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Abstract: Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological
deficit and social and financial burdens. It is currently being managed symptomatically, with no real
therapeutic strategies available. In recent years, a number of innovative regenerative strategies have
emerged and have been continuously investigated in preclinical research and clinical trials. In the
near future, several more are expected to come down the translational pipeline. Among ongoing and
completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial
technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the
progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches
to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds
as a drug and cell delivery system to facilitate favorable cell–material interactions and the supportive
effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical
and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the
biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles
were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our
search of articles using PubMed and Medline, a medical database. We used a combination of “Spinal
cord injury” and [“Biomaterial”, or “Scaffold”] as search terms and searched articles published up
until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other
synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the
loss of a structural framework, and biocompatibility. This database could serve as a benchmark to
progress in future clinical trials for SCI using biomaterial scaffolds.

Keywords: biomaterial; combination therapy; regenerative medicine; scaffold; spinal cord injury

1. Introduction

Spinal cord injuries (SCIs) are a serious problem for those affected. The physical,
emotional and economic problems caused by SCI generally considerably limit an individ-
ual’s functionality and are a burden on society. One recent survey reported an annual
incidence of SCI of approximately 54 cases per one million people [1,2], with an estimated
yearly incidence worldwide of 250,000–500,000 cases [3]. The spinal cord has very little
ability to spontaneously or functionally regenerate itself, thus resulting in serious and
often permanent disabilities. Unfortunately, 95% of patients with SCI are in the chronic
phase [4]. The cause of SCI is triggered by several types of physical impacts, including
traffic accidents, falls and sports injuries, etc., in which spinal vertebrae, facet joints, disks
and ligamentous structures are injured and lose stability. The impact load is therefore trans-
ferred to the spinal cord and injures it. The external insult is reflected in primary spinal
tissue damage and neural cell death in the acute phase, while a subsequential secondary
cascade of degenerative events is started [5] (Figure 1).
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Figure 1. The diagram shows the pathophysiological events in SCI. Progressive demyelination re-

sults in the degeneration of axonal fibers. A cavitation occurs in the epicenter. Hypertrophic astro-

cytes with very long processes over the tips of non-regenerating fibers form a barrier known as a 

glial wall around the cavitation. In response to injury, microglial cells transform into active phago-

cytic microglia and exhibit chemotaxis. The presence of CSPGs creates an inhibitory environment 

for axonal regeneration. In addition, CSPG also inhibits the migration and differentiation of oli-

godendrocyte progenitor cells. 

Spinal surgery is often necessary to reduce the cervical dislocation and to remove 

fragments of bones, herniated disks, foreign objects or fractured vertebrae that appear to 

be compressing the spinal cord and cervical nerve roots. Surgery might also be needed to 

stabilize the spine to prevent future pain or deformity. Unfortunately, there is no way to 

reverse damage to the original spinal cord [1–6].  

Recent progress in medicine, biology and biomaterials engineering in neurosurgery, 

biomaterial development, cell culture and tissue engineering has allowed for new thera-

pies in SCI. This has contributed to the possibility of healing traumatic SCI and preventing 

further neurodegeneration [5–19]. It remains a severe clinical challenge to effectively treat 

SCI due to the poor regenerative capacity and complex anatomy of the spinal cord. Several 

biomaterials that act as scaffolds for axonal growth, cells and neurotrophic factors have 

become excellent candidates to support the regeneration of the spinal cord. 

Recent review articles in new treatments for SCI have mentioned the possibility of 

clinical applications and the progression of a new regenerative therapy for SCI, including 

the most recent preclinical results and clinical trials [5,6,18–32]. However, there have been 

few review articles in SCI that have mentioned the status of the use of recent biomaterial 

scaffolds for regenerative therapy and summarized the strategies with simplified results 

data. In this context, therefore, particular attention has been drawn to biomaterials and 

nanotechnology-enabled products for the controlled delivery and sustained release of var-

ious moieties, including drugs, bioactive molecules and cells [5]. 

Aiming to set a framework for future clinical use, we briefly describe the most recent 

developments in biomaterial scaffolds for SCI treatment including combination therapy 

with cell-seeded materials or innovative drug delivery systems. This review article fo-

cuses on previously published biomaterial scaffolds applied to encourage spinal cord re-

generation following SCI and summarizes the most recent findings from preclinical and 

clinical studies using biomaterial scaffolds and other combinatory therapy to treat SCI 

(Figure 2). An overview of SCI is provided, and the current aspects of clinical biomaterial 

scaffolds therapy are discussed. First, barriers to regeneration and the pathophysiology of 

SCI are described. Then, the several categories of biomaterial scaffolds applied in regen-

eration therapy for SCI are compared. We also review and discuss the current concepts of 

biomaterial scaffolds in combinatory treatment for SCI and chronic SCI. In the last section, 

we describe the use of biomaterial scaffolds in ongoing clinical trials for SCI. 

Figure 1. The diagram shows the pathophysiological events in SCI. Progressive demyelination results
in the degeneration of axonal fibers. A cavitation occurs in the epicenter. Hypertrophic astrocytes
with very long processes over the tips of non-regenerating fibers form a barrier known as a glial
wall around the cavitation. In response to injury, microglial cells transform into active phagocytic
microglia and exhibit chemotaxis. The presence of CSPGs creates an inhibitory environment for axonal
regeneration. In addition, CSPG also inhibits the migration and differentiation of oligodendrocyte
progenitor cells.

Spinal surgery is often necessary to reduce the cervical dislocation and to remove
fragments of bones, herniated disks, foreign objects or fractured vertebrae that appear to
be compressing the spinal cord and cervical nerve roots. Surgery might also be needed to
stabilize the spine to prevent future pain or deformity. Unfortunately, there is no way to
reverse damage to the original spinal cord [1–6].

Recent progress in medicine, biology and biomaterials engineering in neurosurgery,
biomaterial development, cell culture and tissue engineering has allowed for new therapies
in SCI. This has contributed to the possibility of healing traumatic SCI and preventing
further neurodegeneration [5–19]. It remains a severe clinical challenge to effectively treat
SCI due to the poor regenerative capacity and complex anatomy of the spinal cord. Several
biomaterials that act as scaffolds for axonal growth, cells and neurotrophic factors have
become excellent candidates to support the regeneration of the spinal cord.

Recent review articles in new treatments for SCI have mentioned the possibility of
clinical applications and the progression of a new regenerative therapy for SCI, including
the most recent preclinical results and clinical trials [5,6,18–32]. However, there have been
few review articles in SCI that have mentioned the status of the use of recent biomaterial
scaffolds for regenerative therapy and summarized the strategies with simplified results
data. In this context, therefore, particular attention has been drawn to biomaterials and
nanotechnology-enabled products for the controlled delivery and sustained release of
various moieties, including drugs, bioactive molecules and cells [5].

Aiming to set a framework for future clinical use, we briefly describe the most recent
developments in biomaterial scaffolds for SCI treatment including combination therapy
with cell-seeded materials or innovative drug delivery systems. This review article focuses
on previously published biomaterial scaffolds applied to encourage spinal cord regenera-
tion following SCI and summarizes the most recent findings from preclinical and clinical
studies using biomaterial scaffolds and other combinatory therapy to treat SCI (Figure 2).
An overview of SCI is provided, and the current aspects of clinical biomaterial scaffolds
therapy are discussed. First, barriers to regeneration and the pathophysiology of SCI are
described. Then, the several categories of biomaterial scaffolds applied in regeneration
therapy for SCI are compared. We also review and discuss the current concepts of bioma-
terial scaffolds in combinatory treatment for SCI and chronic SCI. In the last section, we
describe the use of biomaterial scaffolds in ongoing clinical trials for SCI.
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Figure 2. The diagram shows the pathophysiological change following a biomaterial scaffold graft. 
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folds release the transplanted cells or secreted neurotrophines, and, in addition, they release the 

encapsulated drugs or growth factors, etc. They support the formation of new synaptic circuits and 

connectivity between host neurons and axons, and, in addition, they improve morphological and 

behavioral outcomes after experimental SCI. Oligodendrocytes derived from grafted stem cells re-

myelinate damaged host axons. Regenerated and remyelinated axons pass through the injured le-

sion and connect to other host neurons supported by interneurons and glial cells derived from 

grafted stem cells. 

