitrogen responsive
genotype. These two accessions were selected for root transcriptome analysis.
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Figure 2. (a) Model-based population structure of 123 flax accessions belonging to two clusters
predefined by the STRUCTURE software. (b) Neighbor-joining (NJ) tree of 123 flax accessions
based on the 272,944 SNPs. (c) Kinship relationships among the 123 flax accessions of the collection.
(d) Genome-wide linkage disequilibrium (LD) decay of r2 values (red line), against physical distance
(bp) in flax. The dashed blue line indicates the cutoff value (r2 = 0.1) used to determine the genome-
wide LD block size. (e) Distribution of 272,944 SNPs used for GWAS analysis across the 15 Linum
usitatissimum chromosomes. C1: cluster 1; C2: cluster 2.
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Figure 3. Manhattan (left panels) and quantile–quantile (Q-Q) plots (right panels) of multi-locus
GWAS models of NUE-related traits. QTNs commonly identified by multiple approaches are indi-
cated by the pink dots shown above dotted vertical lines; QTNs identified by a single model are
represented by blue dots above vertical lines. The grey horizontal dotted line indicates the genome-
wide significance threshold −log10(p) equivalent to the LOD > 3.0 for ML-GWAS models. TRL_N−:
total root length under N−; RV_N−: root volume under N−; RT_N−: number of root tips under
N−; SDW_N−: shoot dry weight under N−; PDW_N−: plant dry weight under N−; R/S_N−:
root-to-shoot ratio under N−.
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variation explained (adjR2) for all detected QTL for each individual trait. TRL_N−: Total root length
under N−, RV_N−: Root volume under N−, RT_N−: Number of root tips under N−, SDW_N−:
Shoot dry weight under N−, PDW_N−: Plant dry weight under N−, R/S_N−: Root to shoot ratio
under N−, TRL_Index: Total root length index, RV_Index: Root volume index, RT_Index: Number of
root tips index, SDW_Index: Shoot dry weight index, PDW_Index: Plant dry weight index, NUE_N−:
Nitrogen use efficiency under N−.

2.4. Differentially Expressed Genes between High and Low NUE Genotypes

A total of 16 libraries, representing two genotypes, two treatments and four biological
replicates, were sequenced on an Illumina NovaSeq 6000 platform (San Diego, CA, USA)
using the 150 bp paired end read mode, resulting in a total of 411,296,419 million raw
reads. After removal of low-quality reads with Trimmomatic v.1.0 402,733,447 high quality
reads were found, of which 376,423,963 (92.11%) were mapped to the flax (L. usitatissimum)
reference genome [48] (Table S4).

Using a principal component analysis (PCA) of gene expression levels, the correlation
between biological replicates within the same genotype was greater than the correlation
between biological replicates between HN and LN genotypes (Figure S5), which was in
agreement with the contrasting N response between genotypes and highlights the accuracy
of the four biological replicates.
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Root transcriptome differences between HN and LN genotypes after 15 days of N
deficiency were determined by performing comparisons between the aligned reads of N−
and N+ treatments. A total of 1034 DEGs were identified, of which 108 and 926 were
detected in HN and LN genotypes, respectively (Table S5, Figure S6). Among the 108 DEGs
observed in HN, 66 and 42 were up and down regulated, respectively. The LN genotype
registered 988 DEGs, of which 286 and 702 were up and down regulated, respectively
(Table S5, Figure S6).

KEGG enrichment analysis revealed 104 and 223 significantly enriched pathways
associated with the up- and down regulated genes, respectively. Among the most en-
riched pathways, metabolic pathways (map01100), biosynthesis of secondary metabo-
lites (map01110), plant–pathogen interaction (map04626), MAPK signaling plant pathway
(map04016), plant hormone signal transduction (map04075), diterpenoid biosynthesis in-
cluding gibberellin biosynthesis (map00904) and nitrogen metabolism (map00910) were
represented more among the up-regulated DEGs (Figure S7a). The KEGG metabolic path-
ways (map01100), biosynthesis of secondary metabolites (map01110), MAPK signaling
plant pathway (map04016), plant–pathogen interaction (map04626), plant hormone sig-
nal transduction (map04075), microbial metabolism in diverse environments (map01120)
and starch and sucrose metabolism (map00500) were represented more among the down-
regulated DEGs (Figure S7b).

Among the DEGs identified, cytokinin response factor 4 (CRF4, Lus10039324) and nitrate
regulatory gene2 (NRG2, Lus10029683) were involved in N signaling (Tables 2 and S6). DEGs
participating in nitrate assimilation, such as NITRATE TRANSPORTER1/PEPTIDE TRANS-
PORTER3.1 (NPF3.1, Lus10041466), nitrate reductase (NIA, Lus10035402) and SNF1-related pro-
tein kinase regulatory subunit beta-2 (KINB2, Lus10038783), registered altered gene expression
patterns in roots in the LN genotype. Genes encoding nitrate transporters like NITRATE
TRANSPORTER1/PEPTIDE TRANSPORTER1.1 (NPF1.1/NRT1.12, Lus10014537), NITRATE
TRANSPORTER1/PEPTIDE TRANSPORTER6.3 (NPF6.3/NRT1.1, Lus10032252) and the
high-affinity nitrate transporter NRT2.1 (NRT2.1, Lus10016120) were observed in LN roots. Sev-
eral genes involved in root development, like NAC021 (Lus10024908), MYB77 (Lus10010238)
and WRKY75 (Lus10011346) transcription factors, C-TERMINALLY ENCODED PEPTIDE
RECEPTOR 2 (CEPR2, Lus10012461), ARABIDOPSIS CRINKLY4 (ACR4, Lus10025455),
Super Numeric Nodules (SUNN, Lus10040592) and multidrug resistance protein 4 (MDR4,
Lus10010012) were solely transcriptionally altered in the LN accession (Table 2). Various
genes involved in amino acid transport also exhibited differential expression patterns, and
include gamma-glutamyl cyclotransferase 2.1 (GGCT2.1, Lus10020181), amino acid transporter
AAP3 (AAP3, Lus10042740) and BASIC AMINO ACID CARRIER 2 (BAC2, Lus10011451)
(Tables 2 and S6). Notably, 89.5% of the DEGs were down regulated in the root transcrip-
tome of the LN genotype as compared to the HN accession, in agreement with its reduced
NUE_STI (Tables 2 and S6).
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Table 2. Differentially expressed genes involved in NUE-related traits in flax functionally that have been validated in other plant studies.

