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Abstract: Cannabidiol (CBD) is a potential antidepressant agent. We examined the association
between the antidepressant effects of CBD and alterations in brain microRNAs in the unpredictable
chronic mild stress (UCMS) model for depression. UCMS male rats were injected with vehicle or
CBD (10 mg/kg) and tested for immobility time in the forced swim test. Alterations in miRNAs
(miR16, miR124, miR135a) and genes that encode for the 5HT1a receptor, the serotonergic transporter
SERT, β-catenin, and CB1 were examined. UCMS increased immobility time in a forced swim test
(i.e., depressive-like behavior) and altered the expression of miRNAs and mRNA in the ventromedial
prefrontal cortex (vmPFC), raphe nucleus, and nucleus accumbens. Importantly, CBD restored UCMS-
induced upregulation in miR-16 and miR-135 in the vmPFC as well as the increase in immobility time.
CBD also restored the UCMS-induced decrease in htr1a, the gene that encodes for the serotonergic
5HT1a receptor; using a pharmacological approach, we found that the 5HT1a receptor antagonist
WAY100135 blocked the antidepressant-like effect of CBD on immobility time. Our findings suggest
that the antidepressant effects of CBD in a rat model for depression are associated with alterations in
miR-16 and miR-135 in the vmPFC and are mediated by the 5HT1a receptor.
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1. Introduction

Depression is one of the most common psychiatric disorders worldwide [1]. Antide-
pressants are the current recommended standard of treatment for depression; however,
their effectiveness is only slightly efficacious compared to placebos [2].

There has been growing evidence that cannabidiol (CBD) may have therapeutic effects
on depressive symptoms. Given its safety profile, CBD is a promising treatment for mood
disorders; however, the exact molecular mechanisms underlying its potential antidepres-
sant effects are largely unknown. Pre-clinical studies demonstrated the antidepressant
effects of CBD, expressed as lower immobility time in the forced swimming test (FST)
(i.e., less despair) [3–5] and higher saccharine consumption in the saccharine preference
test (i.e., lower anhedonia) [3,6]. In mice that underwent olfactory bulbectomy (OBX), a
model for depression, CBD improved depressive-like symptoms and elevated serotonin
and glutamate levels in the prefrontal cortex (PFC) [7]. Human studies suggest that CBD
has ameliorating effects in several disorders, which are in high comorbidity with depression,
such as insomnia, borderline personality disorder, and social anxiety [8,9].

CBD has a very low affinity for both cannabinoid CB1 and CB2 receptors [10], but
it modulates endocannabinoid function through its ability to inhibit the hydrolysis of
anandamide and to act as a transient receptor potential vanilloid 1 agonist. Another
major mediating pathway for CBD-anti-depressive effects may be through the serotonergic
5-HT1a receptor [4,11–13]. CBD administered into the medial PFC (mPFC) was found
to induce antidepressant-like effects in the FST through indirect activation of CB1r and
5-HT1a [13]. Repeated administration of CBD was found to prevent long-lasting anxiogenic
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effects promoted by a single predator exposure; pretreatment with the 5-HT1a antagonist
WAY100635 attenuated the CBD effects, suggesting the involvement of 5-HT1a in the
mediation of those effects [11].

CBD activates the extracellular signal-regulated kinase (ERK) pathway through the
5-HT1a receptor [14], resulting in β-catenin accumulation in the cytosol and therefore in the
cell nucleus [15]. β-catenin is a multi-functional protein that plays an important role in the
mature central nervous system; its dysfunction has been implicated in several neuropsychi-
atric disorders, including depression [16]. We have recently found, that downregulating
β-catenin levels in the nucleus accumbens (NAc), blocked the therapeutic-like effects of
the fatty acid amide hydrolase (FAAH) inhibitor URB597 on anxiety- and depression-like
behaviors in rats exposed to a rat model of post-traumatic stress disorder (PTSD) [17].
It has been shown that β-catenin is a critical regulator in the development of behavioral
resilience, activating a network that includes downstream microRNAs (miRNAs, miRs) [18].
miRNAs are small non-coding RNA molecules comprising 19–25 nucleotides. miRNAs are
implicated in a range of psychiatric disorders including anxiety and depression [19–23].

Different miRNAs target different mRNAs, leading to various effects, and behavioral
phenotypes such as resilience to panic, anxiety, stress, etc. [24,25]. Several miRNAs have
been associated with resilience to stress and depression; amongst them are miR-16, miR-124,
and miR-135 [18,26–30].

MiR-16 was found to be less abundant in the cerebrospinal fluid of patients with major
depression [31] and lower levels of miR-16 in the NAc were associated with susceptibility to
stress in mice [18]. Moreover, MiR-16 modulates the expression of the serotonin transporter
(SERT), a major target for SSRIs [31,32]. In raphe cells, elevated levels of miR-16 induced
a decrease in the expression of SERT [31,32]. We have recently found that in adult males
and females, exposed to early life stress (ELS), the FAAH inhibitor URB597 restored an
ELS-induced decrease in mPFC miR-135a in females and miR-16 in males and the associated
depressive-like phenotype in both sexes [33].

