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Abstract: We developed a simple model of the copolymerization process in the formation of
crosslinked macromolecular systems. A living copolymerization was carried out for free chains, in
bulk and in a slit, as well as for grafted chains in a slit. In addition, polymer 2D brushes were placed
in a slit with initiator molecules attached to one of the confining walls. Coarse-grained chains were
embedded in the vertices of a face-centered cubic lattice with the excluded volume interactions. The
simulations of the copolymerization processes were performed using the Dynamic Lattice Liquid
algorithm, a version of the Monte Carlo method. The influence of the initial initiator to cross-linker
ratio, slit width and grafting on the polymerization and on the gelation was examined. It was also
shown that the influence of a confining slit was rather small, while the grafting of chains affected the
location of the gel pint significantly.

Keywords: confined space; Dynamic Lattice Liquid model; gelation; Monte-Carlo simulation; poly-
merization

1. Introduction

Materials such as polymer networks and gels are now commonly used in a variety
of industries, from automotive manufacturing to drug delivery, artificial muscles and
stretchable electronics. For these types of materials, one of the main problems from the
point of view, both in theory and in industrial application, is determining the gel point, the
point at which the reacting liquid turns into a solid.

The cross-linking of polymers changes the properties of macromolecular systems [1]
and eventually causes gelation. An increase in the number of cross-links leads to the
formation of insoluble gel. The transition from sol to gel is called the gel point [2]. Polymer
gels can be used as functional materials in technology and biomedicine [3,4]. Gels can be
prepared from monomers and cross-linkers using the controlled radical polymerization
method (CRP) [5–9]. The process of free radical polymerization was recently reviewed [10].
Theoretical studies on gelation were pioneered by Flory and Stockmayer (F–S theory) [11,12]
for the case of free radical polymerization; however, it has been shown that the gel point
was observed at considerably higher monomer concentrations in both experiments [5,8,9]
and simulations [6,13–15].

Confinement, i.e., geometric constraints, changes the structure and physical prop-
erties of macromolecular systems [16]. The gelation process, under confinement, was
studied experimentally, revealing differences between the structure and properties of a
gel obtained in such a way and one in bulk [17]. Polymer brushes, i.e., macromolecu-
lar structures with chains densely tethered onto a surface, recently became the subject
of many experimental works because of their practical importance [18–22]. They have
also been studied using Molecular Dynamics and Dissipative Particle Dynamics [23–25],
Monte Carlo simulations [26–33], scaling theory and self-consistent field theories [34–38].
A small number of Monte Carlo simulations were devoted to cross-linked grated chains
(polymer brushes) [39,40]. Cross-linked polymer brushes are considered to be good drug
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carriers [39] and therefore, have already been obtained in experiments [40–43] and studied
using computer simulations [44].

In this work, the controlled/living copolymerization process of a monovinyl and a
divinyl monomer were studied for systems with some geometrical constraints. Copoly-
merization was performed in bulk, in a slit and for chains grafted onto one wall of the slit.
Thus, in the latter case, we obtained brushes synthesized by a grafting-from procedure, in
which the polymerization of the chains started from an initiator attached firmly to a surface.
The influence of the initial initiator to cross-linker ratio on the polymerization parameters
was the first objective of this study. The second objective was to study the influence of the
constraints used (slit and grafting) on the copolymerization and gelation processes. Be-
cause of the complex architecture, large size and high density, the macromolecular systems
were studied employing a coarse-grained lattice model. During and after polymerization,
the system contained flexible chains immersed in monomer (a good solvent); monomer
and cross-linker molecules were explicitly included in the model. The model, called the
Dynamic Lattice Liquid (DLL), was used. It was a cooperative Monte Carlo simulation
method based on the concept of cooperative movement with rearrangements of objects
in the form of closed loops of displacements [45]. The main advantage of this model was
the possibility of studying macromolecular systems at high densities. This algorithm was
successfully used previously in studies of various polymerization processes, including
gels [5,6,13,14,46,47], polymer brushes [31,48], star-branched polymers [46,49,50], hyper-
branched polymers [48], dendrimers [49,50] and shape-memory polyurethanes [51]. The
influence of constraints on the structure of cross-linked polymers will be discussed in our
next paper.