Flax DEG Gene Name Protein Name QTL Trait Function Up/Down (Log2FC) Reference

Lus10027573 CRF4 Ethylene-responsive
transcription factor CRF4 Not in QTL Unknown N signaling Up LN (1.20) [49]

Lus10029683 NRG2 Nitrate regulatory
gene2 protein Lu9_18443162 RV_Index N signaling Down LN (−1.33) [50]

Lus10019292 LBD38 LOB domain-containing
protein 38 Not in QTL Unknown NO3

− response
regulation Up LN (1.27) [51]

Lus10038783 KINB2 SNF1-related protein kinase
regulatory subunit beta-2 Lu11_1841121 NUE_N−, NUE_N+,

NUE_STI NO3
− assimilation Down LN (−1.32) [52]

Lus10041466 NPF3.1 Protein NRT1/PTR
FAMILY 3.1 Lu4_14298191 R/S_N− NO3

− assimilation Up LN (1.49) [53]

Lus10035402 NIA Nitrate reductase [NADH] Not in QTL Unknown NO3
− assimilation Down LN (−1.26) [54]

Lus10027270 NR Nitrate reductase [NADH] Not in QTL Unknown NO3
− assimilation Down LN (−1.46) [55]

Lus10004037 GS1-2 Glutamine synthetase
cytosolic isozyme 2 Not in QTL Unknown NH4

+ assimilation Down LN (−1.37),
Down HN (−1.03) [56]

Lus10029256 CEP14 Precursor of CEP14 Not in QTL Unknown NH4
+ assimilation,

root development Down LN (−1.16) [57]

Lus10016120 NRT2.1 High-affinity nitrate
transporter 2.1 Not in QTL Unknown NO3

− transporter Down LN (−1.17) [58]

Lus10030902 NRT2.5 High affinity nitrate
transporter 2.5 Lu13_18363934 RT_Index, R/S_N+ NO3

− transporter Down LN (−2.38),
Down HN (−1.83) [59]

Lus10014537 NPF1.1 Protein NRT1/PTR
FAMILY 1.1 Not in QTL Unknown NO3

− transporter Up LN (1.12) [18]

Lus10032876 NPF4.6 Protein NRT1/PTR
FAMILY 4.6 Not in QTL Unknown NO3

− transporter Down LN (−1.06) [60]

Lus10032252 NPF6.3 Protein NRT1/PTR
FAMILY 6.3 Not in QTL Unknown NO3

− transporter Down LN (−1.21) [58]

Lus10004760 AMT1-2 Ammonium transporter 1
member 2 Lu14_9866805 RV_N− NH4

+ transporter Down LN (−3.14),
Down HN (−2.20) [61]
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Table 2. Cont.

Flax DEG Gene Name Protein Name QTL Trait Function Up/Down (Log2FC) Reference

Lus10008564 ACO1 1-aminocyclopropane-
1-carboxylate oxidase 1 Lu11_14898826 NUE_N− Root development Up LN (1.04) [62]

Lus10036251 GSO1
LRR receptor-like
serine/threonine-protein
kinase GSO1

Lu12_1386203 RT_N+, R/S_N− Root development Up LN (1.91) [63]

Lus10016554 FLA4 Fasciclin-like arabinogalactan
protein 4 Lu12_4334157 PDW_N+ Root development Down LN (−1.02) [64]

Lus10011346 WRKY75 Probable WRKY transcription
factor 75 Lu13_19862281 TRL_Index Root development Up LN (1.46) [65]

Lus10042154 FH8 Formin-like protein 8 Lu14_15927781 RV_N+ Root development Up LN (1.53) [66]

Lus10021428 MYB36 Transcription factor MYB36 Lu14_3980668 R/S_N− Root development Down LN (−1.02) [67]

Lus10035126 RPK2
LRR receptor-like
serine/threonine-protein
kinase RPK2

Lu2_21668160 PDW_N+ Root development Down LN (−1.28) [63]

Lus10024314 BZIP29 bZIP transcription factor 29 Lu6_17695007 NUE_N+, R/S_N+ Root development Down LN (−1.06) [68]

Lus10024908 NAC021 NAC domain-containing
protein 21/22 Lu9_19469655 R/S_N−, RV_Index Root development Up LN (1.20) [69]

Lus10031059 MIZ1 Protein MIZU-KUSSEI 1 Lu9_6368499 NUE_N+ Root development Down LN (−1.54),
Down HN (−1.40) [70]

Lus10012461 CEPR2 Receptor protein-tyrosine
kinase CEPR2 Not in QTL Unknown Root development Up LN (1.08) [71]

Lus10010238 MYB77 Transcription factor MYB77 Not in QTL Unknown Root development Down LN (−1.22) [72]

Lus10040274 LBD29 LOB domain-containing
protein 29 Not in QTL Unknown Root development Up LN (1.80) [73]

Lus10025455 ACR4 Serine/threonine-protein
kinase-like protein ACR4 Not in QTL Unknown Root development Up LN (1.63) [74]

Lus10040592 SUNN
Leucine-rich repeat
receptor-like kinase
protein SUNN

Not in QTL Unknown Root development Down LN (−1.32) [75]
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Table 2. Cont.

Flax DEG Gene Name Protein Name QTL Trait Function Up/Down (Log2FC) Reference

Lus10017271 ABCB19 ABC transporter B family
member 19 Not in QTL Unknown Root development Up LN (1.52) [76]

Lus10010012 ABCB4 ABC transporter B family
member 4 Not in QTL Unknown Root development Down LN (−1.06) [77]

Lus10005574 CAT8 Cationic amino acid
transporter 8 Lu14_17132252 R/S_N+ Amino acid transport Up LN (1.15) [78]

Lus10020181 GGCT2.1 Gamma-glutamyl
cyclotransferase 2.1 Lu2_4220131 TRL_Index, RT_Index Amino acid transport Up LN (1.38) [79]

Lus10029533 BAT1 Amino-acid permease BAT1
homolog Not in QTL Unknown Amino acid transport Up LN (1.12) [80]

Lus10012824 AVT1J Amino acid transporter AVT1J Not in QTL Unknown Amino acid transport Up LN (1.72) [81]

Lus10008910 GDU5 Protein GLUTAMINE
DUMPER 5 Not in QTL Unknown Amino acid transport Down LN (−1.20),