In the PFC, early adolescent stress downregulated miR-135a expression [34], while
upregulating in the hippocampus [26,34], suggesting a brain-region-dependent effect. MiR-
135a levels were significantly lower in the blood and brain of depressed human patients.
MiR-135- knockdown also prompted an increase in 5-HT1a and SERT levels in the raphe
nucleus [27]. A similar effect of miR-135a downregulation on 5-HT1a overexpression was
seen in the PFC [34].

MiR-124, like miR-135, is a brain-specific miRNA [35]. A decrease in hippocampal
miR-124 levels was correlated with depressive-like behaviors in mice that underwent
chronic ultra-mild stress (CUMS), while overexpression of miR-124 enhanced behavioral
resilience. MiR-124 targets the GSK3β-coding mRNA, as miR-124 overexpression in-
duced GSK3β downregulation [28]. GSK3β is an enzyme that plays a role in β-catenin
regulation [15,36–38], and its inhibition elevates cytosolic β-catenin, which promotes re-
silience to depression.

The aim of the present study was to examine in the unpredictable chronic mild stress
(UCMS) model for depression, whether the antidepressant properties of CBD are associated
with alterations in miRNAs implicated in depression (miR-16, miR-124, and miR-135) and
with important target genes of these miRNAs and CBD. We examined the expression of
genes that encode for the serotonergic 5HT1a receptor and SERT, and the expression of
genes that encode for β-catenin and CB1. This was examined in the ventromedial PFC
(vmPFC), NAc, and raphe nucleus, brain regions highly associated with the etiology of
depression [39–41].

2. Results
2.1. The Effects of Chronic CBD Administration during UCMS on Behavior

We examined the effects of chronic CBD administration (10 mg/kg, i.p.) during the last
3 weeks of a 6-week UCMS model on immobility in the FST and on motoric and anxiety-like
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behavior in the open field test (OFT). All analyses were conducted using two-way ANOVA
[stress × drug (2 × 2)].

In the FST (Figure 1a), we found a significant effect of drug (F(1,39) = 9.801, p < 0.01)
and stress× drug interaction (F(1,39) = 8.732, p < 0.01) with no effect of stress (F(1,39) = 0.874, ns),
suggesting that CBD restored UCMS-induced increase in immobility.
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Figure 1. The effects of CBD treatment on behavior in rats exposed to UCMS. (a) FST: UCMS
rats treated with a vehicle spent more time immobile than the No UCMS groups and UCMS rats
treated with CBD. (b) OFT total distance: No UCMS rats treated with the vehicle covered less
distance compared to all groups. (c) OFT time in the center: no differences between groups were
observed. FST—forced swim test; OFT—open field test; UCMS: unpredictable chronic mild stress;
CBD: cannabidiol. *, p < 0.05, **, p < 0.01, ***, p < 0.001.

In the OFT, we found a significant effect of drug (F(1,39) = 10.586, p < 0.01) and
stress (F(1,39) = 10.34, p < 0.01) on locomotion (Figure 1b), with no effect of stress x drug
interaction (F(1,39) = 2.236, ns), suggesting that CBD and UCMS increased locomotion
behavior compared with the No UCMS vehicle group. Furthermore, we found no ef-
fect of stress (F(1,39) = 0.355, ns), drug (F(1,39) = 2.219, ns), or stress × drug interaction
(F(1,39) = 0.653, ns) on the time spent in the center of the arena during the first 5 min of the
test (Figure 1c).

2.2. The Effects of Chronic CBD Administration during UCMS on miRNA Expression

Following the behavioral tests, we assessed the expression of miR-16, miR-124, and
miR-135 in the vmPFC, NAc, and raphe nucleus. All analyses were conducted using
two-way ANOVA [stress × drug (2 × 2)].

2.2.1. miR-16

In the vmPFC (Figure 2a), we found a significant effect of stress (F(1,35) = 15.648,
p < 0.001), drug (F(1,35) = 4.276, p < 0.05), and stress x drug interaction (F(1,35) = 10.682,
p < 0.01) on the expression of miR-16, suggesting that CBD restored UCMS-induced upreg-
ulation of miR-16.

In the NAc (Figure 2b), a significant effect of stress (F(1,34) = 5.454, p < 0.05), with
no effect of drug (F(1,34) = 0.001, ns) or stress x drug interaction (F(1,34) = 2.434, ns) was
observed, suggesting that UCMS upregulated miR-16 compared to the controls, an effect
that was not observed in CBD-treated rats.