This paper has been organized, as follows. In Methods and Materials section, we in-
troduced the model of polymer systems and the details of the simulation method called
Dynamic Lattice Liquid. The Results and Discussion section was divided into two subsec-
tions; the first (The Polymerization Process) containing a study of polymerization in which
basic parameters of this process were described and discussed, and the second (Location
of the Gel Point) focusing on the problem of determining the gel point and its dependence
on imposed geometrical constraints. In the last section, Conclusions, we summarized the
results and discussed the most important conclusions.

2. Results and Discussion
2.1. The Polymerization Process

In order to characterize the polymerization process in the systems studied, we used
commonly used quantities describing this process, as follows:

• number-average degree of polymerization of all macromolecules Pn(α) as a function
of conversion

Pn(α) = ∑
i = 1

ni p(α, ni) (1)

where α is the conversion of the monomer (convM) or of the cross-linker (convX),
ni represents the chain length of each polymer population (i.e., monomer is not
taken into account), p(α,ni) represents the fraction of molecules of chain length ni
and ∑

i
p(α, ni) = 1 for each α;

• weight-average degree of polymerization Pw(α) as function of conversion

Pw(α) =

∑
i = 1

ni
2 p(α, ni)

∑
i = 1

ni p(α, ni)
(2)

• dispersity, which is defined as Pw(α)
Pn(α)

.

Figure 1 shows simulation results of bulk copolymerization (system A) of a vinyl
monomer and divinyl cross-linker for various [Ini]0/[X]0/[M]0 ratios. Pn, Pw and Pw/Pn
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were plotted as a function of monomer conversion. The plots of Pn and Pw were plotted in
a semi-logarithmic scale to enable studies of the chain mass at both low and high monomer
conversion. We chose monomer conversion as the independent variable because precise
definitions of time in Monte Carlo simulations are unclear. One can observe a typical
evolution of the degrees of polymerization Pn and Pw as a function of the monomer con-
versions convM. Thus, in this case, there was a rapid increase of Pn, Pw and a characteristic
curve of dispersity for cross-linking process [2,46]. The location of the rapid increase in Pw
depended strongly on [Ini]/[X]. For higher values of monomer conversion, the average
chain lengths lay along straight lines, indicating that the increase of Pn was approximately
exponential. The higher [Ini]/[X] ratio, i.e., the higher concentration of the crosslinker, led
to a considerably higher degree of polymerization of Pn than expected [46].
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Figure 1. The number-average chain length (Pn) (upper), the weight-average (Pw) (middle) and the
dispersity (Pw/Pn) (lower) vs. monomer conversion for the initiator concentration 0.6%. The case of
a free solution (system A). The values of the ratios [Ini]/[X] are given in the inset to the upper Figure.