Down HN (−1.99) [82]

Lus10042740 AAP3 Amino acid permease 3 Not in QTL Unknown Amino acid transport Down LN (−1.49) [83]

Lus10011451 BAC2 Mitochondrial arginine
transporter BAC2 Not in QTL Unknown Amino acid transport Down LN (−1.23) [84]

Lus10015513 GDU3 Protein GLUTAMINE
DUMPER 3 Not in QTL Unknown Amino acid transport Down LN (−1.19) [85]

LN: low NUE genotype; HN: high NUE genotype.
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2.5. Differentially Expressed Candidate Genes at QTLs

The 359 unique QTLs were mined for the identification of differentially expressed
candidate genes involved in nitrogen stress responses. The linkage disequilibrium blocks
(±100 kb) in the detected QTLs harbored 13,683 genes. Using RNA-seq data from the
two NUE contrasting flax accessions, a total of 337 DEGs (32.6%) were found within
169 of these QTL windows (Table S6). The number of DEGs per QTL windows ranged
from one to six, with an average of 2 ± 1.04 per QTL. For example, Lu1_9831112 QTL
associated with TRL_Index explained 8.7% of the phenotypic variation, and harbored CBL-
interacting serine/threonine-protein kinase 14 (CIPK14, Lus10022748), the expression of which
was increased ~4-fold in LN and nearly doubled in HN under N+ condition compared to
N−. (Table 2, Figure 5). Similar trends were observed for Lu2_4220131, a QTL associated
with RT_Index that accounted for 11.1% of the phenotypic variation and which carried
gamma-glutamylcyclotransferase 2.1 (GGCT2.1, Lus10020181), whose expression was increased
2.5-fold in LN under N+ condition compared to N−, whereas in HN the expression patterns
were not statistically altered (Figure 5).
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Figure 5. Effects of quantitative trait locus of some NUE-related QTL harboring differential expressed
genes (DEGs) identified under contrasting N conditions. Box plots (left panels) showing the allelic
effect of QTLs associated with NUE-related traits harboring DEGs involved in NUE responses
identified in other plant species. Graphics (right panels) showing DEGs in QTLs identified under
contrasting N conditions in high NUE (HN) and low NUE (LN) flax accessions. FPKM: Fragments
per kilobase million. * statistically significant at p < 0.05.

The root-development associated DEG NAC021 was located in the pleiotropic QTL
Lu9_19469655 associated with R/S_N− and the RV_Index. The expression of NAC021 in-
creased 2.5-fold in LN and nearly doubled in HN under N+ condition compared to N−. An-
other example of QTL harboring DEGs involved in N stress responses was Lu11_16959462,
associated with the NUE_Index, which harbored the N signaling gene CRF4, whose expres-
sion patterns were not significantly altered in HN, but increased ~twofold in LN under N+
conditions compared to N−. (Figure 5, Table S6). In addition, QTL Lu4_14298191 linked to
R/S_N− harbored the nitrate transporter NPF3.1. The DEG high affinity nitrate transporter
2.5 (NRT2.5) was located in the pleiotropic QTL Lu13_18363934 which is associated with the
RT_Index and R/S_N+ (Tables S3 and S6). In general, most of the DEGs in QTLs exhibited
altered expression patterns in the LN genotype, but stable expression under N− and N+
conditions in the HN accession.
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2.6. GWAS-Assisted Genomic Selection

To identify the marker sets that produce the best prediction accuracy for NUE_STI, the
predictive ability of five marker sets (M1 = 16,383 genome-wide markers; M2 = markers
associated with all traits under N− condition; M3 = markers associated with NUE_STI;
M4 = markers associated with all traits positively correlated with NUE_STI; and M5 = mark-
ers associated with all traits positively correlated with NUE_STI that harbored DEGs) were
compared using the GS GBLUP model. Analysis of variance in prediction accuracy for the
five marker sets showed significant differences (p < 0.001). Tukey’s multiple pairwise com-
parisons showed the highest predictive ability for M3 (r = 0.79), followed by M4 (r = 0.76)
(Figure 6). The predictive ability obtained from the other marker sets was significantly
lower, with the lowest observed using M1 (r = 0.11) (Figure 6).

Int. J. Mol. Sci. 2023, 24, 17624 14 of 29 
 

 

2.6. GWAS-Assisted Genomic Selection 
To identify the marker sets that produce the best prediction accuracy for NUE_STI, 

the predictive ability of five marker sets (M1 = 16,383 genome-wide markers; M2 = markers 
associated with all traits under N− condition; M3 = markers associated with NUE_STI; M4 
= markers associated with all traits positively correlated with NUE_STI; and M5 = markers 
associated with all traits positively correlated with NUE_STI that harbored DEGs) were 
compared using the GS GBLUP model. Analysis of variance in prediction accuracy for the 
five marker sets showed significant differences (p < 0.001). Tukey’s multiple pairwise 
comparisons showed the highest predictive ability for M3 (r = 0.79), followed by M4 (r = 
0.76) (Figure 6). The predictive ability obtained from the other marker sets was 
significantly lower, with the lowest observed using M1 (r = 0.11) (Figure 6). 

 
Figure 6. Comparison of genomic prediction accuracy (r) models produced by five different marker 
sets using the GBLUP statistical model for NUE_STI in flax. M1: marker set 1 using 16,383 genome-
wide markers, M2: marker set 2 considering markers associated with all traits under N− condition, 
M3: marker set 3 including markers associated with NUE_STI, M4: marker set 4 considering markers 
associated with traits positively correlated with NUE_STI, M5: marker set 5 including markers 
associated with traits positively correlated with NUE_STI that harbor DEGs. Box plots with the same 
lowercase letter are not statistically significant at p < 0.05. 

3. Discussion 
Nitrogen plays an important role in root and shoot development and is a critical 

macronutrient for maximizing yield. Lowering N input and breeding plants with higher 
NUE are main goals of plant nutrition and sustainable agriculture [9]. Here, we assessed 
21 NUE-related traits under N− and N+ conditions for 123 diverse flax accessions during 
the seedling stage using a multi-omics approach combining GWAS, RNA-seq and GS to 
understand the flax nitrogen’s response to depleted N conditions and to apply future 
genomic-assisted breeding strategies. 