2. Barriers to Regeneration and the Pathophysiology of SCI (Figure 1) 
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cord is difficult due to its limited plasticity [1,6,14–16]. Cavitation occurs in the epicenter 

of a CNS lesion, with this becoming surrounded by connective scar tissue containing cer-

ebrospinal fluid. Reactive astrocytes transform into scar-forming astrocytes that slow the 

crossing of regenerating axons into the lesion. Certain inflammatory immune cells also 

remain around the lesion epicenter at the site of the SCI [1,6,14–19]. Following SCI, astro-

cytes are activated, and they proliferate and migrate to the perilesional region to form 

processes in a dense interwoven network, depositing chondroitin sulfate proteoglycans 

(CSPGs) into the extracellular matrix (ECM). Dystrophic axons surround the epicenter of 

the injury and are trapped in the dense meshwork of scar tissue [15,17]. Biomaterial scaf-

folds that generate specific microenvironmental cues in a three-dimensional (3D), con-

trolled fashion to enhance the survival, infiltration and differentiation of cells [18] are used 

for spinal cord regeneration following injury. 

3. Systematic Review of Biomaterial Scaffolds Applied for SCI 
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from selected articles following our literature search. 
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ment.org/ accessed on 1 April 2022). From the PubMed/MEDLINE database, we initially 

identified relevant articles published up until 30 April 2022 that met the search terms “Spi-

nal cord injury”, and [“Biomaterial”, or “Scaffold”]. After reviewing all of the articles’ 

titles, we chose titles relevant to our review. Articles not written in English were excluded. 

Figure 2. The diagram shows the pathophysiological change following a biomaterial scaffold graft.
Certain biomaterials contain stem cells, drugs, neurotrophines or growth factors, etc. Grafted
biomaterials support axonal regeneration beyond the glial scar as a scaffold. Grafted biomaterial
scaffolds release the transplanted cells or secreted neurotrophines, and, in addition, they release
the encapsulated drugs or growth factors, etc. They support the formation of new synaptic circuits
and connectivity between host neurons and axons, and, in addition, they improve morphological
and behavioral outcomes after experimental SCI. Oligodendrocytes derived from grafted stem cells
remyelinate damaged host axons. Regenerated and remyelinated axons pass through the injured
lesion and connect to other host neurons supported by interneurons and glial cells derived from
grafted stem cells.

2. Barriers to Regeneration and the Pathophysiology of SCI (Figure 1)

The regeneration of the adult mammalian central nervous system (CNS) and spinal
cord is difficult due to its limited plasticity [1,6,14–16]. Cavitation occurs in the epicenter
of a CNS lesion, with this becoming surrounded by connective scar tissue containing
cerebrospinal fluid. Reactive astrocytes transform into scar-forming astrocytes that slow
the crossing of regenerating axons into the lesion. Certain inflammatory immune cells
also remain around the lesion epicenter at the site of the SCI [1,6,14–19]. Following SCI,
astrocytes are activated, and they proliferate and migrate to the perilesional region to form
processes in a dense interwoven network, depositing chondroitin sulfate proteoglycans
(CSPGs) into the extracellular matrix (ECM). Dystrophic axons surround the epicenter of the
injury and are trapped in the dense meshwork of scar tissue [15,17]. Biomaterial scaffolds
that generate specific microenvironmental cues in a three-dimensional (3D), controlled
fashion to enhance the survival, infiltration and differentiation of cells [18] are used for
spinal cord regeneration following injury.

3. Systematic Review of Biomaterial Scaffolds Applied for SCI

Below, we review the biomaterial scaffolds applied in regeneration therapy for SCI
from selected articles following our literature search.

3.1. Literature Search and Inclusion Criteria

In conducting our systematic review, we followed the guidelines of PRISMA (Preferred
Reporting Items for Systematic Re-views and Meta-Analyses) (https://prisma-statement.org/,
accessed on 1 April 2022). From the PubMed/MEDLINE database, we initially identified
relevant articles published up until 30 April 2022 that met the search terms “Spinal cord
injury”, and [“Biomaterial”, or “Scaffold”]. After reviewing all of the articles’ titles, we
chose titles relevant to our review. Articles not written in English were excluded. After
reviewing the abstracts of these titles, we excluded those articles with unrelated titles. Then,

https://prisma-statement.org/
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following a review of the reference lists in the remaining articles, we identified additional
relevant publications and added them. Finally, we performed a full-text review of these
articles, and those without a full text available or that were in vitro studies were excluded.

The criteria for article selection were: (1) biomaterial scaffolds were used for SCI or
the spinal cord transection model; (2) the treatment outcome was described in detail; and
(3) the articles were written in English. In this review of biomaterial scaffolds, we focused
on the treatment efficacy of biomaterial scaffolds used in regeneration therapy for SCI in
in vivo studies.

3.2. Study Selection

Our database search identified 412 potential articles. A review of the titles and a
removal of duplicates resulted in the exclusion of 110 articles, leaving 302 articles for
abstract and full-text review, after which 140 articles were excluded. The reasons for study
exclusion were: (1) review articles; (2) only protocol papers; (3) treatment outcomes were
not described in detail; (4) not suitable after discussion; and (5) not blind studies. After the
inclusion of 15 additional relevant publications, 168 studies met the criteria for review. The
search flow diagram is depicted in Figure 3. Two reviewers (H.S. and Y.I.) independently
screened the titles and abstracts of the studies identified by the search strategy to determine
their potential relevance. The full texts of these potentially relevant studies were retrieved,
and these same reviewers evaluated them for eligibility. Disagreements were resolved
via consensus, and a third independent reviewer (T.S.) resolved any disputes if consensus
could not be reached.
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3.3. Assessment of Quality and Risk of Bias

Two review authors (H.S. and M.F.) independently assessed the studies for risk for
bias using the Cochrane Back Review Group “risk of bias” tool, and a third reviewer (H.I.)
and another author (N.N.) helped to resolve any disagreements. All included studies were
in vivo animal studies. Therefore, there was no risk of bias in regard to the diagnostic
criteria, validity and reliability of the measurements, and no studies had selection bias. In
addition, the number of analyzed animals was statistically acceptable in all studies, and
they reported the random selection of the control and the scaffold treatment groups.

As shown in tables 168 articles were selected in the present review.

4. Categories of Biomaterial Scaffolds Applied in Regeneration Therapy for SCI

The biomaterial scaffolds used in spinal cord regeneration can be classified according
to the required structure and physical and biological properties of the prospective tissue
construct applied in SCI. The categories of the biomaterial scaffolds used in spinal cord
regeneration include hydrogels, biodegradable scaffolds, the use of micro/nanofibers as
instructive biomaterials and drug-delivering biomaterials [29–32].

4.1. Hydrogels

Hydrogels are one of the most appealing and frequently engineered scaffolds. They
are made up of 3D cross-linked biocompatible polymeric macroporous networks that supply
the permissive microenvironment and guidance cues necessary for axonal growth [7,33–62].
The hydrogel scaffolds used alone in studies applied for SCI treatment are shown in
Table 1 [33–62]. Hydrogels are hydrated networks that mimic the ECM of soft tissues [30,31].
Natural hydrogels usually contain fibrillar proteins within a hydrated glycosaminoglycan
network that can enhance cell adhesion and migration in the lesion site. The natural
polymers used for nerve tissue engineering include agarose, alginate, chitosan, collagen,
fibrin, fibronectin, hyaluronic acid (HA) and Matrigel™ [30,31]. Natural polymers deliver
excellent biomimicking, but synthetic hydrogels have also attracted attention because they
can potentially control their rate of degradation and for their mechanical properties [30,31].

Table 1. Summary of the included studies and the effect of hydrogel application in SCI.

Effect on Pathophysiological Events

Author, Year Location of
Injury Species Application Hydrogel (Character) Anti-

Inflammation Scar/Cavity Axon
Growth Angiogenesis

Motor
Functional
Recovery

Sun Y, et al.,
2019 [33] Thoracic Rat Implant Collagen/Chitosan

(3D printing) NA + + NA +

Marchand R,
et al.,

1990 [34]
Thoracic Rat Implant Collagen

(Self assembling) NA + + NA NA

Khan T, et al.,
1991 [35] Thoracic Rat Implant Carbon

(Filament) NA + + NA NA

Liu W, et al.,
2020 [36] Thoracic Rat Implant

Collagen
(modified with

N-cadherin)
NA + + NA +

Fan C, et al.,
2017 [37] Thoracic Rat Implant

Collagen
(binding with EGFR

antibody Fab fragment)
NA + + NA +

Yang B, et al.,
2017 [38] Thoracic Rat Implant

Agarose/gelatin/polypyrrole
(similar conductivity as

the spinal cord)
+ + + NA +

Martín-López
E, et al.,

2013 [39]
Thoracic Rat Implant

Agarose with
κ-carrageenan,

gelatin, xanthan gum and
polysulfone

NA + + NA NA

Gros T, et al.,
2010 [40] Cervical Rat Implant Agarose NA + + NA NA
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Table 1. Cont.