The above behavior of Pn, the weight-average Pw and Pw/Pn could now be compared
with the results obtained when the polymerized system was subjected to geometric con-
straints, i.e., with system B, where the chains were inserted into a slit built of parallel walls
with a spacing of d = 100 and 10 lattice units. In the situations considered, the ratio [Ini]/[X]
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in the system was maintained as before. By changing only the volume, the amount of
monomer was changed. Figure 2 presents the comparison of the simulation results of the
system II (polymerization in a slit) with Pn, Pw and Pw/Pn shown as a function of monomer
for various [Ini]0/[X]0/[M]0 ratios. As shown, it was observed that, for a wide slit (the
distance between the walls is d = 100) the simulation proceeded in a similar way to the
system I (without geometric constraints). A similar behavior of the curves in the corre-
sponding cases was observed. In the case of the narrow slit, where the distance between
the walls was drastically reduced to d = 10, we observed a weaker increase in both degrees
of polymerization (Pw and Pn) as the polymerization process progressed. This could have
been related to a much smaller amount of monomer, but the nature of these changes, i.e.,
the characteristic points where rapid changes occurred (which were important for gelation),
were not significantly different from the two previously considered cases (system I and a
wide slit in system II). The degree of polymerization Pn was an order of magnitude lower
than that for a free solution, regardless of the value of the [Ini]/[X] ratio. Therefore, the
main factor affecting the evolution of the system was the ratio of the initial cross-linker
concentration to the initial initiator concentration, while the amount of monomer did not
matter. It was also observed that the shapes of the dispersity curves were similar in all
three cases considered. The maximum values of dispersity in a wide slit were comparable
to those for bulk—while, in a narrow slit, they were slightly lower.
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Figure 2. The number-average chain length (Pn) (upper), the weight-average (Pw) (middle) and the
dispersity (Pw/Pn) (lower) vs. monomer conversion for the initiator concentration 0.6%. The case of
the slit (system B) with the distance between walls d = 100 (left panel) and d = 10 (right panel). The
values of the ratios [Ini]/[X] are given in the insets to the upper Figures.
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In the last system considered (system C), the cross-linker was randomly distributed
in a slit, while the initiator was located on one wall of the slit. The grafting density σ (in
this case, a fraction of lattice sites occupied by the initiator to the total number of lattice
sites on the wall) changed between 0.05 and 0.60. For a system in which polymers were
grafted to one of the walls, the polymerization process is shown in Figure 3. In the case
of system C, in addition to the geometric constraint (in the form of parallel walls), the
polymers were grafted onto one of them. We observed that the polymerization process
was different from the cases of systems A and B, described earlier. All tested parameters
behaved differently than in the previously described cases, i.e., the values Pw and Pn were
significantly lower during the entire polymerization process, while the dispersity Pw/Pn
reached higher values. Moreover, compared to systems A and B, the characteristic points
where a rapid increase occurred shifted to lower values. The differences were especially
visible for a wider slit (d = 100) where the dispersity did not decrease at higher monomer
conversions and remained high until the very end of the polymerization process. This
could have been related, not only to the change in monomer amount, which naturally led
to a slower increase in chains’ size, but also to the characteristic points (points where a
rapid increase in the measured values began) which shifted, relative to each other, in the
right and left panels.
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Figure 3. The number-average chain length (Pn) (upper), the weight-average (Pw) (middle) and
the dispersity (Pw/Pn) (lower) vs. monomer conversion for the initiator concentration 0.6% (it
corresponds to the grafting density σ = 0.6) in the slit with chains grafted to one of the walls (system
C). The case of the distance between walls d = 100 (left panel) and d = 10 (right panel). The values of
the ratios [Ini]/[X] are given in the insets to the upper Figures.
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The weight increase of the largest molecule in the system, along with the amount of
the reacted monomer, was a behavior deemed important, as an addition to the information
obtained from the above analysis. Figure 4 presents the weight of the largest chain (what
corresponded to the longest length or the highest number of polymer beads) nmax as a
function of the monomer conversion convM for all systems considered (systems A-B-C).
From this Figure, it can be observed that the weight of the longest chains behaved similarly
in all systems under consideration—although, in system C, the shape of the curves differed
slightly. On the other hand, rapid growth of the largest molecule was observed at much
lower monomer conversion for system C (where polymer chains, including the largest
one, were grafted onto the wall), as compared to systems A and B (free solution and a
slit, respectively). In the two latter cases, the increases in nmax were very similar. These
differences suggested a significant effect of grafting on the position of the gel point, and
thus, as highlighted in the next subsection, we performed a more detailed investigation of
the gelation process.
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Figure 4. The evolution of maximum chain length with monomer conversion obtained for systems A,
B and C. The initiator concentration is 0.6%, corresponding to the grafting density 0.6. The distance
between the walls in the case of system B and C is d = 100. The values of the ratios [Ini]/[X] are given
in the insets to the upper Figures.
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2.2. The Location of the Gel Point

To determine the gel point in the considered systems, we used a parameter called the
reduced degree of polymerization (RDP), which was equal to the weight-average degree
of polymerization without the longest chain in the system. It was defined analogously to
Pw(α):

RDP(α) =

∑
i

n2
i p(α, ni)− n2

max

∑
i

ni p(α, ni)
(3)

where nmax denotes the chain length of the longest macromolecule in the system (formed
by the highest number of beads). This parameter, which has also been denoted as reduced
average cluster size, proved to be very useful in the analysis of gelation processes, and
was proposed by Hoshen and Koppelman [52]. The gel point was defined as the monomer
and cross-linker conversions, respectively, at which the RDP(α) reached the maximum
value. This procedure has been used for the detection of the gel point in simulations of
the copolymerization ATRP process [10,14]. Figure 5 shows an exemplary application
of RDP to determine the gel point, i.e., the monomer conversion rate in Figure 5a and
the cross-linker conversion rate in Figure 5b at this point, both determined for a grafting
density of 0.3 and a wall spacing d = 50. It can be observed that the sharp maxima observed
in these plots were good indications of gel points.
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Figure 5. The reduced degree of polymerization as a function of monomer conversion (a) and the
cross-linker conversion (b) for the distance between walls d = 50 and grafting density σ = 0.3. The
values of the ratios [Ini]/[X] are given in the inset.

