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Abstract: Protein turnover rate is finely regulated through intracellular mechanisms and signals that
are still incompletely understood but that are essential for the correct function of cellular processes.
Indeed, a dysfunctional proteostasis often impacts the cell’s ability to remove unfolded, misfolded,
degraded, non-functional, or damaged proteins. Thus, altered cellular mechanisms controlling
protein turnover impinge on the pathophysiology of many diseases, making the study of protein
synthesis and degradation rates an important step for a more comprehensive understanding of these
pathologies. In this manuscript, we describe the application of a dynamic-SILAC approach to study
the turnover rate and the abundance of proteins in a cellular model of diabetic nephropathy. We
estimated protein half-lives and relative abundance for thousands of proteins, several of which are
characterized by either an altered turnover rate or altered abundance between diabetic nephropathic
subjects and diabetic controls. Many of these proteins were previously shown to be related to diabetic
complications and represent therefore, possible biomarkers or therapeutic targets. Beside the aspects
strictly related to the pathological condition, our data also represent a consistent compendium of
protein half-lives in human fibroblasts and a rich source of important information related to basic
cell biology.

Keywords: proteomics; protein turnover rate; protein half-life; SILAC; diabetes; nephropathy; fibroblasts

1. Introduction

Modern technological advances have provided investigators with sophisticated method-
ologies that allow an extensive characterization of the cell proteome. Wide-search pro-
teomics is a powerful tool to identify and quantify an enormous number of proteins and
to tackle problems related to all areas of biology and medicine [1]. In the past few years,
the study of the protein turnover rate on a large-scale has emerged as a new dimension in
proteomics research, and a number of different approaches have been proposed to allow a
reliable estimate of protein synthesis and degradation rates (extensively reviewed in [2]).
Indeed, protein turnover is tightly regulated by several cellular processes which allow
the maintenance of an efficient and functional protein pool and, at the same time, remove
from the cellular environment unfolded, misfolded, degraded, non-functional or damaged
proteins, as well as insoluble aggregates [3]. Hence, a dysfunctional proteostasis impacts
the pathophysiology of many diseases, in particular neurodegenerative disorders but also
cancer and metabolic conditions [4–6].

Historically, the first studies investigating the issue of protein synthesis and degra-
dation involved the incorporation into proteins of radiolabeled amino acids and allowed
the protein turnover rate to be expressed only as total protein dynamics [7]. Later on,
proteomic approaches, mainly based on the exposure to labelled amino acid(s) of either
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cells cultured in vitro, or of small experimental animals in vivo, were used to estimate the
rate of synthesis and/or degradation of individual proteins on a large-scale level [8–11].
The most widely used approach is known as dynamic-SILAC (often referred also as pulsed-
SILAC or pSILAC), an evolution of the classical SILAC approach [12] in which cells are
first cultured in normal unlabeled medium (the “light” medium) and then switched to a
medium containing stable isotope labeled amino acids (usually 13C labelled Lysine and/or
Arginine, generally indicated as “heavy” amino acids). Samples are collected at different
time points, and the rates of incorporation of the heavy amino acids (which correspond
mainly to the rate of synthesis) and of degradation of the pre-existing protein pool (cor-
responding to the degradation rate) are measured using liquid chromatography coupled
to tandem mass spectrometry (LC-MS/MS). The ratio between the signal of the heavy
peptide and the signal of the residual light peptide directly reflects protein turnover [2].
By applying this approach, the kinetics of each protein can be associated with its known
function(s), thus expanding our knowledge of the relationships between protein expression,
function, and turnover.

Primary cultures of cells are a powerful model to investigate several aspects of protein
metabolism, among them protein turnover [13]. Cultures of human fibroblasts have been
widely exploited as an in vitro system to investigate some pathophysiological mechanisms
of disease, such as diabetes mellitus [14–17], particularly those associated with the devel-
opment of diabetic complications [18–20]. Diabetic nephropathy (DN) is a leading cause
of morbidity and mortality in diabetes [21]. Both genetic and environmental factors are
associated with the development of diabetic nephropathy, particularly in type 1 diabetes
mellitus (T1DM) [22]. As a matter of fact, genetic factors may either convey the risk of, or
protect from, diabetic nephropathy [23]. Their expression profiles in skin fibroblasts from
type 1 diabetic patients, could reflect genetic influences; therefore, they were removed from
in vivo environmental influences [24].