In the raphe (Figure 2c), we found a significant effect of stress (F(1,29) = 15.141,
p < 0.001), with no effect of drug (F(1,29) = 2.862, ns) or stress× drug interaction (F(1,29) = 0.18, ns),
suggesting that UCMS downregulated miR-16, with no effect for CBD.
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Figure 2. The effects of CBD treatment on miRNA expression in the vmPFC, NAc, and raphe nucleus
in rats exposed to UCMS. miR-16. (a) vmPFC: UCMS rats treated with a vehicle demonstrated miR-16
upregulation compared to all groups. (b) NAc: UCMS rats treated with a vehicle demonstrated
miR-16 upregulation compared to No UCMS rats treated with a vehicle. (c) Raphe: UCMS (vehicle,
CBD) downregulated miR-16 compared to UCMS rats treated with a vehicle. miR-124: (d) vmPFC:
UCMS rats treated with CBD demonstrated miR-124 upregulation compared to No UCMS rats
treated with CBD. (e) NAc: UCMS downregulated miR-124 compared to No UCMS. (f) Raphe: UCMS
downregulated miR-124 compared to No UCMS. miR-135: (g) vmPFC: UCMS rats treated with a
vehicle demonstrated miR-135 upregulation compared to all groups. (h) NAc: UCMS rats treated
with CBD demonstrated miR-135 upregulation compared to all groups. (i) Raphe: UCMS upregulated
miR-135 compared to No UCMS. vmPFC: ventromedial prefrontal cortex; NAc: nucleus accumbens;
miR: microRNA; UCMS: unpredictable chronic mild stress; CBD: cannabidiol. *, p < 0.05, **, p < 0.01,
***, p < 0.001.

2.2.2. miR-124

In the vmPFC (Figure 2d), we found a significant effect of stress (F(1,35) = 7.668,
p < 0.01), with no effect of drug (F(1,35) = 0.155, ns), or stress x drug interaction (F(1,35) = 3.507, ns)
on the expression of miR-124, suggesting that UCMS upregulated miR-124 in CBD-treated rats.

In the NAc (Figure 2e), and in the raphe (Figure 2f), a significant effect of stress (NAc:
F(1,36) = 25.341, p < 0.001; raphe: F(1,37) = 30.532, p < 0.001) was observed, with no effect
of drug (NAc: F(1,36) = 1.063, ns; raphe: F(1,37) = 0.527, ns) or stress × drug interaction
(NAc: F(1,36) = 0.087, ns; raphe: F(1,37) = 1.03, ns), suggesting that UCMS downregulated
miR-124, with no effect for CBD.
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2.2.3. miR-135

In the vmPFC (Figure 2g), we found a significant effect of stress (F(1,33) = 16.546,
p < 0.001), drug (F(1,33) = 4.745, p < 0.05), and stress × drug interaction (F(1,33) = 8.748,
p < 0.01) on the expression of miR-135, suggesting that CBD restored UCMS-induced
upregulation of miR-135.

In the NAc (Figure 2h), we found a significant effect of stress (F(1,34) = 6.996,
p < 0.05) and drug (F(1,34) = 12.672, p < 0.01) with no effect of stress x drug interaction
(F(1,34) = 2.726, ns), suggesting that CBD upregulated miR-135 only in UCMS rats.

In the raphe (Figure 2i), we found a significant effect of stress (F(1,27) = 19.081,
p < 0.001), with no effect of drug (F(1,27) = 0.28, ns) or stress× drug interaction (F(1,27) = 0.187,
ns), suggesting that UCMS upregulated miR-135, with no effect for CBD.

Pearson bivariate correlations tests (Table 1) were conducted between miRNA expres-
sion in the different brain regions and the behavioral measures to explore the association
between the depressive-like behavior of the rats and their miR expression. For immobility,
the most robust effect was observed with vmPFC miR-135 levels (r = 0.428, p < 0.05), sug-
gesting that increased immobility was associated with vmPFC miR-135 upregulation. A
negative correlation was observed with NAc miR-135 levels (r = −0.339, p < 0.05).

Table 1. Pearson correlation coefficients between miRNA levels and behavioral measures in rats
exposed to UCMS and CBD.

miR-16
vmPFC

miR-16
NAC

miR-16
Raphe

miR-124
vmPFC

miR-124
NAC

miR-124
Raphe

miR-135
vmPFC

miR-135
NAC

miR-135
Raphe

FST—
immobility

r = 0.277
p = 0.102

r = 0.250
p = 0.147

r = 0.069
p = 716

r = 0.087
p = 0.613

r = −0.040
p = 0.816

r = 0.054
p = 0.749

r = 0.428 *
p = 0.012

r = −0.339
*

p = 0.046

r = 0.187
p = 0.340

OFT—
total

distance

r = 0.176
p = 0.305

r = 0.322
p = 0.060

r = −0.473
**

p = 0.008

r = −0.159
p = 0.355

r = 0.455
**

p = 0.005

r = 0.060
p = 0.718

r = 0.012
p = 0.944

r = 0.192
p = 0.268

r = 0.474 *
p = 0.011

OFT—
time in
center

r = 0.0.14
p = 0.933

r = −0.2.33
p = 0.198

r = 0.276
p = 0.140

r = −0.184
p = 0.282

r = −0.142
p = 0.403

r = 0.157
p = 0.347

r = −0.75
p = 0.675

r = −0.229
p = 0.186

r = −0.70
p = 0.723

FST—forced swim test; OFT—open field test; vmPFC: ventromedial prefrontal cortex; NAc: nucleus accumbens;
miR: microRNA; UCMS: unpredictable chronic mild stress; CBD: cannabidiol. *, p < 0.05, **, p < 0.01.