Having the procedure of determining the gel point established, we calculated this
parameter for system B (polymerization in a slit) for some values of the density of initiator
(0.05, 0.10 0.30 and 0.60, (i.e., a different number of chains)) and for some widths of the
slit between a wide and a narrow case (D = 10, 20, 50 and 100). Figure 6 presents the
monomer conversion at the gel point as a function of the ratio of initiator and cross-linker
concentration [Ini]/[X] for the mentioned above concentrations of the initiator and slit
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widths. Monomer conversions convM at the gel point, determined by the same method for
the free solution case (system A), were included for comparison. As observed, geometrical
constraints did not affect the location of the gel point; however, it is important to remember
that the narrower slit corresponded to a smaller amount of the monomer. The behavior of
the gel point in a slit was very close to that in a free solution, and the differences decreased
as the width of the slit decreased. This decrease was almost linear on the plot, implying a
rough power dependence.
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Figure 6. Monomer conversion at the gel point for the polymerization in a slit as a function of the ratio
[Ini]/[X] for different widths of the slit. The initiator densities are given in the inset. The monomer
conversion at gel point for a free volume is marked by the dashed line.

The location of the gel point could also be studied, depending on the cross-linker
conversion. Figure 7 presents the cross-linker conversion convX at the gel point as a function
of the ratio of initiator and cross-linker concentration [Ini]/[X] for some densities of initiator
and some slit widths (system B). The values of the initiator density and width of the slit
were the same, as in the case of the monomer conversion discussed earlier (Figure 6). The
cross-linker conversions at the gel point, determined for the free solution case (system I),
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were included for comparison. The behavior of the gel point was not significantly different
from that of the monomer (Figure 6); the dependence of the gel point on both parameters
was rather weak and the plots were almost linear, suggesting a rough power dependence.
The range of the gel point changes was similar to that of a free solution case (system A).
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Figure 7. Cross-linker conversion at the gel point for polymerization in a slit, as a function of the ratio
[Ini]/[X] for different widths of the slit. The initiator densities are given in the inset. The cross-linker
conversion at gel point for a free volume is marked by the dashed line.

Analogical calculations concerning the location of the gel point were carried out
for chains grafted in a slit (system C). Figure 8 presents the monomer and cross-linker
conversion at the gel point for grafted chains as a function of the ratio of initiator and
cross-linker concentration [Ini]/[X] for the same grafting densities as for systems A and
B. Presented values concerned a narrow slit with D = 10. The monomer and cross-linker
conversions at the gel point determined for the free solution case (system A) were included
for comparison. The behavior of the gel point was not significantly different from those
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of the free solution and the slit presented in Figures 6 and 7 and discussed above. All
plots exhibited the same behavior as in systems A and B, i.e., the decrease of the gel point
location was almost linear. There was only one exception found for the case of the largest
grafting density (σ = 0.60) where the gel point was reached at considerably lower monomer
and cross-linker conversion, especially for intermediate and higher values of the [Ini]/[X]
ratio.
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Figure 8. The conversion of monomer (a) and cross-linker (b) at the gel point during polymerization
of grafted chains in a slit, with d = 10 as a function of the ratio [Ini]/[X] for different widths of the slit.
The grafting densities are given in the inset. The conversion of monomer and cross-linker at the gel
point for a free volume are marked by the dashed line.