Effect on Pathophysiological Events

Author, Year Location
of Injury Species Application Hydrogel (Character) Anti-

Inflammation Scar/Cavity Axon
Growth Angiogenesis

Motor
Functional
Recovery

Kataoka K,
et al.,

2004 [41]
Thoracic Rat Implant Alginate

(Freeze-dried sponge ) NA + + NA NA

Prang P, et al.,
2006 [42] Cervical Rat Implant Alginate

(Anisotropic capillary) NA + + NA NA

Cao Z, et al.,
2020 [43] Lumbar Canine Implant

Fibrin
(Hierarchically aligned

fibrin hydrogel)
NA + + NA +

Yin W, et al.,
2021 [44] Thoracic Canine Implant

Collagen
(Taxol-modified

linear-ordered scaffold)
NA + + NA NA

Altinova H,
et al.,

2020 [45]
Cervical Rat Implant Collagen NA + + + NA

Gholami M,
et al.,

2021 [46]
Thoracic Rat Implant Chitosan/alginate/erythro-

poietin + + + NA NA

Stokols S, et al.,
2006 [47] Cervical Rat Implant

Alginate
(recombinant BDNF

protein)
NA + + NA NA

Zhang Z, et al.,
2017 [48] Lumbar Canine Implant Biomaterial-aligned fibrin + + + NA +

Fukushima K,
et al.,

2008 [49]
Thoracic Rat Implant Collagen

(Honeycomb) NA NA + NA NA

Zhao X, et al.,
2022 [50] Thoracic Rat Implant Gelatin/hyaluronic acid + + + NA +

King VR, et al.,
2010 [51] Thoracic Rat Implant Collagen

(viscous fibronectin gel) NA NA + NA NA

Cheng H, et al.,
2007 [52] Thoracic Rat Implant Chitosan NA + + NA -

Han S, et al.,
2018 [53] Thoracic Rat Implant Agarose

(Matrigel) NA NA + NA +

Bakshi A, et al.,
2004 [54] Cervical Rat Implant

Nonbiodegradable
hydrogel

(pPHEMA)
+ + + + NA

Zhai H, et al.,
2020 [55] Thoracic Rat Implant ADA16 peptide hydrogel NA + + + NA

Hejčl A, et al.,
2018 [56] Thoracic Rat Implant 3 Methacrylate hydrogel NA + + + +

Zhang Q, et al.,
2016 [57] Thoracic Rat Implant Silk protein/laminin NA + + + +

Chai Y, et al.,
2022 [58] Thoracic Rat Implant Bioactive isoleucine-lysine-

valine-alanine-valine NA + + + +

Yang Y, et al.,
2021 [60] Thoracic Rat Implant Injectable collagen hydrogel NA + + NA +

Silva NA, et al.,
2010 [59] Thoracic Rat Implant Starch/poly-e-caprolactone

blend and gellan gum + NA NA NA NA

Suzuki H, et al.,
2015 [61] Thoracic Rat Implant Collagen filaments NA + + NA NA

Yara T, et al.,
2009 [62] Thoracic Rat Implant Collagen filaments NA + + NA NA

Note: -, no difference with the control group; +, effective; NA, not available.

We reviewed the effects of hydrogel scaffolds on pathophysiologiocal events and
motor functional recovery (Table 1) [33–62]. Several types of hydrogels have been reported
to date [33–62]. Biopolymer-based hydrogel scaffolds are categorized into natural polymers,
synthetic polymers and self-assembling peptides according to the origin of the biomaterial
used [7,63]. Twenty-nine articles revealed axonal growth into an implanted biomaterial
scaffold [33–58,60–62], and thirteen papers showed motor functional recovery following
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scaffold implant in in vivo studies [33,36–38,43,48,50,53,56–58,60]. Several articles revealed
an anti-inflammatory effect [38,46,48,50,54,59] and angiogenesis [45,54–58] following the
implantation of the biomaterial scaffold in the spinal cord (Table 1).

4.2. Biodegradable Scaffolds

The biodegradable polymers currently used in devices approved by the US Food
and Drug Administration provide attractive building blocks for synthetic tissue scaf-
folds because their biocompatibility has already been established and the regulatory ap-
proval process is simple. The biodegradable scaffolds used to treat SCI can be combined
with hydrogels. Among the most widely used biodegradable polymers are hydrophobic
polyesters such as poly (lactic acid) (PLA), poly (lacticco-glycolic acid) (PLGA) and poly
(ε-caprolactone) (PCL). These polymers have been used in sutures and resorbable orthope-
dic fixation devices because their synthetic fibers provide good mechanical properties and
adjustability [53,54]. PLA is a biocompatible lactic acid polymer. The neatly arranged PLA
microfibers in transplants promoted the regeneration of CNS tissues [64]. As a product
of the reaction between PGA and PLA, which are biodegradable and synthetic polymers,
PLGA co-polymer scaffolds show good porosity, hydrophilicity and biodegradability and
are usable as drug carriers. One drug delivery device takes the form of a PLGA-based
nerve conduit used to control the local delivery of nerve growth factor (NGF) and is ap-
plied at the site of the peripheral nerve gap injury [64]. Biocompatible and biodegradable
aliphatic polyester make up PCL scaffolds, and this polyester has been used widely in
many biomedical applications including bioactive drug delivery for spinal cord regenera-
tion. Other important biomaterials used in SCI include chitosan and gelatin [64]. These
are frequently implanted surgically into lesions and are synthesized via electrospinning
techniques to decrease organic solvent use [64]. QL6, a biodegradable peptide which
self-assembles into nanofiber scaffolds when injected into the spinal cord cavity, has been
shown to reduce apoptosis, inflammation and astrogliosis, leading to electrophysiological
and behavioral improvements [7,65]. Furthermore, when co-transplanted with NPCs, QL6
enhanced graft survival and promoted differentiation towards neuronal and oligoden-
droglial cell fates [7,65]. In another type of biodegradable scaffold, functional sequence
SIKVAV-modified PA hydrogels implanted into a rat model of SCI improved histological
and functional recovery [66].

We reviewed the effects of biodegradable scaffolds on pathophysiologiocal events
and motor functional recovery when applied for SCI treatment (Table 2) [66–86]. Most
articles revealed axonal growth into implanted biodegradable scaffolds [66–75,77,79,81–86].
Seven papers showed motor functional recovery following scaffold implantation in in vivo
studies [69,71,79,81,83–85]. Several articles revealed an anti-inflammatory effect [81,84,85] and
angiogenesis [66,71,72,82,84,85] following the implantation of the biodegradable scaffold
in the spinal cord (Table 2).

Table 2. Summary of the included studies and the effect of biodegradable scaffolds application in SCI.

Effect On Pathophysiological Events

Author, Year Location of
Injury Species Application Biodegradable

Scaffold/(Character)
Anti-

Inflammation Scar/Cavity Axon
Growth Angiogenesis

Motor
Functional
Recovery

Kubinová Š,
et al.,

2015 [66]
Thoracic Rat Implant SIKVAV-modified

PHEMA NA + + + NA

Hejcl A,
et al.,

2008 [67]
Thoracic Rat Implant 2-hydroxyethyl

methacrylate NA + + + NA

Slotkin JR,
et al.,

2017 [69]
Thoracic The green

monkey Implant
Poly-lactic-co-

glycolic acid and
Poly-l-lysine

+ + + NA NA
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Table 2. Cont.

Effect On Pathophysiological Events

Author, Year Location of
Injury Species Application Biodegradable

Scaffold/(Character)
Anti-

Inflammation Scar/Cavity Axon
Growth Angiogenesis

Motor
Functional
Recovery

Silva NA,
et al.,

2013 [70]
Thoracic Rat Implant Starch with

polycaprolactone NA + + NA +

Thomas AM,
et al.,

2013 [71]
Thoracic Rat/Mouse Implant

Poly(lactide-co-
glycolide)

multiple channel
bridges

NA + + NA NA

Man W,
et al.,

2021 [72]
Thoracic Rat Implant

Hierarchically
aligned fibrin

hydrogel
and functionalized

self-assembling
peptides

NA + + + +

Kubinová S,
et al.,

2011 [73]
Thoracic Rat Implant

Highly superporous
cholesterol-modified
poly(2-hydroxyethyl

methacrylate)
scaffolds

NA + + + NA

Guest JD,
et al.,

2018 [74]
Thoracic Thoracic Implant PLGA-PLL NA + + NA -

Hakim JS,
et al.,

2019 [75]
Thoracic Rat Implant PLGA-PLL NA + + NA -

Anzalone A,
et al.,

2018 [76]
Cervical Mouse Implant Poly-lactic-co-

glycolic NA NA + NA NA

De Laporte
L, et al.,

2009 [77]
Thoracic Rat Implant

Poly-lactic-co-
glycolic/(Lipoplex

incubation on
ECM-coated PLG)