Our laboratories have established and largely exploited the model of primary cultures
of human skin fibroblasts as a tool to study protein expression in type 1 diabetes [20,25,26].
In this study, we describe the application of a dynamic-SILAC approach to primary human
fibroblasts derived from diabetic subjects with and without diabetic nephropathy with
the purpose of extensively characterizing the dynamics and the abundance of the proteins
and, whenever possible, deriving meaningful information regarding the energetic factors
underlying the relationship between stability and protein abundance in this cellular model.

2. Results
2.1. Dynamic-SILAC Experiment and Determination of prOtein Half-Lives

To accurately estimate protein half-life in a model of diabetic nephropathy, we applied
a dynamic-SILAC approach to fibroblasts obtained from 10 type 1 diabetic patients, 5 of
whom were affected by diabetic nephropathy. Cells were cultured as described in Section 4,
and the dynamic-SILAC experiment was performed in steady-state conditions, when cells
were at confluence. To verify that no evident morphological changes occurred during the
timeframe of the experiment, we regularly checked cell morphology and counted viable
cells. Results for an exemplifying subject are reported in Table 1.

Table 1. Number of viable cells repeatedly counted during the experiment.

Time Point Average Cell Number

1 h 5.26 × 106

2 h 5.68 × 106

4 h 5.66 × 106

7.5 h 5.56 × 106

24 h 5.98 × 106
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The proteomic workflow adopted to estimate individual protein turnover rates is
described in Figure 1. On average, 1287 proteins were confidently identified and quantified
in each of the 10 subjects, with a standard deviation SD equal to 86 (more details about the
number of identified proteins in each sample are reported in Supplementary Table S1). As
described in the experimental procedures, to increase the robustness of the estimate of the
turnover constant k, we decided to consider only those proteins that were quantified at 24 h
and at least one out of the other two time points. After filtering, a total of 1661 different
proteins from the 10 subjects were considered for the parameter k estimate.

Figure 1. Proteomics workflow used to estimate turnover rates of individual proteins. Cells were
grown in the SILAC heavy medium and collected at 4, 7.5, and 24 h. Following cell lysis and protein
quantification, a fractionation step by SDS-PAGE was performed, and proteins were then digested
and analyzed by LC-MS/MS as detailed in Section 4.

As specified in Section 4, protein quantification was obtained by the software as the
median value of the quantification of all unique peptides belonging to each protein. For
these proteins, a model of technical variability was derived from peptide measurements
using these latter as replicated protein measurements (see Section 4). As shown in Figure 2,
neither the standard deviation (SD, empty circles) nor the coefficient of variation (CV, solid
circles) are constant; the former increases, whereas the latter decreases with the average of
the heavy to light ratio (H/L).

Therefore, we excluded a constant SD and constant CV model for our data and adopted
the following model describing the SD as a function of H/L ratio r:

SD =

√
α2 + β2·r2 (1)

where α and β are constants fixed at the values of 0.02 and 0.1, respectively. The fit of the
model of technical variability is shown in Figure 2.
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Figure 2. Model of technical variability. The standard deviation (SD, empty circles), and the coefficient
of variation (CV, solid circles) are not constant with the average of the heavy to light ratio (H/L).

Therefore, the model SD =
√

α2 + β2·r2 was used to fit the standard deviation. The model was
derived from replicated measurements of peptides.

The rate constant parameter k of the 1661 proteins in our dataset was identified by
fitting the H/L ratio r data across time (see details in Section 4), using the least square
method weighted accordingly to the model of technical variability (Equation (1)). To assess
the goodness of fit, we considered the CV of the parameter estimate, whose distribution is
shown in Figure 3.

Figure 3. Coefficient of variation of the parameter estimate. Distribution of the CV of the parameter k
estimate of the 1661 proteins in our dataset identified by fitting the H/L ratio across different time points.
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From the distribution plot, it is clear that for a vast majority of proteins, the parameter
k was estimated with very good precision, i.e., with a CV lower than 15%. A total of
1642 different proteins across all subjects (on average, 935 proteins for each subject, with a
standard deviation SD equal to 119) showed a CV of the parameter estimate lower than
50% and were retained for further analysis (Table S2).

Figure 4 shows the average half-life distribution of the 1642 analyzed proteins, where
the half-life T1/2 is computed as log2/k. Considering only the proteins for which a reliable
estimate of k could be obtained in at least 2 out of 10 samples (in total 1338 proteins), the
distribution of the mean values of T1/2 ranges between 3 and 573 h, being on average equal
to 59.9 h (Table S3). Note that the protein with the highest T1/2 is keratin 5, probably a
contaminant protein that could be filtered out of the dataset. In this case, the highest T1/2
would be 477 h.

Figure 4. Distribution of the mean values of half-life T1/2. The vast majority of proteins show a
half-life between 3 and 200 h with an average of 59.9 h.