The next question concerned the influence of the width of the slit on the location of
the gel point. For this purpose, we analyzed the gel point for different grafting densities
in a wide slit (D = 100). Figure 9 presents the monomer and cross-linker conversion
at the gel point for grafted chains (system C) as a function of the ratio of initiator and
cross-linker concentration [Ini]/[X] for some grafting densities (σ = 0.05, 0.10, 0.30, and
0.60). The monomer and cross-linker conversion at the gel point determined for the
case of a free solution (system A) were included for comparison. The plots were almost
linear and we observed that the gel point was reached at lower monomer and cross-linker
concentrations than in the narrow slit (with D = 10, Figure 8). Contrary to the previous
case, the dependencies of the gel point on [Ini]/[X] on the grafting density were definitely
stronger.
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Figure 9. The conversion of monomer (a) and cross-linker (b) at the gel point for polymerization of
grafted chains in a slit with d = 100 as a function of the ratio [Ini]/[X] for different widths of the slit.
The grafting densities are given in the inset. The monomer and cross-linker conversion at gel point
for a free volume are marked by the dashed line.

Based on the gel point location discussed above, a question arose whether both the
width and density of a monomer layer in the slit had effects on the location of the gel point.
For this purpose, we analyzed the gel point for different slit widths (D = 10, 20, 50 and
100) at the grafting density σ = 0.05, 0.10, 0.30 and 0.60). Figure 10 shows the monomer
conversion at the gel point for the polymerization of grafted chains (system C) in a slit as
a function of the ratio [Ini]/[X] for a given grafting density while varying the slit width.
Monomer conversions at gel points determined for the free solution case (system A) were
included for comparison. We observed that the deviation of the monomer conversions at
the gel points from those in a free solution increased with increases of the grafting density
and slit width. At relatively low grafting densities, significant differences were only present
for wider slits.
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Figure 10. The conversion of monomer at the gel point for polymerization of grafted chains in a slit
as a function of the ratio [Ini]/[X] for different grafting densities. The widths of the slit are given in
the inset. The monomer conversion at gel point for a free volume are marked by the dashed line.

An analysis analogous to the previous one was performed, i.e., studying the location
of the gel point determined from the cross-linker conversion. Figure 11 presents the cross-
linker conversion at the gel point for the polymerization of grafted chains in a slit (system
C) as a function of the ratio [Ini]/[X] for different grafting densities and slit widths. Cross-
linker conversions at the gel point determined for the free solution case (system A) were
included for comparison. The conversion curves were very close to the previous case
(Figure 10). We observed that the deviation from the cross-linker conversions at the gel
points (compared to those in a free solution) increased with increases of the grafting density
and slit width. As shown in Figures 10 and 11, in order to lower the gel point, it was
necessary to use less confinement (a wider slit in our case) and a higher grafting density.
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Figure 11. The conversion of cross-linker at the gel point for polymerization of grafted chains in a slit
as a function of the ratio [Ini]/[X] for different grafting densities. The widths of the slit are given in
the inset. The cross-linker conversion at gel point for a free volume are marked by the dashed line.

3. Methods and Materials

In the simulations presented, a coarse-grained approach was used. In the Dynamic
Lattice Model (DLL), details of the chemical structure of monomers and polymer molecules
were disregarded. A unit (monomer/mer built of many atoms) was considered an elemen-
tary structure. Its status changed by polymerization and each reaction step resulted in
the formation of an unbreakable chemical bond which reduced the number of molecules
in the system by one. The reactivity of all functional groups (the probability of being
selected for a reaction) was constant, with no substitution effects being considered, and
independent of the chain length. The probabilities of all the reactions were assumed to
be 0.02, based on previous polymerization studies [5,13]. In most cases, no termination or
chain transfer reactions were considered and thus, it was an ideal living copolymerization.
This assumption is not strictly true for controlled/living radical polymerization, such as
Atom Transfer Radical Polymerization (ATRP), but should be a reasonable approximation
in this case [5,13]. The polymerization reaction was simulated according to the general
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scheme, which was developed and presented elsewhere in detail [5,53]. Polymerization
was carried out until the monomer was completely depleted. The model used can be
treated as Monovinyl monomer and Divinyl cross-linker copolymerization [5].

The DLL model has been described in more detail in previous publications [13,54–56]
so its main features are only briefly summarized here. It is a lattice model in which the
beads, representing the monomers, occupy all the lattice sites of the system (density factor
ρ = 1). A field of randomly chosen unit vectors represents motion attempts. These vectors
are assigned to the objects in the system and point in the directions of the attempted motions.
Only those attempts that coincide in such a way that the sum of displacements along a
path involving more than two objects is equal to zero (continuity condition). This results
in displacements of objects along self–avoiding closed loops, each bead to a neighboring
lattice site. All objects which do not contribute to such correlated loops remain at their
previous positions.