NA NA NA NA NA

Wong DY,
et al.,

2008 [78]
Thoracic Rat Implant

Salt-leached porous
poly

(epsilon-
caprolactone)

NA NA + NA NA

Ribeiro-
Samy S,

et al.,
2013 [79]

Thoracic Rat Implant

Poly(3-
hydroxybutyrateco-
3-hydroxyvalerate)

(PHB-HV)

NA NA NA NA -

Pawar K,
et al.,

2015 [80]
Cervical Mouse Implant Poly-lactic-co-

glycolic NA NA + NA +

Rooney GE,
et al.,

2008 [81]
Thoracic Rat Implant

Radiopaque barium
sulfate-impregnated

poly-lactic-co-
glycolic

acid

NA NA NA NA NA

Shu B, et al.,
2019 [82] Thoracic Rat Implant PLA-PPy + + + NA +

Zhou L,
et al.,

2018 [83]
Thoracic Mouse Implant

Plant-derived
polyphenol, tannic

acid (TA),
cross-linking and

doping
conducting

polypyrrole (PPy)
chains

NA + + NA +

Pertici VA,
et al.,

2014 [84]
Thoracic Rat Implant

PLA-b-PHEMA
block

copolymer
+ + + + +

Reis KP,
et al.,

2020 [85]
Thoracic Rat Implant

Valproic acid
(VPA)/PLGA
(Microfiber)

+ + + + +

Novikova
LN, et al.,
2017 [86]

Cervical Rat Implant

Trimethylene
carbonate and

e-caprolactone (TC)
containing

poly-p-dioxanone
microfilaments

(PDO)

- + + NA NA

Note: -, no difference with the control group; +, effective; NA, not available.
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4.3. Nano- and Micro-Scale Scaffolds as Instructive Biomaterials for SCI

The recent development of various nanomaterials is offering promising new ways to
treat SCI by crossing the blood–spinal cord barrier to deliver therapeutics. Several articles
revealed the development of nanomaterials that can modulate inflammatory signals, target
inhibitory factors within a lesion and promote axonal regeneration following SCI [87–104].

Experimental models for SCI treatment are increasingly being used to study nanopar-
ticles. The extremely diverse composition of nanoparticles includes polymers, metals
and metal oxides, silica and biological molecules [87]. The biocompatibility of polymeric
nanoparticles has allowed them to become the most extensively used means of delivering
drugs to the spinal cord. Unlike with drugs, topographical cues in the implanted scaffolds at
the lesion site can physically guide the extension of new axons [87–91]. The electrospinning
of nanofibers is advantageous because it permits the production of highly porous 3D scaf-
folds with a large surface area that aids in cell adhesion [87]. Spontaneous self-assembling
peptides can also form nanofibrous hydrogels that are composed of natural amino acid
sequences, rendering them nonimmunogenic, nontoxic and biodegradable [86,87]. Self-
assembling peptides have an additional advantage in that they can undergo gelation in
physiological conditions, and their morphology mimics in vivo ECM [7,91]. The ionic com-
plementarity of many common self-assembling peptides allows them to form nanofibrous
structures. Several articles reported using other materials for nanoscale scaffolds [87–89].
Because of their size, which closely mimics that of ECM proteins, and their high surface
area, carbon nanotube nanostructures have shown promising effects in neural regeneration
applications. Electrospinning produces micro- and nanofibers that can simulate collagen
fibers in the ECM [88]. RADA16-I hydrogels were used in an experimental SCI model,
which proved that self-assembling peptide hydrogels could promote recovery from SCI [91].
Further development produced functionalized RADA16-I hydrogels with a bone marrow-
homing motif (BMHP1) [91,99]. These researchers inserted a 4-glycine-spacer into the
hydrogels to facilitate scaffold stability and expose more bi motifs. Their results showed
that RADA16-I hydrogels can increase cell infiltration, basement membrane deposition and
axon regeneration in SCI [104].

These kinds of nanoscale scaffolds and nanofibers were mainly used for drug delivery
systems (DDSs) (refer to Section 5). Therefore, there were only a small number of studies on
nanoscale scaffolds applied to SCI treatment [89–104]. We reviewed the effects of nanoscale
or microscale biomaterial scaffolds on pathophysiological events and motor functional
recovery (Table 3) [89–103].

Table 3. Summary of the included studies and the effect of nano-/micro-scale biomaterial scaffolds
application in SCI.

Effect on Pathophysiological Events

Author, Year Location
of Injury Species Application Nanomaterial

Scaffold/Material
Anti-

Inflammation Scar/Cavity Axon
Growth Angiogenesis

Motor
Functional
Recovery

Zamani F,
et al.,

2014 [89]
Thoracic Rat Implant

3D nanofibrous
core–sheath

scaffold/PLGA
NA NA + + +

Sun X, et al.,
2019 [90] Thoracic Rat Implant Nano-fibrous channel

wall/PLLA + + + NA +

Cigognini D,
et al.,

2014 [91]
Thoracic Rat Injected

Nanostructures of two
self-assembling

peptides B24 and
biotin-LDLK12

NA NA + NA NA

Yao S, et al.,
2018 [92] Thoracic Rat Implant

Hierarchically aligned
fibrin

nanofiber/Fibrin
hydrogel

NA + + + +

Altinova H,
et al.,

2016 [93]
Cervical Rat Implant Microstructured

scaffold/Collagen + + + + +
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Table 3. Cont.

Effect on Pathophysiological Events

Author, Year Location
of Injury Species Application Nanomaterial

Scaffold/Material
Anti-

Inflammation Scar/Cavity Axon
Growth Angiogenesis

Motor
Functional
Recovery

Usmani S,
et al.,

2020 [94]
Thoracic Rat Implant Artificial

nanotube/Carbon + + + NA +

Sever-
Bahcekapili

M, et al.,
2020 [95]

Thoracic Rat Implant
Neuroactive peptide

nanofibers/
LN-PA, GAG-PA

NA + + NA +

Zhao T, et al.,
2018 [96] Thoracic Rat Implant

Nanofibrous
scaffolds/

PHBV, PLA, Collagen
NA + + NA -

Chedly JL,
et al.,

2017 [97]
Thoracic Rat Implant Microhydrogel

scaffold/Chitosan + + + + +

Cigognini D,
et al.,

2011 [98]
Thoracic Rat Implant

Nanomaterial SAPs
with bone marrow

homing motif
(BMHP1)

+ + + + +

Palejwala
AH, et al.,
2016 [99]

Thoracic Rat Implant

Poly
(3-hydroxybutyrateco-

3-hydroxyvalerate)
(PHB-HV)

NA NA NA NA -

Palejwala
AH, et al.,
2016 [99]

Thoracic Rat Implant Nanoscaffolds NA + + + NA

Pawelec KM,
et al.,

2018 [100]
Thoracic Rat Implant

Microstructure
multi-channel
scaffold/PCL

NA NA + NA NA

Milbreta U,
2016 [101] Cervical Rat Implant 3D nanofiber

scaffold/Collagen + + + NA NA

Tysseling
VM, et al.,
2010 [102]

Thoracic Rat Injected

Peptide amphiphile
(PA) molecules that
self-assemble and

display the laminin
epitope IKVAV

NA + + NA +

Liu Y, et al.,
2013 [103] Thoracic Rat Injected

A self-assembling
peptide/

K2(QL)6K2 (QL6)
+ + + NA +

Note: -, no difference with the control group; +, effective; NA, not available.

5. Biomaterial Scaffolds in Combinatory Treatment Used for DDSs in SCI Treatment

Hydrogels and biodegradable and nanomaterial scaffolds were also widely used for
DDSs as a combinatory treatment for SCI. Scaffolds provide a surrounding 3D environment
that promotes the in vivo adhesion, migration and differentiation of cells [104]. In SCIs,
the scaffolds, as a matrix for cell, drug and other bioactive molecule delivery, bridge the
SC lesion cavity to structurally and chemically support axonal regrowth and stimulate
the regeneration of host tissue [104]. Several concepts of SCI treatment using biomaterial
scaffolds containing basic fibroblast growth factor, methylprednisolone, calcium respon-
sive composite, neurotrophic factors, anti-Nogo and anti-inflammatory agents have been
reported [105–111]. Strategies for SCI repair are still limited in part by poor drug delivery
techniques. However, several ideal DDSs using degradable/nondegradable biomaterial
scaffolds have been developed that can provide the localized release of growth factors
or other neuroprotective agents from an injectable gel form [112–114]. We reviewed the
studies of biomaterial scaffolds used in combinatory treatment as DDSs for SCI that are
shown in Table 4 [105,106,108–110,114–130].
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Table 4. Summary of the included studies and the effect of biomaterial scaffolds in combinatory treatment for SCI.