2.2. Protein Turnover in Diabetic-Controls vs. Diabetic-Nephropathic Subjects

After evaluating the normal distribution of data (Saphiro-Wilk test at 0.05 level), a
t-test was performed on the T1/2 value of 974 proteins, for which k was estimated in at
least two subjects for each group, i.e., diabetic-controls vs. diabetic-nephropathic subjects.
For 20 proteins a p-value ≤ 0.05 was found (Table 2), although it was not significant after
correction for multiple testing. Probably the high variability of the data, mainly linked to
the biological variability of the human subjects, together with the low numerosity of the
dataset, does not allow for significant p-values after correction.

Gene set enrichment analysis was also performed to assess pathways associated with
the two phenotypes. The 29 Reactome pathways [27,28] were found to be significantly
associated with diabetic nephropathic subjects in terms of increased protein half-life with
respect to diabetic controls. These are reported in Table S4 and discussed later in the text.
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Table 2. Proteins with a significantly different half-life in Diabetic and Nephropathic subjects.

Gene Name Protein Description Average Half-Lives in h (SD) p-Value Valid Values
Diabetic Nephropathic Diabetic Nephropathic

RAB13 RAB13, member RAS
oncogene family 26.4 (1.5) 32.6 (0.1) 1.90 × 10−3 5 2

RAB23 RAB23, member RAS
oncogene family 33.0 (2.8) 42.9 (4.3) 1.10 × 10−2 5 3

SQRDL sulfide quinone
reductase-like (yeast) 74.6 (12.7) 123.6 (16.5) 1.54 × 10−2 4 2

PABPC1 poly(A) binding
protein, cytoplasmic 1 41.2 (3.9) 49.1 (4.4) 1.85 × 10−2 5 5

IPO7 importin 7 28.7 (1.8) 34.7 (3.9) 2.02 × 10−2 4 5

NPM1

nucleophosmin
(nucleolar

phosphoprotein B23,
numatrin)

48.2 (3.4) 55.6 (4.5) 2.10 × 10−2 5 5

TCP1 t-complex 1 58.0 (6.0) 73.7 (12.1) 2.71 × 10−2 5 5

EIF4A1 eukaryotic translation
initiation factor 4A1 29.8 (1.8) 34.7 (4.0) 3.31 × 10−2 5 5

CCT8 chaperonin containing
TCP1, subunit 8 (theta) 57.8 (5.2) 68.9 (9.3) 3.34 × 10−2 5 5

EIF4G1
eukaryotic translation

initiation factor 4
gamma, 1

26.8 (1.3) 32.2 (3.8) 3.66 × 10−2 4 4

TFRC transferrin receptor 23.3 (2.9) 29.2 (3.2) 3.72 × 10−2 4 5

TOP2B topoisomerase (DNA)
II beta 180kDa 33.0 (3.3) 25.9 (0.3) 3.93 × 10−2 3 2

ACTB actin, beta 65.3 (5.3) 89.8 (20.9) 4.12 × 10−2 5 4
ACLY ATP citrate lyase 35.2 (4.7) 43.5 (4.9) 4.25 × 10−2 5 5

ST13P4
Suppression of

tumorigenicity 13
pseudogene 4

21.8 (2.5) 37.6 (7.3) 4.36 × 10−2 3 2

GSTM5 glutathione
S-transferase mu 5 53.5 (5.9) 104.9 (18.5) 4.38 × 10−2 2 2

HNRNPF heterogeneous nuclear
ribonucleoprotein F 29.8 (4.0) 38.1 (6.0) 4.80 × 10−2 5 4

PA2G4
proliferation-

associated 2G4,
38kDa

49.4 (3.7) 62.2 (12.5) 4.85 × 10−2 5 5

CAPRIN1 cell cycle associated
protein 1 14.7 (0.9) 16.2 (1.1) 4.89 × 10−2 5 5

EIF4H eukaryotic translation
initiation factor 4H 28.9 (1.9) 37.6 (3.6) 4.90 × 10−2 2 3

2.3. Protein Quantification in Diabetic-Controls vs. Diabetic-Nephropathic Subjects

Protein abundance relative quantification was performed on a total of 2226 different
proteins across 10 subjects (Table S5). To note that protein half-life could be reliably
assessed for 1664 proteins, since for the estimate of k we decided to use data associated with
proteins identified at least at two temporal points, one of which was set to be 24 h. This
limitation does not apply for the estimate of protein abundance, which therefore led to the
quantification of a higher number of proteins. Abundance levels in the three time points
indirectly confirmed the steady state hypothesis. Indeed, for each protein, the variance
across different time points tends to be equal to or lower than the technical variation,
measured as the variance observed across peptides matching the same protein in the same
sample (Figure 5). Here it is clear that protein abundance does not significantly vary across
the three time points, thus indicating that a steady state can be confidently assumed.
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Figure 5. Variance across time vs. technical variance. The figure shows the variance across different
time points (x axis) vs. the technical variation (y axis), measured as the variance observed across
peptides matching the same protein in the same sample. The variance across time is equal to or lower
than the technical variation, in line with the steady state assumption.