For total distance in the OFT, significant correlations were observed with NAc miR-124
(r = 0.455, p < 0.01), raphe miR-135 (r = 0.474, p < 0.05), and raphe miR-16 (r = −0.473,
p < 0.01) levels. These suggest that increased locomotion behavior was associated with
increased NAc miR-124 and raphe miR-135 and decreased raphe miR-16.

2.3. The Effects of Chronic CBD Administration during UCMS on Possible Target Genes

Previous findings suggested that the effects of CBD on depressive-like behavior may
be mediated via serotonergic mechanisms and CB1r activation [4,11-13]. We have recently
shown that the stress-preventing effects of FAAH inhibition are mediated by β-catenin [17].
Hence, we next examined alterations in the expression of several target genes in UCMS
rats treated with CBD.

We examined the expression of htr1a and slc6a4 genes that encode for the serotonergic
5HT1a receptor and SERT, respectively, and the expression of ctnnb1 and cnr1, the genes
that encode for β-catenin and CB1, respectively. All analyses were conducted using two-
way ANOVA [stress × drug (2 × 2)].

2.3.1. htr1a

In the vmPFC (Figure 3a), we found a significant effect of stress (F(1,35) = 5.586,
p < 0.05) and stress x drug interaction (F(1,35) = 9.861, p < 0.01) but not for drug (F(1,35) = 3.169,
ns), suggesting that CBD restored UCMS-induced downregulation of htr1a.
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between the groups. (l) Raphe: no differences were observed between the groups. vmPFC: 

Figure 3. The effects of CBD treatment on serotonergic, β-catenin, and CB1 mRNA expression in
the vmPFC, NAc, and raphe nucleus in rats exposed to UCMS. htr1a: (a) vmPFC: UCMS-vehicle
downregulated htr1a levels compared to all groups. (b) NAc: UCMS rats treated with a vehicle or
CBD and No UCMS rats treated with CBD demonstrated htr1a downregulation compared to No
UCMS rats treated with a vehicle. (c) Raphe: no differences were observed between the groups. slc6a4:
(d) vmPFC: UCMS rats treated with a vehicle or CBD demonstrated downregulation compared to
No UCMS rats treated with a vehicle. (e) NAc: no differences were observed between the groups.
(f) Raphe: UCMS-vehicle rats demonstrated upregulation of slc6a4 compared to No UCMS-CBD
rats. Ctnnb1: (g) vmPFC: UCMS-vehicle rats demonstrated Ctnnb1 downregulation compared to
No UCMS-vehicle rats. (h) NAc: UCMS downregulated Ctnnb1 compared to No UCMS rats treated
with a vehicle or CBD. (i) Raphe: no differences were observed between the groups. Cnr1: (j) vmPFC:
UCMS rats that were treated with a vehicle or CBD demonstrated Cnr1 downregulation compared
to No UCMS rats treated with a vehicle or CBD. (k) NAc: no differences were observed between the
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groups. (l) Raphe: no differences were observed between the groups. vmPFC: ventromedial prefrontal
cortex; NAc: nucleus accumbens; UCMS: unpredictable chronic mild stress; CBD: cannabidiol.
*, p < 0.05, **, p < 0.01.

In the NAc (Figure 3b), we found a significant effect of stress (F(1,26) = 6.916, p < 0.05),
drug (F(1,26) = 10.584, p < 0.01) and stress x drug interaction (F(1,26) = 4.386, p < 0.05),
suggesting that UCMS and CBD downregulated htr1a.

In the raphe (Figure 3c), we found no effect of stress (F(1,29) = 1.158, ns), drug
(F(1,29) = 0.684, ns), or stress × drug interaction (F(1,29) = 0.305, ns), suggesting no ef-
fect for UCMS or CBD on htr1a.

2.3.2. slc6a4

In the vmPFC (Figure 3d), we found a significant effect of stress (F(1,27) = 14.184,
p < 0.01) but not of drug (F(1,27) = 0.49, ns)), or stress x drug interaction (F(1,27) = 0.438,
ns), suggesting that UCMS downregulated slc6a4, with no effect for CBD.

In the NAc (Figure 3e), we found no effect of stress (F(1,25) = 0.259, ns), drug
(F(1,25) = 0.319, ns), or stress × drug interaction (F(1,25) = 1.253, ns), suggesting no effect
for UCMS or CBD on slc6a4.

In the raphe (Figure 3f), we found a significant effect of stress (F(1,27) = 5.272,
p < 0.05), drug (F(1,27) = 6.904, p < 0.05) but not for stress x drug interaction (F(1,27) = 0.303,
ns), suggesting that UCMS rats treated with vehicle showed upregulation compared to No
UCMS-CBD rats.