Effect on Pathophysiological Events

Author, Year Location of
Injury Species Combinatory Agent Biomaterial Scaffold Anti-

Inflammation Scar/Cavity Axon Growth Angiogenesis Facilitation of
Cell Migration

Motor
Functional
Recovery

Furuya T, et al.,
2013 [105] Thoracic Rat bFGF Gelatin hydrogel NA NA NA NA NA NA

Chantal SA,
et al.,

2008 [106]
Thoracic Rat Methylprednisolone

Biodegradable
PLGA-based
nanoparticles

+ + NA NA + NA

Jain A, et al.,
2011 [108] Thoracic Rat

Constitutively active
Cdc42,

Rac1, BDNF

Microtubule-mediated
slow release of BDNF + + + NA + NA

Wen Y et al.,
2016 [109] Thoracic Rat Anti-Nogo receptor

antibody

PLGA microspheres
containing BDNF and

VEGF
+ + + + + +

Chen B, et al.,
2015 [110] Thoracic Rat bFGF HEMA-MOETACL

hydrogel NA + + NA NA +

Lin J, et al.,
2019 [114] Thoracic Rat Rehabilitation Hybrid fiber-hydrogel

scaffold + + + NA + +

Shi Q, et al.,
2014 [115] Thoracic Rat bFGF Collagen scaffold NA + + NA + +

Wang X, et al.,
2013 [116] Thoracic Rat NT-3 Chitosan-based tube

scaffold NA + + NA + +

Li G, et al.,
2016 [117] Thoracic Rat and

canine NT-3 Fibrin-coated gelatin
sponge scaffold + + + NA + +

Wei YT, et al.,
2010 [118] Thoracic Rat Nogo-66 receptor

antibody

Hyaluronic acid -based
hydrogels modified
with poly-L-lysine

(PLL)

+ + + + + NA

Bighinati A,
et al.,

2020 [119]
Thoracic Rat Ibuprofen and

triiodothyronine PLLA + + + NA + +

Ehsanipour A,
et al.,

2021 [120]
Thoracic Mouse BDNF

Hyaluronic acid
(HA)-based, spherical

microparticle
+ + + NA + +
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Table 4. Cont.

Effect on Pathophysiological Events

Author, Year Location of
Injury Species Combinatory Agent Biomaterial Scaffold Anti-

Inflammation Scar/Cavity Axon Growth Angiogenesis Facilitation of
Cell Migration

Motor
Functional
Recovery

Xie J, et al.,
2022 [121] Thoracic Mouse Sonic hedgehog (Shh)

and retinoic acid (RA)

Magnesium oxide
(MgO)/

poly (l-lactide-co-ε-
caprolactone) (PLCL)

scaffold

+ + + NA + NA

Xi K, et al.,
2020 [122] Thoracic Rat NGF

Microenvironment-
responsive

immunoregulatory
electrospun fibers

+ + + NA + +

Rooney GE,
et al.,

2011 [123]
Thoracic Rat

Dibutyryl cyclic
adenosine

monophosphate
(dbcAMP)

Oligo [(polyethylene
glycol) fumarate] (OPF)

hydrogel scaffolds
NA NA + NA NA NA

Stropkovská A,
et al.,

2022 [124]
Thoracic Rat Rho-A-kinase

inhibitor
Chitosan/collagen

porous scaffold + + + NA + NA

Man W, et al.,
2021 [72] Thoracic Rat

Hierarchically
aligned fibrin

hydrogel

Functionalized
self-assembling

peptides
(fSAP)

+ + + + + +

Smith DR, et al.,
2020 [128] Cervical Mouse IL-10 and NT-3 Multiple channel PLG + NA + NA + +

Breen BA, et al.,
2017 [130] Thoracic Rat NT-3 Injectable collagen

scaffold NA + + NA + +

Wen Y et al.,
2016 [109] Thoracic Rat

AntiNogo, BDNF
and vascular

endothelial growth
factor

Hyaluronic acid (HA)
hydrogel + + + + + +

Jain A, et al.,
2006 [129] Thoracic Rat BDNF Gelling agarose

hydrogels NA + + NA + NA

Note: +, effective; NA, not available.
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Gelatin hydrogel containing basic fibroblast growth factor that was injected into
a rat model of SCI showed better performance in relieving mechanical allodynia [105].
Biomaterials containing methylprednisolone can also enhance axonal regeneration and
reduce inflammation [106]. The exceptional ability of alginate/chitosan/genipin hydro-
gels, which show a high sensitivity to Ca2+ composites, to regulate astrocyte behavior
and prevent Ca2+-related secondary neuron damage during acute SCI was shown in an
in vitro study [107]. A significant therapeutic role was shown for the local delivery of
constitutively active Rho GTPases, Cdc42 and Rac1 with the microtubule-mediated slow
release of brain-derived neurotrophic factor (BDNF) in overcoming CSPG-mediated failure
of regeneration following SCI [108]. A previous article reported on HA hydrogels that were
developed to blend with the anti-Nogo receptor antibody (antiNgR). Hydrogel combina-
tions with PLGA microspheres containing BDNF and vascular endothelial growth factor
(VEGF) were also reported [109]. Following the implantation of a composite modified by
binding with an antiNgR and further mixing with PLGA microspheres containing BDNF
and VEGF into an injured area created by the dorsal hemisection of the spinal cord at
T9–10 in rats, favorable effects were observed that indicated the promotion of spinal repair,
including the integration of the implants with host tissue, the inhibition of inflammation
and gliosis [99]. The implantation of bFGF combined with hydroxyl ethyl methacrylate
[2-(methacryloyloxy) ethyl] trimethylammonium chloride (HEMA-MOETACL) hydrogels
resulted in the promotion of nerve tissue regeneration and functional recovery using hydro-
gels in a SCI model [110]. These results also suggest the importance of the proper matching
of the functional sequence and hydrogels in the synthesis of functional hydrogels. The
combination of collagen–laminin scaffolds with 5-NOT treatment also promoted axonal
regrowth at the site of SCI as indicated by the expression of NF200 and monoaminergic
and glutamatergic reinnervation [113].

Several other combinatory approaches were reported that combined biomaterial scaf-
folds with rehabilitation and the release from the scaffolds of neurotrophin 3 factor (NT-3),
Nogo-66 receptor antibody, ibuprofen/triiodothyronine, sonic hedgehog/retinoic acid,
dibutyryl cyclic adenosine monophosphate and rho-A-kinase inhibitor [109,114–125]. Other
scaffolds, such as silk fibroin combined with neurotrophic factors [125,126], fibrin scaf-
folds containing growth factors [127] and the polycistronic delivery of IL-10 and NT-3 [128],
showed desirable therapeutic potential in terms of SCI treatment. These therapies promoted
the differentiation, proliferation and viability of transplanted cells.

The effects of biomaterial scaffolds in combinatory treatments as DDSs applied for SCI
treatment on pathophysiological events and motor functional recovery data are summa-
rized in Table 4.

6. Biomaterial Scaffolds in Combinatory Treatment with Cell Therapy for SCI

As an appealing therapeutic approach for SCI, cell therapy can provide significant
neuroprotection, the recovery of functionaility through cell replacement, trophic support
and the modulation of immune factors [18,131], and, thus, clinical trials have also been
started in humans [132,133]. As mentioned above, we noted the use of biomaterials for
SCI repair because of the structural or active growth support they provide to damaged
axons. Furthermore, biomaterials have the ability to function as cell delivery platforms
for cells and therapeutic molecules and as a local depot for sustained drug release. Both
cell regeneration and tissue reconstruction can be achieved when these two therapeu-
tic methods are combined. By following the basic operating principle of this modality,
i.e., the combination of exogenous cells and scaffolds to form live scaffolds, we can expect
the synergic effects of stem cells and scaffolds to occur. These live scaffolds can be implanted
into animals through injection or surgical implantation without side effects [104]. We re-
viewed the preclinical studies using biomaterial scaffolds in combination with cell therapy,
so called multipotent stem cells, for the treatment of SCI. The combinatory treatments with
cell therapy are summarized in Table 5 [36,117,134–227].
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Table 5. Summary of the included studies and the effect of combinatory cell therapy for SCI.