3.1. Phenotypic Variation of Root and Biomass Traits 
The concepts of high and low NUE genotypes are widely used in N use efficiency 

studies. Nonetheless, one must bear in mind that high or low NUE ranking is a relative 
measurement in comparison to other genotypes within the same experiment. Hence, a 
high NUE genotype in one study could be a low NUE accession in another depending on 

Figure 6. Comparison of genomic prediction accuracy (r) models produced by five different marker
sets using the GBLUP statistical model for NUE_STI in flax. M1: marker set 1 using 16,383 genome-
wide markers, M2: marker set 2 considering markers associated with all traits under N− condition,
M3: marker set 3 including markers associated with NUE_STI, M4: marker set 4 considering markers
associated with traits positively correlated with NUE_STI, M5: marker set 5 including markers
associated with traits positively correlated with NUE_STI that harbor DEGs. Box plots with the same
lowercase letter are not statistically significant at p < 0.05.

3. Discussion

Nitrogen plays an important role in root and shoot development and is a critical
macronutrient for maximizing yield. Lowering N input and breeding plants with higher
NUE are main goals of plant nutrition and sustainable agriculture [9]. Here, we assessed
21 NUE-related traits under N− and N+ conditions for 123 diverse flax accessions during
the seedling stage using a multi-omics approach combining GWAS, RNA-seq and GS to
understand the flax nitrogen’s response to depleted N conditions and to apply future
genomic-assisted breeding strategies.

3.1. Phenotypic Variation of Root and Biomass Traits

The concepts of high and low NUE genotypes are widely used in N use efficiency
studies. Nonetheless, one must bear in mind that high or low NUE ranking is a relative
measurement in comparison to other genotypes within the same experiment. Hence, a high
NUE genotype in one study could be a low NUE accession in another depending on the
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genetic diversity of the panel [42]. In flax, NUE traits and optimum N dosages for efficient
flax production have been investigated using, at most, a dozen cultivars [46,47], limiting
their broad deployment in breeding programs. Here, an association panel of 123 flax
accessions representing the genetic diversity from 28 countries was assembled from the
Canadian flax core collection [86], including eighty-three cultivars, twenty-one breeding
lines and five landraces that encompass both the oil and fiber morphotypes. The significant
and broad variation in root and biomass traits among the genotypes of the association
panel agrees with previous studies of similar traits using subsets of the Canadian flax core
collection [35,45,87,88]. Thus, this set of flax accessions was considered suitable as a diverse
genetic resource for identifying high NUE donor lines for breeding.

Plants grown under N− conditions showed, on average, reduced root and shoot trait
values, but increased R/S_N− and NUE_N− than plants grown under N+ conditions,
indicating that N-depleted plants can mobilize more carbon to promote root development
and, consequently, mine the substrate to acquire N [10,31,42]. In most elite cultivars,
increasing the root-to-shoot ratio increases the uptake of N from the deep soil because the
longer roots provide optimum nutrient storage in shoots that can be used later at the seed
filling stage [89]. The significant and positive correlations between NUE and root traits
(r = 0.33 to 0.52) require breeders to consider root traits as selection criteria to improve
NUE in flax breeding programs, as observed in maize [10] and rapeseed [31]. Therefore,
the selection of optimal root traits, and particularly R/S_N−, at the seedling stage, holds
promises to optimize flax NUE.

3.2. Genetic Structure and Linkage Disequilibrium

Understanding the genetic structure and extent of LD in germplasm resources is crucial
for conducting reliable GWAS. Population structure and cryptic relatedness (kinship) are
the main factors influencing the number of false marker–trait associations, while LD is the
main factor influencing marker density requirement and mapping resolution in association
studies [90]. Here, we observed weak kinship relationships among accessions and rapid LD
decay for most of the chromosomes. The 123 flax accessions are expected to contain ample
allelic diversity, as suggested by the generally small LD blocks for the 15 chromosomes,
thereby minimizing the occurrence of false positives and facilitating the search of N stress
candidate genes through efficiently narrowing the putative QTL regions.

3.3. ML-GWAS of 21 NUE-Related Traits in Flax

Each step contributing to NUE, such as uptake, translocation, assimilation and re-
mobilization of N, is a complex process controlled by many molecular, physiological and
metabolic root- and shoot-related traits that may exert independent or synergistic effects
on NUE, complicating the comprehensive dissection of its genetic architecture. GWAS
has become a widely used method for the genetic dissection of complex traits like NUE-
related traits in Triticum aestivum (wheat) [28,91], Zea mays (maize) [29,92], Brassica napus
(rapeseed) [7,31] and Hordeum vulgare (barley) [93]. In flax, GWAS have been conducted for
agronomic, seed quality and disease resistance traits [94–97], as well as for drought-related
traits and early root and shoot development [35,87,88,98].

Using six ML-GWAS models, 359 unique QTLs, distributed over all 15 chromosomes,
were detected for 21 NUE-related traits. Multi-locus models consider multiple QTLs in
the model and treat them as random effect, which assumes that multiple QTLs control the
phenotype [99]. Because all the potential QTLs for the quantitative traits are fitted to a
single linear model and their effects are estimated and tested simultaneously, the classical
stringent Bonferroni correction is unwarranted because the detection of many small effect
QTLs is key to detect the full breadth of the QTLs underlying complex traits [95]. To
maximize the robustness and reliability of the significant marker-trait associations, the
Mann–Whitney non-parametric U tests were carried out to remove false positive QTLs
that did not produce a significant allelic effect on the traits. In flax, this approach has been
applied for flowering time [100], root and shoot development [87,88,98], drought-related
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traits [35,87] and disease resistance traits [95,101], totaling 1478 QTLs identified, allowing
for their application in GWAS-assisted genomic selection strategies [41,95,101].

The high number of pleiotropic QTLs (n = 110) indicates the close genetic relationships
between most of the 21 traits assessed (Table 2). Importantly, NUE and root traits were co-
located at fifteen pleiotropic QTLs, whereas NUE and shoot traits shared the same genomic
regions at only three QTLs. The important genetic associations between root traits and NUE
are not only seen in the seedling stage, but also at the reproductive stage, as previously
reported in other crops [10,31,102]. Accordingly, the significant relationships found between
root QTLs and yield under water stress in flax [35] and phosphorus deficiency in maize [103]
further support the essential role of root traits on adaptation of crops to abiotic stresses.