2.3.3. ctnnb1

In the vmPFC (Figure 3g), we found a significant effect of stress (F(1,35) = 7.864,
p < 0.01) and stress × drug interaction (F(1,35) = 5.071, p < 0.05), but not for drug
(F(1,35) = 0.453, ns) on the expression of ctnnb1, suggesting that in UCMS-vehicle, but
not in UCMS-CBD rats, ctnnb1 was downregulated, an effect that was not observed in
CBD-treated rats.

In the NAc (Figure 3h), a significant effect of stress (F(1,34) = 21.045, p < 0.001) was
observed, but not of drug (F(1,34) = 0.001, ns) or stress × drug interaction (F(1,34) = 0.051,
ns), suggesting that UCMS downregulated ctnnb1, with no effect for CBD.

In the raphe (Figure 3i), we found no effect of stress (F(1,33) = 0.157, ns), drug (F(1,33)
= 0.496, ns), or stress × drug interaction (F(1,33) = 0.037, ns), suggesting no effect for UCMS
or CBD on ctnnb1.

2.3.4. cnr1

In the vmPFC (Figure 3j), we found a significant effect of stress (F(1,35) = 16.429,
p < 0.001) but not for drug (F(1,35) = 0.002, ns) or stress × drug interaction (F(1,35) = 0.314,
ns), suggesting that UCMS downregulated cnr1. In the NAc (Figure 3k) and the raphe
(Figure 3l), we found no effect of stress (NAc: F(1,32) = 1.736, ns; raphe: F(1,30) = 2.111,
ns), drug (NAc: F(1,32) = 0.003, ns; raphe: F(1,30) = 0.32, ns) or stress x drug interaction
(NAc: F(1,32) = 0.048, ns; raphe: F(1,30) = 0.116, ns), suggesting no effect for UCMS or CBD
on cnr1.

Pearson bivariate correlations tests were conducted between miRNA expression and
genes in the various brain regions.

In the vmPFC (Table 2), the most robust correlations were observed between miR-16
and hrt1a (r = 0.591, p < 0.001) and slc6a4 (r = 0.432, p < 0.05), and between miR-135
and hrt1a (r = 0.478, p < 0.01), suggesting that levels of the 5HT1a and SERT genes were
associated with these microRNAs.

In the NAc (Table 3), the most robust correlations were observed between miR-16 and
ctnnb1 (r = 0.479, p < 0.01) and between miR-124 and ctnnb1 (r = 0.463, p < 0.01), suggesting
that levels of these microRNAs were associated with the β-catenin gene.
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Table 2. Pearson correlation coefficients between miRNA levels and genes in the vmPFC in rats
exposed to UCMS and CBD.

hrt1a slc6a4 ctnnb1 cnr1

miR-16 r = 0.591 ***
p = 0.000

r = −0.432 *
p = 0.031

r = 0.140
p = 0.436

r = 0.250
p = 0.160

miR-124 r = −0.131
p = 0.469

r = 0.281
p = 0.183

r = 0.027
p = 0.880

r = −0.075
p = 0.682

miR-135 r = 0.478 **
p = 0.008

r = −0.346
p = 0.091

r = 0.001
p = 0.997

r = 0.258
p = 0.154

*, p < 0.05, **, p < 0.01, ***, p < 0.001.

Table 3. Pearson correlation coefficients between miRNA levels and genes in the NAc in rats exposed
to UCMS and CBD.

hrt1a slc6a4 ctnnb1 cnr1

miR-16 r = −0.404
p = 0.051

r = −0.33
p = 0.878

r = 0.479 **
p = 0.006

r = 0.229
p = 0.215

miR-124 r = −0.272
p = 0.198

r = −0.56
p = 0.794

r = 0.463 **
p = 0.008

r = 0.224
p = 0.234

miR-135 r = −0.324
p = 0.114

r = −0.080
p = 0.724

r = 0.222
p = 0.222

r = 0.226
p = 0.231

**, p < 0.01.

In the raphe nucleus (Table 4), the most robust correlations were observed between
miR-124 and slc6a4 (r = 0.408, p < 0.05) suggesting that levels of this microRNA were
associated with SERT gene.

Table 4. Pearson correlation coefficients between miRNA levels and genes in the raphe nucleus in
rats exposed to UCMS and CBD.

hrt1a slc6a4 ctnnb1 cnr1

miR-16 r = 0.125
p = 0.579

r = 0.064
p = 0.795

r = −0.205
p = 0.325

r = 0.012
p = 0.956

miR-124 r = −0.358
p = 0.056

r = 0.408 *
p = 0.035

r = −0.175
p = 0.330

r = 0.147
p = 0.438

miR-135 r = 0.191
p = 0.382

r = 0.232
p = 0.298

r = 0.050
p = 0.815

r = 0.324
p = 0.142

*, p < 0.05.

2.4. Does the 5-HT1a Antagonist WAY100635 Block the Effects of Chronic CBD Administration
during UCMS on Behavior

As CBD was found to restore UCMS-induced downregulation of the htr1a gene that
encodes for the serotonergic 5HT1a receptor, we pharmacologically examined whether the
effects of CBD on behavior are mediated by the activation of the 5HT1a receptor. To that
end, in a different set of animals, we assessed whether the antidepressant effects of CBD
(see Figure 1) are mediated by the serotonergic 5HT1a receptor by administering a 5HT1a
receptor antagonist. We administered the 5HT1a-antagonist WAY100635 (0.1 mg/kg) along
with CBD every day during the last 3 weeks of UCMS. Other groups were injected with
CBD or WAY or vehicle for comparison. All analyses were conducted using two-way
ANOVA [stress × drug (2 × 2)].