Type of Grafted Cells Biomaterial Scaffold Results/Advantages Limitations/Disadvantages

NPCs

• PLGA scaffold
• HA scaffold
• Protein-functionalized

chitosan scaffold
• 3D biomimetic hydroge
• Collagen microchannel scaffold
• 3D printed heparin

sulfate-collagen scaffold
• Exosomes-collagen scaffold
• Multi-channel

collagen scaffold
• Aligned collagen scaffold
• Polymer scaffold
• Chitosan channels scaffold
• Protein-functionalized

chitosan scaffold
• Laminin-coated

pHEMA-MOETACl Hydrogel
• Artificial microfiber scaffold
• Polycaprolactone electrospun

fiber scaffold
• Fibrin scaffold
• SAP scaffold
• Matrigel scaffold

• Functional recovery
• Graft cells survival and

neuronal cell
differentiation

• Secretion of
trophic factors

• Protection of host
neuronal cells

• Axonal outgrowth
through injured lesion

• Remyelination of
host axons

• Neuronal differentiation
• Host cells survival

• Immune rejection
• Tumorgenesis

BMCSs

• Chitosan-based
thermosensitive scaffold

• Chitosan conduits scaffold
• Alginate hydrogel biomaterial
• PLGA scaffold
• Collagen scaffold
• Collagen filaments scaffold
• Porous collagen scaffold
• NeuroRegen scaffold
• PLGA scaffold
• HA-PLL scaffold
• SAP hydrogel scaffold
• Biologic scaffolds derived from

fibrin and blood plasma
• Goldnanoparticles (Au

NPs)-loaded Agarose/Poly (N-
• isopropylacrylamide) (PNIPAM)
• Thermosensitive quaternary

ammonium chloride
• chitosan/β-glycerophosphate

(HACC/β-GP)
hydrogel scaffold

• Gelatin sponge scaffold
• Nanofibrous silk scaffold
• Cylindrical poly(D,L-lactide-co-

glycolide)/small
intestinal

• submucosa scaffold
• PHEMA scaffold

• Functional recovery
• Repair of spinal

cord injury
• Secretion of trophic

factors
• Protection of host

neuronal cells
• Axonal outgrowth
• Remyelination of

host axons
• Host cells survival
• Low risk of

immune rejection
• Autologous transplants
• No ethical issues

• Difficulty of neuronal
differentiation

• Low cell survival rate
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Table 5. Cont.

Type of Grafted Cells Biomaterial Scaffold Results/Advantages Limitations/Disadvantages

Umbilical
MSCs/Wharton’s

jelly-derived MSCs

• Collagen scaffold
• 3D printed collagen/silk

fibroin scaffold
• HA-PH modified with the

integrin-binding peptide
• arginine-glycine-aspartic

acid scaffold

Adipose-derived
stem/stromal cells

• Silk fibroin/chitosan scaffold
• Matrigel scaffold
• Resorbable

poly(α-hydroxyacid) guidance
channels scaffold

Schwann cells (SCs)

• Biodegradable
poly-b-hydroxybutyrate
scaffold

• Oligo[poly(ethylene glycol)
fumarate] scaffold

• Axon growth into SCs
implants

• Ensheathment and
myelination

• No tumorigenicity
• Modest but significant

motor and sensory
improvement

• SCs-elicited responses
such as survivability
post-transplantation,

• axon growth, and
functional recovery can
be improved with

• appropriate combination
treatments

• Remyelination
• Functional recovery
• Secretion of

trophic factors

• No differentiation into
• neurons and astrocytes

OECs • PLGA Scaffold

• Functional recovery
• Promotion of cell

differentiation
• Inhibition of astrocyte

formation
• Accelerate neuronal

regeneration
• Secrete nerve

growth factors
• Decrease neuronal

apoptosis
• Reduce glial scaring
• Produce a number of

trophic factors such
as VEGF

• Constitute the myelin
and the Ranvier nodes of
the axons

• No differentiation into
• neurons and astrocytes
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Table 5. Cont.

Type of Grafted Cells Biomaterial Scaffold Results/Advantages Limitations/Disadvantages

Spinal cord-derived
ependymal progenitor

cells

• HA containing PLA
fibers scaffold

• Preserve the
neuronal tissue

• Diminish astrocytic
reactivity surrounding
the scar area

• Axonal outgrowth

• No functional recovery

Dental pulp stem
cells/Dental follicle cells

• Chitosan scaffolds
• Aligned electrospun

PCL/PLGA material scaffold

• Increase the levels of
BDNF, GDNF, beta-NGF
and NT-3

• Recovery of hind limb
locomotor functions

• No differentiation into
• neurons and astrocytes

NPCs and Schwann cells

• 3D bioprinting of NSC-laden
HBC/HA/MA scaffold

• PLGA scaffolds
• Biodegradable polymer

scaffold
• Poly (L-lactic-co-glycolic acid)

scaffold

• Provision of an ideal
microenvironment for
the growth

• and neural
differentiation of
grafted cells.

• Restoration of locomotor
function

• Simulation of the parallel
linear structure of
spinal cord

• for optimal neuron
regeneration and
connection.

• Immune rejection
• Tumorgenesis

BMSCs and
Schwann cells

• Multichannel polymer scaffold

• Functional recovery
• Secretion of

trophic factors
• Protection of host

neuronal cells
• Axonal outgrowth

through injured lesion
• Remyelination of

host axons

• No differentiation into
• neurons and astrocytes

Endometrial stem cells
and Schwann cells

• Degradable polymer implant
• PCL/gelatin

nanofibrous scaffold

• Functional recovery
• Secretion of

trophic factors
• Protection of host

neuronal cells
• Axonal outgrowth

through injured lesion
• Remyelination of

host axons
• Host cells survival

• No differentiation into
• neurons and astrocytes

Dermal fibroblast-
reprogrammed

neurons

• 3D silk fibrous material

• Functional recovery
• Axonal outgrowth

through injured lesion
• Remyelination of

host axons

• No differentiation into
• neurons and astrocytes
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Table 5. Cont.

Type of Grafted Cells Biomaterial Scaffold Results/Advantages Limitations/Disadvantages

Adipose-derived stem
cells and OECs

• Serum-derived
albumin scaffold

• Functional recovery
• Secretion of

trophic factors
• Protection of host

neuronal cells
• Axonal outgrowth

through injured lesion
• Remyelination of

host axons

• No differentiation into
• neurons and astrocytes

NPCs and MSCs • 3D longitudinal scaffold

• Functional recovery
• Graft cells survival and

neuronal cell
differentiation

• Secretion of
trophic factors

• Protection of host
neuronal cells

• Axonal outgrowth
through injured lesion

• Remyelination of
host axons

• Neuronal differentiation
• Host cells survival

• Immune rejection
• Tumorgenesis

6.1. Exogenous Neural Stem/Progenitor Cells and Biomaterial Scaffolds

Therapies using exogenous neural stem/progenitor cells (NPCs) show particular
promise because these cells can potentially differentiate into all three neuroglial
lineages—neurons, astrocytes and oligodendrocytes—to regenerate neural circuits, re-
myelinate denuded axons and provide trophic support to endogenous cells [15,18,19,131].
However, the transplantation of NPCs, especially in the chronic phase, showed several
issues regarding tissue regeneration in terms of the survival rate of NPCs and insufficient
integration with injured spinal cord [15,18]. Many researchers have tried novel combina-
torial treatments with biomaterial scaffolds and NPCs, and several articles have reported
the expected synergic effects of these grafts [15,65]. Over the previous decade, when NSCs
were delivered via a supporting scaffold matrix, significant outcomes regarding functional
recovery were consistently observed in the preclinical stage [6,7,9,19,65], but these favorable
results have yet to be translated into clinical use. In the meantime, clinical developments
that affect the safety and feasibility of implantable biomaterials for CNS repair are currently
underway. The safety and feasibility of the transplantation of the NeuroRegen implantable
collagen scaffold in completely chronic patients with SCI has been reported, although the
sample size in these studies is small [132,133].