3.4. Differentially Expressed Genes between High and Low NUE Genotypes

The RNA-seq approach has been applied in many crops for multiple traits to identify
gene networks [104]. Here, we identified 1034 DEGs in the roots of two flax genotypes
with contrasting NUE, where most genes showed altered patterns of expression in the low
NUE (LN) genotype. KEGG pathway analysis showed that DEGs involved in metabolic
pathways, the biosynthesis of secondary metabolites, plant–pathogen interaction and some
genes involved in N metabolism and phenylpropanoid biosynthesis were significantly
enriched. Key metabolic processes such as energy production, N assimilation and root
development, among others, were repressed in LN, while they remained unaltered in
HN, indicating its greater potential to cope with N depleted environments. Similar KEGG
pathway results in roots submitted to N starved conditions have been reported in rice [105]
and cotton [106].

Our study provides the first insight into N stress-responsive genes hypothesized to
have important roles in N stress adaptation in flax. The distinct transcriptional response
observed in both flax accessions in response to starved N condition may serve as a roadmap
to understanding the genetic factors and their interactions in governing NUE in flax.

Through gene annotation and literature reports, at least fifteen identified DEGs are
involved in N metabolism, of which ten were downregulated in LN. For instance, a mu-
tation in AtNRG2, the Arabidopsis ortholog of flax Lus10029683, disrupted the induction
of nitrate-responsive genes after nitrate treatment, where the nitrate content in roots was
lower in the mutants than in the wild type [50]. The reduced nitrate content in roots may
have resulted from a reduced expression of NPF6.3/NRT1.1, the Arabidopsis ortholog of flax
Lus10032252. NPF6.3/NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate
translocation [58], which was also downregulated in LN. Root traits play a pivotal role in
response to N stress and superior NUE in plants. Here, we identified seventeen DEGs that
modulate root development, of which nine were involved in lateral root development. In
general, N deficiency promotes root growth including root length, diameter and volume,
and lateral root length depending on soil environment and N distribution [7,27–29,31].
Lus10024908, the ortholog of Arabidopsis NAC021 mediates auxin signaling to promote
lateral root development, and its overexpression results in a higher number and longer
lateral roots [69]. Another interesting DEG involved in lateral root development was
Lus10040592. Its ortholog in Arabidopsis is SUNN, which controls lateral root density in
response to N concentration through the modulation of shoot-to-root auxin transport [75].
Lateral roots are organs that are under the control of nutrient supply such as N or phos-
phate, and modification of their architecture is a key mechanism underlying plant response
to nutrient depleted soil conditions [65,75]. For example, Lus10011346, the ortholog of
WRKY75 transcription factor, mediates phosphate acquisition and lateral root development
in Arabidopsis [65]. Most of the DEGs involved in root development were downregulated
in the LN genotype, in agreement with its 36.3, 46.8 and 36.1% reductions in TRL, RV
and RT, respectively, under N− compared to the HN genotype. Taken together, the root
transcriptome analysis provided a valuable catalog of DEGs, which further support the
negative effects of N stress on biomass production, root architecture, N content in roots
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and shoots, energy production and ultimately NUE, as witnessed in Brassica juncea [107],
Solanum tuberosum [104] and Brassica napus [31].

3.5. Differentially Expressed Genes at QTLs

Omics research is now shifting from single-omics to large-scale multi-omics ap-
proaches [108]. Through this approach, an understanding of the fundamental biological
processes can be achieved for a more accurate prediction of the response variable, and we
can gain further insights into the mechanistic aspects of the system [108]. Through the
multi-omics approach, researchers can obtain a deeper understanding of the fundamental
biological processes, attain more accurate predictions for the response variables and gain
further insights into the mechanistic aspects of the system [108]. Combining GWAS with
RNA-seq improves the accuracy of candidate gene selection [109]. For example, eight salt
stress-related candidate genes were identified by a combination of GWAS and transcrip-
tome analysis in Medicago sativa (lucerne) [110]. Through the integration of GWAS and
RNA-seq, fourteen candidate genes responsive to drought stress were identified in He-
lianthus annuus (common sunflower) [109]. Similarly, combining QTL mapping, GWAS and
transcriptome analysis enabled the identification of genes involved in high-temperature
stress tolerance in Oryza sativa (rice) [111]. Here, the root RNA-seq analysis allowed us to
locate 337 DEGs in 169 QTLs (47.1%), to identify DEGs in NUE-related QTLs and to confirm
the robustness of the mathematical algorithms upon which ML-GWAS analyses rely.

Both carbon (C) and N nutrients are essential for various cellular functions, and there-
fore adequate supply of these two nutrients is critical for plant growth and stress response.
CBL-interacting serine/threonine-protein kinase 14 (CIPK14, Lus10022748) has been shown to co-
ordinate the responses to oxygen and sugar deficiencies in rice and coordinate the C and N
signaling pathways in response to the relative C/N status in rice seedling roots [51]. CIPK14,
located in QTL Lu1_9831112 and associated with TRL_Index, was upregulated in the LN
genotype. Similarly, Gamma-glutamylcyclotransferase 2.1 (GGCT2.1, Lus10020181) catalyzes
the formation of 5-oxoproline from gamma-glutamyl dipeptides and plays a significant
role in glutathione (GSH) homeostasis. In Arabidopsis, GGCT2.1 mobilizes L-cysteine from
glutathione when there is insufficient sulfate for de novo L-cysteine synthesis, and under
sulfur-starvation, induces changes in the root system architecture through activity of the
gamma–glutamyl cycle in the primary root tip [79]. In our study, QTL Lu2_4220131 was
found to be associated with the RT_Index, and carried the up-regulated GGCT2.1 gene,
which was up-regulated under N−, suggesting that both sulfur and N starvation could
initiate the same glutathione degradation mechanism to produce the component amino
acids L-glutamate, L-cysteine and L-glycine. More than 50 distinct amino acid transporter
genes have been identified in the Arabidopsis genome, indicating that the movement of
amino acids across membranes is a highly complex process in plants. The Arabidopsis or-
tholog cationic amino acid transporter 8 (CAT8, Lus10005574) located in QTL Lu14_17132252
(R/S_N+) is involved in the movement of the cationic neutral or acidic amino acids and is
preferentially expressed in young and rapidly dividing tissues such as young leaves and
root apical meristem [78]. Thus, CAT8 may be involved in allocation of the amino acids’
glutamine and glutamic acid to root and shoot meristems as precursors for the synthesis of
other amino acids under N− [78].