In the FST (Figure 4a), we found a significant effect of stress (F(1,79) = 40.143, p < 0.001)
and drug (F(1,79) = 4.506, p < 0.01) with no effect of stress x drug interaction (F(1,79) = 2.409,
ns), suggesting that CBD restored UCMS-induced immobility, an effect that was blocked by
the antagonist WAY. UCMS rats injected with vehicle, WAY, or WAY + CBD demonstrated
increased immobility compared to No UCMS rats that were injected with vehicle (p < 0.05),
WAY (p < 0.01), or WAY + CBD (p < 0.01), respectively.
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Figure 4. The effects of the 5-HT1a antagonist WAY100635 on behavior in rats exposed to UCMS and
treated with CBD. (a) FST: UCMS rats that were treated with CBD, spent less time immobile than
UCMS rats that were treated with vehicle, WAY, or CBD + WAY. Furthermore, UCMS rats treated
with vehicle, WAY, or CBD + WAY, showed increased immobility compared to No UCMS rats injected
with vehicle, WAY, or CBD + WAY, respectively. (b) OFT: UCMS rats traveled more than No UCMS
rats. (c) OFT time in the center: no differences between groups were observed. FST—forced swim test;
OFT—open field test; UCMS: unpredictable chronic mild stress; CBD: cannabidiol; WAY: WAY100635,
*, p < 0.05; **, p < 0.01; ***, p < 0.001; compared to UCMS-CBD group � *, p < 0.05, �� **, p < 0.01,
��� ***, p < 0.001 white aquares indicate statistical significance in UCMS vs. NO UCMS groups.

In the OFT, we found a significant effect of stress (F(1,79) = 185.137, p < 0.001) and
stress x drug interaction (F(1,79) = 4.602, p < 0.01) on locomotion (Figure 4b) with no effect
of drug (F(1,79) = 1.227, ns), suggesting that UCMS increased locomotion, with no effect for
CBD. Furthermore, we found no effect of stress (F(1,79) = 3.197, ns), drug (F(1,79) = 0.928,
ns), and stress × drug interaction (F(1,79) = 2.210, ns) on the time spent in the center of the
arena in the first 5 min of the test (Figure 4c).

3. Discussion

In this study, we show for the first time that CBD can restore UCMS-induced upregu-
lation of miR-16 and miR-135 in the vmPFC as well as the associated despair-like behavior.
UCMS also downregulated the 5-HT1a gene htr1a in the vmPFC; using a pharmacological
approach with the 5-HT1a receptor antagonist WAY, we found that the antidepressant-like
effects of CBD are mediated by the 5HT1a receptor.

The antidepressant effects of CBD on despair-like behavior in the FST corroborates
with previous findings [3–5,42–44]. In the open field, CBD did not restore the UCMS-
induced increase in locomotion activity and UCMS had no significant effect on anxiety-like
behavior measured as time spent in the center of the open field.

The expression of miR-16, miR-124, and miR-135 was significantly affected by UCMS,
corroborating with previous studies demonstrating that these miRNAs are correlated
with anxiety- and depressive-like phenotypes and are significantly downregulated or
upregulated following stress exposure, depending upon the brain region studied and
the type of stressor [18,23,26–29,45,46]. Specifically, we found that UCMS decreased the
expression of miR-124 in the NAc and raphe and increased miR-16 in the NAc and the
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raphe and miR-135 in the raphe. However, these effects were not normalized by CBD
treatment. Similarly, UCMS affected the target genes, decreasing slc6a4 and cnr1 expression
in the vmPFC (genes coding SERT and CB1), and decreasing ctnnb1 (β-catenin) in the PFC
and NAc, with no effect for CBD treatment.

3.1. Alterations in miRNAs
3.1.1. miR-16

In general, higher serum levels of miR-16 are associated with a resilient phenotype to
stress [47], while patients with major depression exhibit lower CSF expression of the same
microRNA [30,48]. Nevertheless, these findings are rarely associated with specific brain
regions. In mice, social defeat stress was associated with susceptibility to stress and lower
accumbal miR-16 [18], while in rats, ELS-induced stress was associated with lower miR-16
in the vmPFC [32].

It has been shown that maternally deprived rats, but not rats exposed to chronic unpre-
dictable stress, showed higher hippocampal miR-16 expression than control rats [26]. Taken
together these findings suggest that different stressors differentially affect the expression of
miRs in a brain-region-dependent manner.

3.1.2. miR-124

In the vmPFC, UCMS rats that were treated with CBD had higher levels of miR-124
only compared to control rats who were treated with CBD. UCMS decreased miR-124 in
the NAc and in the raphe nucleus with no effect of CBD treatment, suggesting that its
antidepressant effects are mediated by a different mechanism.