After confirming the normal distribution of data (Saphiro-Wilk test at 0.05 level), a
t-test was performed on 1299 proteins, for which the relative abundance was measured
on at least two subjects for each group, i.e., diabetic-controls vs. diabetic-nephropathic
subjects (Table S5). For 40 proteins a p-value ≤ 0.05 was found (Table 3), although it was
not significant after correction for multiple testing.

Table 3. Proteins with a significantly different abundance in Diabetic and Nephropathic subjects.

Gene Name Protein Description Fold Change
(Nephropathic vs. Diabetic)

p-Value Valid Values
Diabetic Nephropathic

GLIPR2 GLI
pathogenesis-related 2 −1.8 3.30 × 10−3 4 4

RPS3A ribosomal protein S3A −1.6 3.90 × 10−3 5 5

TRIM25 tripartite motif
containing 25 −1.5 6.41 × 10−3 3 4

SLC25A6

solute carrier family 25
(mitochondrial carrier;
adenine nucleotide
translocator), member 6

−1.7 6.95 × 10−3 5 5

TUBB4A tubulin, beta 4A
class IVa 2.1 9.41 × 10−3 5 5

NDUFB10
NADH dehydrogenase
(ubiquinone) 1 beta
subcomplex, 10, 22kDa

−1.7 1.21 × 10−2 5 4

NPC2 Niemann-Pick disease,
type C2 2.5 1.47 × 10−2 2 4

SYNE1
spectrin repeat
containing, nuclear
envelope 1

−2.2 1.47 × 10−2 5 5



Int. J. Mol. Sci. 2023, 24, 2811 8 of 30

Table 3. Cont.

Gene Name Protein Description Fold Change
(Nephropathic vs. Diabetic)

p-Value Valid Values
Diabetic Nephropathic

SEC31A SEC31 homolog A
(S. cerevisiae) 1.6 1.55 × 10−2 3 4

TUBB4B tubulin, beta 4B
class IVb 3.3 1.70 × 10−2 2 4

SLC25A3

solute carrier family 25
(mitochondrial carrier;
phosphate carrier),
member 3

−1.7 2.40 × 10−2 5 5

DNAJC8 DnaJ (Hsp40) homolog,
subfamily C, member 8 −1.8 2.40 × 10−2 5 4

COX4I1 cytochrome c oxidase
subunit IV isoform 1 −1.7 2.42 × 10−2 5 5

LGALS3
lectin,
galactoside-binding,
soluble, 3

−1.4 2.57 × 10−2 5 5

NQO1
NAD(P)H
dehydrogenase,
quinone 1

−2.1 2.64 × 10−2 5 5

SERPINB2
serpin peptidase
inhibitor, clade B
(ovalbumin), member 2

1.6 2.76 × 10−2 2 4

XRCC6

X-ray repair
complementing
defective repair in
Chinese hamster cells 6

−1.4 2.80 × 10−2 5 5

SDHB

succinate
dehydrogenase complex,
subunit B, iron
sulfur (Ip)

−1.6 2.85 × 10−2 4 5

FHL2 four and a half LIM
domains 2 −1.6 2.87 × 10−2 4 4

RBMX RNA binding motif
protein, X-linked −1.6 3.03 × 10−2 2 3

PSMA7
proteasome (prosome,
macropain) subunit,
alpha type, 7

−2.1 3.18 × 10−2 3 3

XRCC5

X-ray repair
complementing
defective repair in
Chinese hamster cells 5
(double-strand-break
rejoining)

−1.4 3.21 × 10−2 5 5

SLC25A5

solute carrier family 25
(mitochondrial carrier;
adenine nucleotide
translocator), member 5

−1.9 3.34 × 10−2 5 5

RNH1 ribonuclease/angiogenin
inhibitor 1 1.4 3.43 × 10−2 5 5

TUBA1C tubulin, alpha 1c 1.7 3.57 × 10−2 2 5
CAPNS1 calpain, small subunit 1 −1.8 3.71 × 10−2 4 5

RRAS related RAS viral (r-ras)
oncogene homolog −1.7 3.82 × 10−2 5 5
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Table 3. Cont.