In plants that have been deprived of nitrate for a significant length of time, a constitu-
tive high-affinity nitrate transport system was shown to be responsible for initial nitrate
uptake [59]. Arabidopsis high affinity nitrate transporter 2.5 (NRT2.5, Lus10030902) included
within the LD block of QTL Lu13_18439316 (RT_Index, R/S_N+) is predominantly ex-
pressed in roots of nitrate-deprived plants as a 150 kDa molecular complex with NRT3.1.
This complex accounts for 63% of the constitutive high-affinity nitrate transport system
influx and is the major contributor to nitrate absorption [59].

Root development and root architecture plasticity are pivotal processes in N stress re-
sponses. In Arabidopsis, ethylene is biosynthesized from S-adenosyl-L-methionine through
1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1, Lus10008564). In flax, ACO1, located in
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QTL Lu11_14898826 (NUE_N−), could play a regulatory role in lateral root development,
as in Arabidopsis where aco1 mutants showed reduced ethylene production in root tips
compared to wild-type and displayed altered lateral root formation [62]. LRR receptor-like
serine/threonine-protein kinase GSO1 (GSO1, Lus10036251) in coordination with GSO2, regu-
lates seedling root growth through control of cell division and cell fate specification [63].
GSO1, a DEG located in QTL Lu12_1386203 and associated with RT_N+ and R/S_N−, is a
prime candidate considering its role in root development.

Together, the DEGs identified at QTLs and their important and well documented roles
in N metabolism, root development, energy production, amino acid transport/catabolism
and diverse abiotic stresses demonstrate the efficacy of combining omics tools for rapid
identification of candidate genes controlling complex traits like NUE and other related
abiotic stresses [31,35,109].

3.6. GWAS-Assisted Genomic Selection

Genomic selection (GS) is a promising approach used in crop breeding programs,
particularly for improving complex traits. In GS, genome-wide markers are used to predict
the genomic-estimated breeding values (GEBVs) of individuals by capturing the benefits
of both major- and minor-effect QTLs [36]. By replacing the phenotypic selection with
the GEBV, the genetic gain for each unit cycle can be increased [112]. GS reduced the
selection cycle length of maize, Arabidopsis and barley breeding programs compared to
phenotypic selection that otherwise could take several cycles of extensive phenotyping to
develop reliable phenotypic data [113]. However, performing GS using a large number
of markers is challenging, due to the curse of dimensionality as well as multicollinearity
arising from LD between markers [114]. In addition, molecular markers are major factors
affecting both genomic prediction accuracy (r) and the cost of GS [41]. Previous studies have
indicated that the use of QTLs as markers in GS significantly increases prediction accuracy
compared with genome-wide random markers [41,95,101]. This approach, also known
as GWAS-assisted GS, produced a superior prediction accuracy of 0.92 when 500 QTLs
associated with pasmo resistance were used compared to an accuracy of 0.67 when 52,347
random SNPs were employed in the GS models in flax [95]. Similarly, the GWAS-assisted
GS strategy outperformed the prediction accuracies obtained with 17,277 genome-wide
SNPs for seven breeding selection traits in flax including yield, days to maturity, iodine
value, seed protein content, oil content, linoleic acid and linolenic acid contents [41]. Here,
we compared GBLUP GS models to predict NUE_STI using five marker sets including a
random genome-wide marker set (M1 = 16,383 SNPs) and four GWAS-QTL-based marker
sets (M2-M5). Our results confirmed the superiority of all GWAS-based marker sets for
GS in NUE_STI (r = 0.62 to 0.79) over the random genome-wide marker set (r = 0.11), as
previously reported in flax [41,95,101] and maize [115]. Interestingly, the highest prediction
accuracy for NUE_STI (r = 0.79) was observed when the smallest marker dataset of only
16 trait-specific QTLs was used. Because pleiotropy suggests that different traits might be
genetically controlled by the same or tightly linked genes/QTLs, we hypothesized that
traits correlated with NUE_STI are genetically controlled by pleiotropic QTLs that can be
used as markers in GS to improve prediction accuracy. Our results rejected the hypothesis,
indicating that QTLs from correlated traits did not overcome GS accuracy as compared
with trait-specific QTLs, but was the second-best model. This outcome might be caused by
QTLs’ redundancy or background noise as observed for seven breeding selection traits in
flax [41] and should be evaluated on a case-by-case basis, depending on the trait and its
correlated contributing traits. Hence, our results suggest that trait-specific QTLs not only
significantly improved prediction accuracy, but also reduced the number of markers, which
in turn would decrease genotyping cost in practical breeding programs [41,101]. However,
as we used as validating population different partitioning of the same 123 accessions, a
potential confounding effect was observed as artificial inflation of the predictive ability
might occur for the QTL data sets. As a recommendation to minimize artificial inflation,
the best GS model should be tested in an independent set of genotypes [116].
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Another important factor determining higher prediction accuracy is the size of the
training population and its genetic diversity. In flax, using different training population
sizes derived from the Canadian flax core collection (n = 370), the prediction accuracies for
pasmo resistance ranged from 0.8 with 50 genotypes to 0.9 with 185 accessions, whereas
smaller accuracy gains up to 0.93 were obtained between 200 and 370 individuals [95]. Here,
we used a training population of 123 diverse individuals, which, based on previous reports,
is expected to provide sufficient genetic diversity and, therefore, abundant favorable QTL
alleles for NUE-related traits useful to construct robust GS models [35,87,95]. Despite the
prediction accuracy for NUE_STI being the highest when the GBLUP model was performed
with the 16 trait-specific QTLs marker set, the evaluation of additional parametric and non-
parametric GS models could improve r values for NUE_STI, as observed for maize [115]
and wheat [116]. However, the highest prediction accuracies not only depend on the
GS model, but also on the genetic architecture of the target trait, the extent of LD, and
the genetic diversity of the training population, factors that should be addressed before
implementing practical breeding programs.

4. Materials and Methods
4.1. Plant Materials

An association panel consisted of 123 flax accessions and representing the genetic
diversity from 28 countries was assembled from the Canadian flax core collection [86]. The
plant materials include 83 cultivars, 21 breeding lines, 5 landraces and 14 accessions of
unknown improvement status grouped into 88 oilseed and 35 fiber morphotypes (Table S1).