Previous studies showed that rats that were treated chronically with corticosterone
as a model of depression presented higher miR-124 levels in the PFC [49], and vmPFC
suppression of miR-124 via lentiviral vector decreased depressive symptoms [50]. Other
studies have shown a decrease in miR-124 in the hippocampus following UCMS and that
using an agomir to increase miR-124 had an antidepressant-like effect [51]. Similarly, addic-
tive behavior to cocaine was associated with lower NAc levels of this microRNA [52–54],
thus indicating that miR-124 may play an important role in the reward system. However,
in another study, UCMS increased hippocampal miR-124 expression, and downregulation
of miR-124 using an antagomir decreased depressive-like behavior [55].

3.1.3. miR-135

Previous findings showed decreased miR-135 in the PFC and raphe of mice exposed to
chronic stress [27,33] and decreased PFC miR-135 in rats exposed to early life stress [32,33].
Downregulation of raphe miR-135 was observed following exposure to the chronic social
defeat stress model in mice [27].

3.2. Alterations in Serotonergic Targets, β-catenin, and CB1
3.2.1. htr1a (5HT1a Gene)

We found that the UCMS-induced decrease in the 5HT1a gene in the vmPFC was
reversed by CBD. This corroborates with the expectation for lower levels of the 5HT1a gene
in regions where miR-135 is high, and vice versa [27].

Importantly, we found that the antidepressant-like effects of CBD were mediated by
the 5HT1a receptor, as co-administration of CBD and the 5HT1a antagonist, blocked the
therapeutic-like effects of CBD in the FST in UCMS rats. This corroborates with a previous
study in which CBD was microinjected into the vmPFC in rats exposed to the FST and the
OFT [13].

In the NAc, both UCMS and CBD led to a decrease in the 5HT1a gene, as control rats
that were treated with vehicle had higher levels of this gene than all the other groups. In
the raphe, UCMS or CBD had no effect on 5HT1a gene expression.
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3.2.2. slc6a4 (SERT Gene)

SERT modulation is the main mechanism on which SSRIs are based [56]. Total SERT
knockout results in depressive and stressed behavior [57], but variations in its expression
in different brain regions can lead to a more complex effect. Therefore, lower expression of
the SERT gene was expected to be observed in UCMS rats; we found a decrease in slc6a4
in the PFC, with no effect of CBD treatment. In the NAc, no differences were observed
between the groups; in the raphe nucleus, UCMS-vehicle rats demonstrated increased
levels compared to controls who were treated with CBD.

As a target of miR-16, levels of the SERT gene were expected to be lower in regions
where miR-16 is overexpressed, and vice versa [31,58]. We found that UCMS decreased
SERT gene expression in the vmPFC while elevating miR-16. However, even though CBD
reversed the effect of UCMS on miR-16 expression in the vmPFC, it did not affect the
SERT gene, suggesting other mechanisms which are involved in the regulation of this gene
(e.g., miR-15a) [58].

3.2.3. ctnnb1 (β-catenin Gene)

We found that UCMS decreased β-catenin gene levels in the vmPFC and NAc, with
no effect in the raphe. This is in line with other studies showing decreased expression
of β-catenin in the brain and specifically the PFC and NAc [59,60]. CBD did not restore
UCMS-induced downregulation of β-catenin, but in the vmPFC, UCMS rats treated with
CBD were not different from any of the other groups. Hence, β-catenin is altered following
UCMS exposure, and it regulates microRNA expression [18], but our findings did not
demonstrate a robust effect of CBD on β-catenin mRNA in UCMS rats.

In general, increased β-catenin expression correlates with resilience to stress and
depression [18,61], and CBD was shown to target the Wnt/β-catenin pathway [62].

3.2.4. cnr1 (CB1 Gene)

UCMS decreased the expression of the CB1 gene in the vmPFC, with no effect in the
NAc or raphe. In general, CB1 signaling regulates stress responses by modulating the fast
feedback inhibition of the hypothalamic–pituitary–adrenal (HPA) axis and its adaptation
during exposure to repeated stress [17,63–69].

CBD functions as a negative allosteric modulator of CB1, and it has been shown to
prevent CB1 internalization [70,71]. In our study, CBD did not restore the UCMS-induced
decrease in cnr1 in the vmPFC.

4. Materials and Methods
4.1. Subjects

Male Sprague Dawley rats (60 days old) were group-housed at 22 ± 2 ◦C under 12 h
light/dark cycles (lights turned on at 07:00). Rats were allowed water and laboratory rodent
chow ad lib, except when the UCMS procedure required deprivation. The experiments were
approved by the University of Haifa Ethics and Animal Care Committee, and adequate
measures were taken to minimize pain and discomfort (696/20).

4.2. UCMS Protocol

Rats were subjected to a random sequence of mild stressors [72,73] for 6 weeks. These
included cage soiling with 300 mL water, group housing, water and/or food deprivation,
reversal of light/dark cycle, cage tilting to 45◦, and physical restraint (see supplementary
information (SI); Table S1). No UCMS rats were handled and were not subjected to the
stress protocol.