NPCs derived from induced pluripotent stem cells (iPSCs), embryonic stem cells or
brain or spinal cord within biomaterial scaffolds are also being used for the treatment
of SCI [36,134–177] (Table 5). SCI rats receiving the transplantation of NPCs in Matrigel
showed improvements in behavioral recovery and the expression levels of neuronal and
reactive astrocyte markers [162]. A fabricated biodegradable hybrid inorganic scaffold
comprised of biodegradable MnO2 nanosheets enhanced the attachment and differentia-
tion of iPSC-derived NSCs in the site of SCI [134]. Fibrin scaffolds and stem cell therapy
designed to immobilize cells and release growth factors (NT3, glial-derived neurotrophic
factor [GDNF] and platelet-derived growth factor-A [PDGF]) from fibrin achieved better
recovery from SCI [158,159]. NPCs used with self-assembling peptide QL6 decreased the
formation of cystic cavities and inflammation and enhanced synaptic connections through
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a reduction in astrogliosis and CSPG, thus improving forelimb functionality in an SCI
model of cervical injury [7,65]. Laminin-coated hydrogel enhanced iPSC-NPC viability and
promoted host axon and astrocyte growth in lesion sites [152]. Another article reported the
manufacture of NPCs biased toward an oligodendrogenic fate and the upgrading of the
ChABC delivery system via a crosslinked methylcellulose biomaterial. This combinatorial
therapy resulted in the promotion of oligodendrocyte differentiation, remyelination and
synaptic connectivity [165]. A linearly ordered collagen scaffold modified with N-cadherin
promoted the migration and differentiation of endogenous neural/progenitor stem cells,
which produced a desirable therapeutic effect in rats following SCI [36]. One treatment
showing great potential for SCI treatment was the combination of a collagen microchannel
scaffold and paclitaxel liposome, which induced the neuronal differentiation of NSCs and
neuron and axon growth [144]. A different group reported the benefits of combining NPCs
and K2(QL)6K2 (QL6), an aqueous self-assembling peptide that aggregates into a stable
nanofiber gel due to multiple non-covalent interactions [7,103]. In a study exploring the
modification of a scaffold with PDGF-A to induce oligodendrocyte differentiation, NPCs
cultured in a hydrogel blend of hyaluronan and methylcellulose (HAMC) modified with
PDGF-A showed improved survival and the higher differentiation of cells into oligoden-
drocytes. SCI rats transplanted with NPCs cultured in this hydrogel blend showed reduced
cavitation, improved graft survival with increased differentiation of oligodendrocytes and
improved behavioral recovery [170]. These researchers further modified the HAMC-PDGF-
A scaffold with arginine-glycine-aspartic acid (RGD) peptide to improve the engraftment
and survival of human iPSC-derived oligodendrocyte precursor cells (OPCs). iPS cell-
derived OPCs transplanted in HAMC-RGD/PDGF-A had higher rates of survival and
engraftment than iPS cell-derived OPCs transplanted with media did [171].

6.2. Nanoscaffolds and Stem Cell Grafts

Neuroinflammatory agents such as metalloproteinase and neurotoxic cytokines that
are secreted after CNS injuries can lead to a reduction in the neuroinhibitory microenvi-
ronment in the region of injury [177]. Drug-loaded 3D nanoscaffolds designed to reduce
neuroinflammatory agents were fabricated using a layer-by-layer method in which chitosan
polymer functionalized manganese oxide nanosheets for fabrication into a 3D esoporous
structure. Methylprednisolone and laminin were also added as cell-adherent ECM ligands
to the fabricated scaffold, and its effects on SCI treatment were evaluated with iPSCs. This
study confirmed functional recovery and axonal growth due to stem cell differentiation and
the suppression of fibrotic scar fabrication in an in vivo model of SCI [177,178]. By mimick-
ing the ECM, the fibrous structure of the nanofibrous scaffolds provided an ideal platform
for the attachment, proliferation and differentiation of stem cells [178]. The capability of
multichannel nanofibrous scaffolds using poly-L-lysine integrated NT-3 to promote the
recruitment and differentiation of endogenous NPCs facilitated synapse formation and
enhanced locomotor recovery, thus promoting the treatment of SCI [166].

6.3. Mescenchymal Stem Cells (MSCs) and Biomaterial Scaffolds: Bone Marrow MSCs, Umbilical
MSCs, Wharton’s Jelly-Derived MSCs and Adipose-Derived MSCs

MSCs are a type of stem cell present in adults that can differentiate into mesodermal-
derived tissues such as bone, cartilage, blood vessels and cardiomyocytes. MSCs used
for clinical purposes are derived from tissues such as bone marrow, umbilical cord and
cord blood and fat. MSCs have important biological activities for tissue repair, such as
anti-inflammatory effects, growth factor secretion and the promotion of angiogenesis in
addition to having a low risk of tumor formation. Moreover, MSCs exhibit remarkable
autocrine and paracrine activity. MSCs can secrete various soluble molecules that exert anti-
inflammatory potential, including tumor necrosis factor (TNF)-β1, interleukin (IL)-13, IL-18
binding protein, ciliary neurotrophic factor (CNTF), NT-3, IL-10-, IL-12p70, IL-17E and
IL-27 [179]. Furthermore, the release of pro-inflammatory cytokines such as interferon, TNF
and IL-10 can also be inhibited by MSCs to modulate cytokine production in the host. These
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cells also produce a wide variety of growth-promoting molecules, including BDNF, CNTF,
GDNF, leukemia inhibitory factor, NGF and neurotrophin 3 (NT-3) and ECM proteins such
as laminin, fibronectin and collagen I/III and IV [176]. One essential method used by MSCs
to secrete biological factors is through extracellular vesicles, which include microvesicles
and exosomes. [179]. The co-transplantation of biomaterial and MSCs that have been
manipulated or genetically edited to express certain proteins causes neuroprotective and
anti-inflammatory effects that induce anti-inflammatory mechanisms [180]. The transplan-
tation of biomaterial-supported MSCs lessens fibrosis during the early process of secondary
SCI and further attenuates secondary glial scarring [181]. Biomaterial-supported MSCs that
were transplanted into the damaged region subsequently prevented the accumulation of
CSPGs, which make up the glial scar, and significantly promoted the myelination of axon
fibers and synapse formation [181]. MSCs can cooperate with biomaterials to support the
growth of stem cells and endogenous neuronal cells by bridging the gap. A nanofibrous
scaffold of polypyrrole/polylactic acid was also used as a platform to deliver bone marrow
mesenchymal stem cells (BMSCs) to the site of SCI. BMSCs are beneficial cells with the
ability to differentiate into different neural cell types and appear to be proper candidates
for replacing damaged cells in SCI. Furthermore, these cells secrete neurotrophic factors
to protect the injured spinal cord [182]. The application of this formulation promoted
myelination and axon regeneration, enhanced the microenvironment at the site of injury
and synergically reduced neuronal apoptosis at the injury site in the spinal cord [182].

The combination of Matrigel and neural-induced adipose-derived MSCs reduced fibro-
sis from secondary injury processes and improved neuronal regeneration [182]. According
to a behavioral and electrophysiological analysis, 3D-printed collagen/silk fibrin scaffolds
carrying umbilical secretomes of MSCs improved hindlimb locomotor functionality [183].
Wharton’s jelly-derived MSCs applied with integrin-binding peptide RGD bridged the le-
sion cavity, supported vascularization, upregulated related gene expressions and increased
axonal sprouting into the lesion [184]. The transplantation of human umbilical cord MSCs
seeded in collagen scaffolds also reduced scar formation and promoted functional recovery
in chronic SCI [183,185].

The combination therapies of biomaterial scaffolds and MCSs for SCI are summarized
in Table 5 [181–205,217]. Several articles used combinations with cells other than NPCs,
i.e., Schwann cells (SCs) and/or olfactory ensheathing cells, to support the survival, inte-
gration and migration of grafted cells [163,218,219,224].

6.4. Schwann Cells, Olfactory Ensheathing Cells, Astrocytes and Other Cell Grafts and
Biomaterial Scaffolds

SCs are neuroglial cells that drive axon regeneration and myelination in the peripheral
nervous system, but they also perform an analogous function when transplanted into the
spinal cord. Furthermore, SCs can be isolated from a patient’s own nerves and expanded
in vitro prior to implantation, making them an exceptional cell type for autotransplantation
therapy in SCI [216]. Numerous preclinical studies have established the functionality of
SCs in transplantation [211]. In this section, we review the studies on the combination of
biomaterial scaffolds with SCs [210–224] shown in Table 5.

One study showed that long-distance regeneration could occur from CNS neurons
that project through a scaffold construct into distal tissue implanted with biodegradable
PLGA scaffolds loaded with SCs [154]. Other studies found that a poly-b-hydroxybutyrate
scaffold, positively charged oligo[poly(ethylene glycol) fumarate] (OPF+) or resorbable
poly(-hydroxyacid) guidance channels containing SCs promoted the attachment, prolifera-
tion and survival of grafted cells and supported marked axonal regeneration within the
graft [210–219].

The efficacy of other combinatory cell sources on SCI treatment was also reported. The
transplantation into an SCI rat model of dental pulp stem cells combined with chitosan
scaffolds resulted in the marked recovery of hind limb locomotor functions by increasing
the levels of BDNF, GDNF, beta-NGF and NT-3 [220]. The support of the spinal cord
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structure and induction of cell/tissue polarity were also achieved by the injection of
dental follicle cells combined with aligned PCL/PLGA electrospun material [221]. In glial
scars, astrocytes have been shown to be important for spontaneous recovery from SCI.
One paper reported the effect of implanting HA hydrogels containing ECM harvested
from embryonic stem cell-derived astrocytes on histologic outcomes following SCI in rats.
Protoplasmic embryonic stem-derived astrocyte ECM also showed the potential to treat
SCI injury [222]. PLGA complexes inoculated with olfactory ensheathing cells improved
the recovery of locomotor functionality in rat models with transected SCI, most likely
because these complexes are conducive to a relatively benevolent microenvironment, offer
nerve-protective effects and have the ability to enhance remyelination via the promotion of
cell differentiation and the inhibition of astrocyte formation [223,224].