4.2. Plant Growth Conditions and Phenotyping

Seeds from each of the 123 flax accessions were germinated in Petri dishes on filter
paper wet with distilled water. After seven days, two uniform seedlings were transplanted
into pots (648 cm3) filled with sterile silver sand. Seedlings were watered daily with 30 mL
of modified Hoagland’s nutrient solution. Briefly, the nutrient solution contained 2.5 mM
K2SO4, 2 mM MgSO4, 1 mM KH2PO4, 1 mL L−1 Hoagland micronutrients and 2 mL L−1

FeEDTA solution [12]. Two treatments were evaluated with nitrate added to the solution
in the form of 500 mM Ca(NO3)2, to obtain NO3

− concentrations of 2.5 mM, referred to
as N+ or (0 mM N) referred to as N−. To adjust Ca2+ concentration to the same values in
both N treatments, 0.9 mM CaSO4 was added to the N− treatment. Pots were moved to a
greenhouse facility maintained at 18–25 ◦C, with an 18 h day/6 h night photoperiod and
30–50% relative humidity. The photosynthetically active radiation (PAR) was approximately
400 µmol m−2 s−1. The experiment was laid out as a completely randomized design with
three biological replicates, totaling six plants per genotype. After 14 days, pots were
immersed in water to loosen the soil and the roots were released. The seedlings from each
N treatment and genotype were collected and cut into root and shoot sections. The root
system of each plant was imaged using a calibrated optical scanner LA2400 (Epson 11000XL,
Long Beach, CA, USA). Root images were analyzed using the WinRHIZO software v.2.0
(Regent Instruments, Montreal, QC, Canada), and the measurement data obtained was
used to calculate the following root traits: (i) total root length (TRL; cm), (ii) root volume
(RV; cm3) and (iii) number of root tips (RT). Thereafter, plant tissues were placed in an
oven at 60 ◦C for two days, after which plant dry weight (PDW), root dry weight (RDW),
shoot dry weight (SDW) were determined, and root/shoot ratio was calculated. Shoot
and root N content were determined using the Dumas combustion method in a Gerhardt,
DUMATHERM® N Pro analyzer as described by Muñoz-Huerta [117].

4.3. Phenotypic Data Analysis

Statistical differences between treatments, genotypes and genotype x treatment inter-
actions for shoot and root traits were analyzed using a Restricted Maximum Likelihood
(REML) analysis implemented in GenStat v.18 [118] with p < 0.05 as threshold. Best linear
unbiased estimates (BLUEs) were obtained for each trait under both N treatments and
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used to calculate the trait stability indices using the ratio of the trait under N− to the trait
under N+ [119]. NUE values were calculated using the following formula: plant dry weight
(mg)/Plant N content (mg). NUE stress tolerance index (NUE_STI) was estimated accord-
ing to Fernandez [120]. All traits were used as input for the multi-locus GWAS analyses.
Pearson’s correlation analyses were conducted using the R package “ggplot2”v.3.4.4 [121]
to determine the correlations between the 21 NUE-related traits and their distributions
under N− and N+ conditions.

4.4. Genotyping, Genetic Structure and Linkage Disequilibrium

SNP data was generated for the entire flax core collection (n = 407) by resequencing
all the accessions using Illumina HiSeq 2000 platform in a 100 bp paired-end mode at an
average genome coverage of 17× and generating a data set of 570,443 high-quality SNPs
with a call rate > 80%. From this core data set, SNP information was extracted for the
above mentioned 123 accessions and further filtered at a call rate > 95% and a minor allele
frequency (MAF) > 0.05, and the resulting 272,944 SNP dataset was used for this study.

The genetic structure of the 123 accessions was evaluated in STRUCTURE v.2.3.4 [122]
using a subset of 5305 SNPs generated from the 272,944 SNP dataset at a call rate > 98%
and a MAF > 0.05 and that were found evenly distributed across the 15 pseudomolecules of
flax [48]. The number of sub-groups was determined using the web-based software Struc-
ture Harvester v.0.6.94 (http://taylor0.biology.ucla.edu/structureHarvester/, (accessed
on 14 July 2023)), which is based on the Evanno method [123]. Neighbor-joining (NJ)
phylogenetic, principal component (PC) and kinship analyses were performed based on
the 272,944 SNPs using TASSEL v 5.2.31 [124].

Genome-wide and chromosome-specific linkage disequilibrium (LD) were estimated
using the squared correlations of allele frequency (r2) in TASSEL v.5.2.31 [124] with a sliding
window size of 50. LD decay was estimated as previously described by Soto-Cerda [94].

4.5. Multi-Locus Genome-Wide Association Analyses

To identify the genetic loci underlying NUE-related traits, the ML-GWAS meth-
ods FASTmrEMMA [125], FASTmrMLM [126], ISIS EM-BLASSO [127], mrMLM [128],
pKWmEB [129] and pLARmEB [130] included in the R package multi-locus random-SNP-
effect mixed linear model (mrMLM v. 4.0.2) [131], were computed using the default
parameters. A logarithm of the odds (LOD) score > 3.0 was set as threshold to detect
robust marker-trait associations, which increases the QTN detection power compared to
single-locus GWAS while reducing type I errors [125–130]. The ML-GWAS outcomes were
summarized and displayed using Manhattan plots, and their ability to minimize false-
positive associations was tested with quantile–quantile (Q-Q) plots. The mrMLM v. 4.0.2
package constructs the Manhattan and Q-Q plots using the −log10(p) median among the
−log10(p) values of each marker obtained from the mrMLM, FASTmrMLM, FASTmrEMMA
and pKWmEB models. Irrespective of the −log10(p) median, only significant markers
(LOD > 3.0) are therefore shown in the Manhattan plots above dotted vertical lines [131].

Significant QTNs detected by the ML-GWAS analyses were further filtered using the
Mann–Whitney non-parametric U test (p < 0.05). QTNs with non-significant allele effect
were considered false positives and were removed. The QTNs with significant allele effect
were grouped into QTL blocks if they belonged to a physical distance corresponding to
75% of the maximum LD decay. As such, neighboring QTNs within QTL blocks had a
high probability of remaining linked across generations [132]. For each QTL block, the
QTN with the largest % of phenotypic variations explained (R2) value was selected as the
representative QTN for the QTL block. Boxplots to visualize QTL allele effect were made
using the R package “ggplot2” [121]. Adjusted R2 (adjR2) values for all QTL associated with
NUE-related traits were calculated based on simple regressions of QTL on traits because
the adjR2 values represent the proportion of the total variation of traits explained by the
QTL [95].

http://taylor0.biology.ucla.edu/structureHarvester/
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The simple regression analyses were conducted using Blue Sky statistics (https://
www.blueskystatistics.com/ (accessed on 10 May 2023)).