4.3. Pharmacological Agents

No UCMS and UCMS exposed rats received daily injections (i.p.) of vehicle, CBD
(10 mg/kg), or the 5-HT1a-antagonist WAY100635 (WAY; 0.1 mg/kg; Sigma, St. Louis, MO,
USA) during the last 3 weeks of the 6-week UCMS model. Drugs were freshly prepared and
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administered in 1 mL/kg of vehicle. Rats were injected between 15:00 pm and 17:00 pm,
irrespective of the stress schedule. Drugs were dissolved in 2% Tween-80 and 98% saline.
Doses were based on previous work [74,75].

4.4. Behavioral Tests

All tests occurred in a dim light (15–20 lx) and took place between 1300 and 1600 h.

4.4.1. Locomotor Activity and Anxiety-like Behavior

Locomotion was measured in an open-field test (OFT). The open field arena is an open
black box 50× 50 cm in size. It was thoroughly cleaned between each trial. The movements
of the rat were recorded and analyzed using Ethovision (version 11) to measure motor
activity (over a period of 30 min.) and anxiety-like behavior measured as time spent in the
center (first 5 min).

4.4.2. Forced Swim Test (FST)

Conducted in a cylindrical water container (62 cm diameter, 40 cm height, filled with
water at a temperature of 22 ◦C). The water level was such that the rat could only touch the
bottom with the tip of its tail. Rats were exposed to the swim tank for 15 min habituation on
the first day and 5 min on the second day. Video films of the second day of each FST session
were analyzed for passive coping (immobility). An immobility index was calculated: time
spent immobile divided by the total time spent in the arena.

4.5. Quantitative Real-Time PCR (qRT-PCR)

Rats were sacrificed and brain tissues of the vmPFC, NAc, and raphe nucleus were
harvested for molecular analysis (see SI, Figure S1). RNA extraction, cDNA preparation,
and qRT-PCR were performed as previously described [76] to detect the expression of
miRNAs (miR-16, miR-135, miR-124) and mRNAs (htr1a, slc6a4, ctnnb1 and cnr1; genes
coding to 5HT1a, SERT, β-catenin, and CB1r, respectively). For miRNA, 500ng of total
RNA was reverse transcribed cDNA using qScript microRNA cDNA Synthesis Kit (Quanta
Biosciences, Gaithersburg, MD, USA). For mRNA, 1000 ng of total RNA was converted into
cDNA using qScript cDNA Synthesis Kit (Quanta Biosciences, Gaithersburg, MD, USA).
This was followed by Real-Time SYBR Green qRT-PCR amplification using specific primers
(Quanta Biosciences, Gaithersburg, MD, USA) according to the manufacturer’s instructions.
RT reactions were carried out by a Step One real-time PCR system (Applied Biosystems,
Waltham, MA, USA). Fold-change values were calculated using the ddCt method relative
to the housekeeping gene hypoxanthine phosphoribosyl transferase RNU6 (miRNA) or
HPRT (mRNA). Primers for both miRNAs (miR-16-5p, miR-124-5p, and miR-135a-5p) and
mRNAs (see Table 5) were designed and synthesized by Agentek (Tel Aviv, Israel). Primer
suitability was determined using standard curve analysis, melting curve analysis, and
linearity and threshold.

Table 5. Primers for mRNAs used for real-time PCR.

Name Description GeneBankID (NM) Protein Name Primer Sequence Efficacy Description

Hprt
Housekeeping
gene; used as a
reference gene

NM_012583.2 HPRT F: 5′CGCCAGC
TTCCTCCTCAG3′ NM_012583.2 HPRT

Htr1a Serotonergic
auto-receptor

R: 5′ATAACCTG
GTTCATCATCACT

AATCAC3′
99.83

R:
5′ATAACCTGG

TTCATCATCACT
AATCAC3′

99.83

Slc6a4
The

serotonergic
transporter

NM_012585.1 5HT1a
F:

5′CCACGGCTACA
CCATCTACTC3′

NM_012585.1 5HT1a

F: forward primer; R: reverse primer.
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4.6. Statistical Analysis

The results are expressed as means ± SEM. For statistical analysis, one-way ANOVA,
two-way ANOVA, and Pearson bivariate correlation test were used as indicated. All post
hoc comparisons were made using Tukey’s range test. Significance was set at p ≤ 0.05.
Data were analyzed using SPSS 27 (IBM, Chicago, IL, USA). Normality assumption was
examined using the Kolmogorov–Smirnov and Shapiro–Wilk tests.

5. Conclusions

We show for the first time that CBD can prevent UCMS-induced increases in vmPFC
miR-16 and miR-135. The antidepressant effects of CBD in rats exposed to the UCMS model
for depression were mediated by the 5HT1a receptor.

CBD seems to have positive effects of diminishing depressive-like behaviors with
the advantage of not being addictive or having many side effects [77]. However, the
mechanisms underlying its therapeutic effects are still not entirely clear and involve multi-
ple targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24032052/s1.
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