Several articles reported on the co-transplantation of several stem cell types and
scaffolds [151,153,155,163,218,219,224]. The effect provided by the co-transplantation of
NPCs, SCs and PLGA resulted in better behavioral recovery than that from transplantation
with NPCs/PLGA alone [151,153,155]. Axonal regeneration and functional recovery in rat
SCI were improved after use of a multichannel polymer scaffold seeded with activated SCs
and BMSCs rather than by single treatment with each cell type [219].

7. Biomaterial Scaffolds in Regeneration Therapy for Chronic SCI

Several combinatory treatments for chronic SCI using stem cells and biomaterial scaf-
folds were recently reported clinically and in rodent models [36,132,134,202,206,225–236].
The creation of an artificial scaffold that mimics the ECM and supports nervous system
regeneration remains one of the greatest challenges in regeneration following chronic SCI.

One effective measure to repair chronic SCI is the removal of scar tissue combined
with biomaterial implantation [44]. One article revealed that following scar tissue re-
moval in chronic SCI, the implantation of a Taxol-modified linear-ordered collagen scaffold
(LOCS + Taxol) could promote axonal regeneration, neurogenesis and electrophysiological
and functional recovery [44]. Pivotal features of neural repair were also shown following
treatment with reduced graphene oxide scaffolds at 4 months after SCI [224]. These re-
sults indicate that even if a patient is in the chronic phase of SCI, the potential for axonal
regeneration, neurogenesis and functional recovery are still preserved at the site of the SCI.

The use of other scaffolds to bridge defects was reported in experimental models of
chronic SCI [172,225,227,229,230,235,236]. Following the removal of scarring, anisotropic
alginate hydrogel scaffolds promoted axonal growth across chronic transections of the
spinal cord [234]. Engraftment with this scaffold significantly improved electrophysiologi-
cal conductivity and locomotor functionality. Scar formation was reduced and functional
recovery in chronic SCI was promoted following the transplantation of human umbilical
cord-derived MSCs seeded in collagen scaffolds [206,225]. Other articles revealed the effi-
cacy of laminin-coated pHEMA-MOETACl hydrogel [152], HPMA-RGD hydrogels [67] and
chimeric self-assembling nanofiber [227,232], but these were combined with iPSC-derived
NPCs or MSCs. The treatment of chronic SCI with 3D-aligned nanofiber-hydrogel scaf-
folds [43,92,229], self-assembling scaffolds, Taxol-modified collagen scaffolds [44], graphene
oxide scaffolds [99,235] and nanostructured composite scaffolds [229] were also reported.
These articles showed that it is possible to recreate an anatomical, structural and histological
framework that can allow for replacement of large hollow tissue gaps in chronically injured
spinal cord and encourage axonal regeneration and neurological recovery.

As indicated by many researchers, a multi-disciplinary approach is required to solve
the problem of repairing chronic SCI. From this point of view, combinatory treatment using
stem cells and biological scaffolds will be an important approach in the treatment of chronic
SCI in the future [18,19].

8. Biomaterial Scaffolds in Clinical Trials for SCI

In this section, we review the published and ongoing clinical trials of biomaterial
scaffolds for SCI (Table 6) (https://www.clinicaltrials.gov/, accessed on 1 August 2022).

https://www.clinicaltrials.gov/
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Table 6. Biomaterial scaffolds in clinical trials for SCI (https://www.clinicaltrials.gov/, accessed on 1 August 2022).

Effect on Pathophysiological Events

Author, Year Location of
Injury

Ongoing
Clinical Trials

(Identifier)
Phase Combinatory

Agent Biomaterial Scaffold Motor
Function

Sensory
Function

Anti-
Inflammation Scar/Cavity Axon

Growth Angiogenesis Facilitation of
Cell Migration

- Cervical/Thoracic NCT02688049 Phase 1
Phase 2 NSCs and MSCs NeuroRegen scaffold - - - - - - -

- Cervical/Thoracic NCT02352077 Phase 1

Bone marrow
mononuclear

cells
and MSCs

NeuroRegen scaffold - - - - - - -

- Cervical/Thoracic NCT02688062 Phase 1
Phase 2

Bone marrow
mononuclear

cells
NeuroRegen scaffold - - - - - - -

- Thoracic NCT02138110 Not
Applicable

Poly(lactic-co-glycolic
acid)-b-poly(L-lysine)

scaffold
- - - - - - -

- Thoracic NCT03762655 Not
Applicable

Poly(lactic-co-glycolic
acid)-b-poly(L-lysine)

scaffold
- - - - - - -

- Thoracic NCT02510365 Phase 1 Collagen scaffold - - - - - - -

- Cervical/Thoracic NCT03966794 Phase 1
Phase 2

Epidural
Electrical

Stimulation
Collagen scaffold - - - - - - -

- Thoracic/Lumbar NCT02326662 Phase 1
Phase 2

Autologous
NSCs RMx Biomatrix - - - - - - -

Amr SM, et al.,
2014 [226] Thoracic - - BMSCs/peripheral

nerve grafts
Chitosan-laminin

scaffold
Several cases

improved
Several cases

improved NA NA NA NA NA

Xiao Z, et al.,
2018 [237] Cervical/Thoracic - - MSCs NeuroRegen scaffold Several cases

improved
Several cases

improved NA NA NA NA NA

Chen W, et al.,
2020 [133] Thoracic - -

Bone marrow
mononuclear

cells
NeuroRegen scaffold - Several cases

improved NA NA NA NA NA

Note: -, no difference with the control group; NA, not available.

https://www.clinicaltrials.gov/
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One group reported the results of the NeuroRegen clinical trial using the same protocol
as that described in Section 6 [132,133,226,233,236,237]. They revealed that the following
primary efficacy outcomes of combinatory therapy with BMSCs or MSCs were observed
in some patients with chronic SCI: an expansion of the sensation level and motor-evoked
potential (MEP)-responsive area, increased activity in the fingers, an enhancement in trunk
stability, the return of the sensation of defecation and the recovery of autonomic neural
functionality [132,133,226].

Another group provided the result of bridging defects in chronic SCI in a clinical trial
using a combination of peripheral nerve grafts and a chitosan–laminin scaffold. Treat-
ment with this combination enhanced regeneration through co-transplantation with bone-
marrow-derived MSCs [237]. The grade on the impairment scale of the American Spinal
Impairment Association (ASIA) improved from A to C in 12 patients and from A to B in
2 patients [226].

In the phase 2 NCT02688049 clinical study which begun in January 2016, patients
with chronic SCI (ASIA grade A) are receiving a NeuroRegen scaffold transplanted with
10 million NSCs after localized scarring is cleared, and after the surgery patients undergo
comprehensive rehabilitation combined with psychological and nutritional measures. On-
going clinical trials of the NeuroRegen Scaffold with the transplantation of BMSCs or MSCs
are also being performed in phase 1 and 2 (NCT02352077, NCT02688062) trials. Other clini-
cal studies are ongoing using collagen scaffolds, the RMx Biomatrix or the transplantation
of the poly(lactic-co-glycolic acid)-b-poly(L-lysine) scaffold (NCT02510365, NCT03966794,
NCT02326662, NCT03762655, NCT02138110), as shown in Table 6.

9. Conclusions and Outlook

In this review, we summarized the most recent insights of the preclinical and clinical
studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the
biomaterial strategies for treatment with simplified results data. One hundred and sixty-
eight articles were selected in the present review, in which we focused on biomaterial
scaffolds. We separately summarized the preclinical experimental results for hydrogels,
biodegradable scaffolds, nano-/microscale scaffolds, biomaterial scaffolds in combinatory
treatment used for DDSs, combinatory with cell therapy and regeneration therapy for
chronic SCI. In addition, in the last section, we also reviewed ongoing and the most
recently completed clinical trials using biomaterial scaffolds for SCI. Presently, a number of
clinical and experimental studies have reported positive results showing motor functional
improvement, anti-inflammation, scar/cavity reduction, axon growth and angiogenesis
promotion in SCI with the use of biomaterial scaffold grafts. Although some inherent
limitations still exist in performing human SCI trials, in that animal experiments cannot
be directly applied to humans, much basic research and many clinical trials of biomaterial
scaffold therapy have already been performed that show promising results. This database
could serve as a benchmark for progress in future clinical trials for SCI with biomaterial
scaffolds. Nevertheless, we strongly believe that in the near future, biomaterial scaffolds
will deliver the radical treatment required to treat patients with SCI.
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