4.6. Transcriptome Sequencing and Analysis

From the N stress experiment described above, two contrasting flax accessions O_IRL_
C_CN98192 and O_IND_C_CN98982, referred to as high NUE (HN) and low NUE (LN)
hereafter, respectively, were selected and submitted again to the same N stress experiment
using the modified Hoagland’s nutrient solution as described above. Root samples were
collected 14 days after transplanting and immediately frozen in liquid nitrogen. The
experiment included four biological replicates per genotype and treatment (N− and N+),
for a total of 16 experimental units. Total RNA was extracted from the root tissue of each
of the 16 biological sample units using the Spectrum Plant Total RNA kit (Sigma-Aldrich,
St. Louis, MO, USA). RNA was DNase-treated, visualized on an agarose gel, quantified
using a Nanodrop (Thermo Scientific, Madison, WI, USA) and RNA QC for all samples
was ensured by RNA integrity number (RIN) ≥ 7.0 using a 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). The 16 RNA libraries were constructed by outsourcing
to Novogene Corporation Inc. (Beijing, China) and were sequenced in paired-end mode
using a NovaSeq 6000 platform (Illumina, Inc., San Diego, CA, USA) through 150 cycles.
The sequencing results in FASTQ format were processed with Trimmomatic v.1 [133] which
involved the removal of bases with a q-score below 15 from both their 5′ and 3′ ends,
while retaining sequences that were longer than 70 base pairs. The high-quality reads
were mapped to the flax reference genome [48] using HISAT2 v2.2.1 [134] with default
parameters The alignment bam files were processed and sorted with samtools v1.3.1 [135]
and the abundance of genomic features was computed using featureCounts v2.0.1 [136].
The statistical differences in gene expression were assessed with the R package DESeq2 [137]
with the threshold set as |log2(Fold change)| ≥ 1 and false discovery rate (FDR)-adjusted
p value < 0.05.

Functional annotation of the DEGs was carried out against the curated KEGG GENES
database using the KEGG Automatic Annotation Server (KAAS, https://www.genome.
jp/kegg/ (accessed on 12 January 2023)). KEGG Orthologs (KO) were assigned using the
KofamKOALA software [138].

4.7. Cross-Referencing of Differentially Expressed Genes and QTL-Associated Candidate Genes

GWAS-detected QTL were scanned within an estimated average genome-wide LD
decay range of 100 kb (Figure 2d) for the identification of candidate genes mined from
the flax reference genome [48] using the Jbrowse feature of Phytozome v.13.1 (http://
phytozome.jgi.doe.gov/pz/portal.html (accessed on 13 January 2023)).

Candidate genes identified near the QTL were further analyzed and cross-referenced
with the root RNA-seq transcriptomic data from the two contrasting flax accessions HN and
LN for their involvement in nitrogen stress responses. Only DEGs with a fold change ≥ 1
and an FDR-adjusted p value < 0.05 were considered for cross-referencing with candidate
genes associated with the QTL. To determine the biological significance of the DEGs,
L. usitatissimum genes were annotated by BLASTP against the SwissProt database using the
threshold criteria of identity≥ 50%, sequence coverage≥ 70% and E-value≤ 1× e−10. The
functional role of DEGs in nitrogen stress responses were further examined by searching
literature reports for their functional characterization in other plant species.

4.8. GWAS-Assisted Genomic Selection

Markers (QTLs) obtained from the ML-GWAS were used to predict the GEBV of
NUE_STI, a trait that allows the identification of genotypes with high NUE and high N
responses. Five marker sets were tested as GS input. Marker set 1 (M1) was constructed
using 16,383 random genome-wide markers; marker set 2 (M2) considered the markers
identified by GWAS to be associated with all traits under the N− conditions (n = 120);
marker set 3 (M3) included only the markers associated with NUE_STI (n = 16); marker set

https://www.blueskystatistics.com/
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4 (M4) was constructed with the markers associated with all traits positively correlated with
NUE_STI (n = 281); and marker set 5 (M5) was assembled using the markers associated
with all traits positively correlated with NUE_STI that harbored DEGs (n = 127). The goal
was to determine the best dataset to obtain the highest prediction accuracy for NUE_STI,
considering QTL identified for NUE_STI per se, and those of traits correlated with it [139].

The genomic BLUP (GBLUP) statistical model, implemented in the R package BGLR
(https://r-forge.r-project.org/projects/bglr/, accessed on 12 January 2023) [140], was
used to evaluate prediction accuracy of the five marker sets because GBLUP’s superior
prediction ability for highly polygenic traits has been demonstrated in flax [41,101]. The
computation methodology of GBLUP has been previously described in more detail by De
Los Campos [141]. The marker sets were formatted as “1” for the positive effect allele of a
QTL and “−1” for the alternative allele [95].

For GS model validation, a fivefold random cross-validation strategy was applied [95].
The 123 accessions were randomly partitioned into five subsets. For a given partition, each
subset was used as test data, whereas the remaining four subsets were used as a training
dataset. This partitioning was repeated 100 times. The accuracy of GS (r) was computed
using the Pearson’s correlation coefficient between the genetic values predicted by GS
and the observed phenotypic values. To compare the different marker sets, an analysis
of variance (ANOVA) with Tukey’s multiple pairwise comparisons was conducted to
determine the statistical significance of differences in genomic prediction (r) using GenStat
v18 [118] with p < 0.05. Boxplots for each marker set were made using the R package
“ggplot2” [121].

5. Conclusions

The 123 flax accessions exhibited abundant genetic diversity for NUE-related traits, in
line with their diverse geographic origin, breeding status and plant morphotype, resulting
in the identification of 359 NUE-related trait QTLs. This study reaffirmed the polygenic
nature of NUE and its related traits which are controlled by many small and medium effect
QTLs in flax. Root RNA-seq analysis identified important candidate genes involved in root
development and N metabolism, among which 337 candidates were found at 169 QTLs.
GWAS-assisted GS strategy produced superior genomic prediction accuracies compared to
genome-wide markers for NUE_STI, and the GS model based on trait-specific QTLs had
the best predictive ability (r = 0.79). The use of GWAS-derived QTL associated with a target
trait is recommended because it is the most accurate, cost-effective and computationally
advantageous for NUE and other quantitative traits in flax.
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