We considered an athermal system, so all allowable rearrangements were performed.
Molecular systems treated in this way can be considered to have been provided with a
dynamic, consisting of local vibrations and occasional diffusion steps, resulting from the
coincidence of attempts of the neighboring elements to displace beyond the occupied
positions. Within a longer interval of time, this kind of dynamic can lead to displacements
of individual objects along the random walk trajectories, with steps distributed randomly
in time.

Simulations of cross-linking and gelation in the infinite volume (periodic boundary
conditions were set in all directions) for some [X]0/[Ini]0 ratios were made for the sake
of comparison (system A most left). Simulations of cross-linking and gelation in the
infinite volume (no geometric constraints, periodic boundary conditions are imposed in
all directions) were also performed for the sake of comparison (Figure 12, left). Periodic
boundary conditions were assumed in the x and y directions, while solid, impenetrable
walls were assumed at z = 0 and z = zmax, i.e., the copolymerization in slits of width
d = zmax was performed for the same values of [X]0/[Ini]0 ratio. The simulation box size
was 100 × 100 lattice units in the x- and y-directions and varied in the z-direction with
zmax = 100, 50, 20 or 10 for a given simulation. For the simulations of brush growth in the slit,
all initiators were attached to the wall z = 0 and cross-linkers were randomly distributed
in the simulation box (Figure 12, right). In the case of simulations of free chains in the
slit, the initiators and cross-linker were randomly placed in the simulation box (Figure 12,
middle). All remaining lattice sites in the simulation box were occupied by the monomer.
The number of initiators in a given simulation was based on the assumed grafting density
σ, i.e., the ratio of the lattice sites occupied by the initiator to all available sites. The same
number of initiator molecules per simulation box was set in the corresponding simulations
of free chains. The number of cross-linkers decreased with the width of the slit to maintain
constant density of these elements. The ratio of the initial cross-linker concentration to the
initial initiator concentration ([X]0/[Ini]0) varied between 1 and 7 in different simulations.
These values were equal to half of the average number of crosslinks per chain at full
conversion (when inter- and intrachain cross-links are counted).
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4. Conclusions

We carried out simulations of a simple model of living polymerization with some
geometrical constraints by means of the Monte Carlo method. The Dynamic Lattice Liquid
algorithm, based on the cooperative movement concept, was employed with realistic
reaction parameters. In this model, cooperative rearrangements of a system had the form of
closed loops of displacements on face-centered cubic lattice, with all lattice sites occupied
by cross-linker, monomer and growing macromolecules. The main focuses of this work
were the kinetics of the polymerization and the influence of the constraints on the gelation
process. In the frame of our model, we were able to give a qualitative description of the
kinetic behavior.

Polymerization in a slit formed by two impenetrable walls proceeded quite similarly
to that in a free solution (without geometrical constraints). The gel point was found to
be located at nearly the same degree of conversion of monomer and cross-linker in both
cases. Changes in the width of the slit did not significantly affect the gel point, even
if the width was one order of magnitude narrower. When the initiator was located on
one of the walls, i.e., when chains in the slit were grafted, the gel point shifted toward
lower monomer and cross-linker conversion. The effects of the grafting density were
found to be similar, i.e., higher density led to a decrease in both conversions. The reason
for these differences was the predominance of inter-cross-linking in the initial period,
especially at high grafting densities; other chains were attached to a growing grafted
chain more often than monomers. Therefore, under such conditions, the gel points were
located at lower monomer and cross-linker conversions, compared to polymerization in
a free solution or a slit. It should be noted that the influence of grafting on the gel point
was considerably stronger compared to polymerization in a free solution with intra-cross-
linking disabled [49]. At low grafting densities, polymerization proceeded similarly to that
in a free solution, where the mechanism of intra-cross-linking predominated. This could be
explained by larger distances between the growing chains in the initial period of synthesis.

We observed that the deviations of the cross-linker conversions at the gel points (from
those in a free solution) increased with increases of the grafting density and slit width.
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