Gene Name Protein Description Fold Change
(Nephropathic vs. Diabetic)

p-Value Valid Values
Diabetic Nephropathic

CYB5A cytochrome b5 type A
(microsomal) −1.8 3.90 × 10−2 4 5

CTSD cathepsin D −1.4 3.95 × 10−2 5 5

EEF1B2
eukaryotic translation
elongation factor 1
beta 2

−1.6 4.08 × 10−2 5 5

MAPK14 mitogen-activated
protein kinase 14 −1.6 4.09 × 10−2 2 3

PSMB2
proteasome (prosome,
macropain) subunit,
beta type, 2

−1.6 4.22 × 10−2 2 3

MTPN myotrophin −1.6 4.30 × 10−2 5 5
MYO1B myosin IB 1.6 4.35 × 10−2 5 5

APPL2

adaptor protein,
phosphotyrosine
interaction, PH domain
and leucine zipper
containing 2

−1.3 4.51 × 10−2 5 5

RPS3 ribosomal protein S3 −1.7 4.55 × 10−2 5 5
FKBP7 FK506 binding protein 7 −1.7 4.59 × 10−2 5 5

QDPR
quinoid
dihydropteridine
reductase

−2.8 4.72 × 10−2 4 3

HM13 histocompatibility
(minor) 13 −2.0 4.74 × 10−2 2 4

IMPA1 inositol(myo)-1(or
4)-monophosphatase 1 −2.6 4.99 × 10−2 3 3

2.4. Characterization of Proteins with Similar Half-Life and Abundance

Given the large range of protein half-lives spanning between 3 and 573 h (Figure 4
and Table S3), downstream analysis was performed to acquire further information on
the proteins characterized by a similar range of half-lives and abundance. Considering
that only a few proteins showed a significant change in protein half-life between diabetic
controls and nephropathic subjects (Table 2), we decided to use the average value of k
calculated on all 10 subjects to cluster proteins that consistently show half-life within arbi-
trarily predefined intervals. These groups of proteins were analyzed for their interactions
and functional enrichment using STRING v. 11.0, DAVID v. 6.7, and Revigo. Results
were filtered to keep only significant enriched terms with a minimum of 4 counts and
a p value < 0.001. The results in their full form are reported in Table S6 and graphically
displayed in Figure S1. A concise summary of this analysis is also presented in Table 4,
which reports the considered half-life intervals, the number of proteins falling in each
interval, and their functional characterization.

According to this analysis, the most stable proteins (with T1/2 > 80 h) are those in-
volved in energy metabolism, cellular respiration, chromatin organization, and DNA pack-
aging, while the proteins characterized by a higher turnover (i.e., those with T1/2 < 30 h)
are mainly secreted proteins such as collagens and proteins involved in extracellular ma-
trix organization.

A similar analysis was also performed using the protein abundance calculated from the
overall protein expression data. The range was divided into arbitrarily pre-defined intervals
to cluster proteins with similar abundance. Since only a limited number of proteins show
a significantly different abundance between diabetic controls and nephropathic subjects
(Table 3), we decided to average the values of all subjects, keeping only the proteins for
which an estimate could be obtained for at least 2 out of 10 patients. Figure 6 shows that



Int. J. Mol. Sci. 2023, 24, 2811 10 of 30

our estimation of protein expression data for 1801 proteins spans four orders of magnitude.

Table 4. Gene Ontology annotation of proteins grouped according to their average half-life. Proteins
are grouped in 9 arbitrary ranges of half-life, and the most enriched and significant GO terms
(Biological Process, Cellular Component, Molecular Function, and KEGG pathways) are listed for
each group.

T1/2 Range (h) # of Proteins Biological Processes Cellular Components Molecular Functions KEGG Pathways

<20 64

Extracellular matrix
organization; collagen

metabolism; cell adhesion
and motility

Extracellular matrix;
vesicle; collagen trimer

Extracellular matrix
structural constituent;

Receptor binding;
Protein binding

ECM-receptor
interaction;

Focal adhesion

20–30 82
Small GTPase mediated

signal transduction; mRNA
splicing; localization

Cytoplasm;
Spliceosomal complex

RNA binding;
GTPase activity

30–40 157
Intracellular transport;

Translation; RNA
splicing; localization

Spliceosomal complex;
Nuclear part;

Cytoplasmic part;
Ribonucleoprotein

complex; EIF3 and EIF4F

Protein binding; RNA
binding; Nucleotide
binding; Nucleoside-

triphosphatase activity

Spliceosome

40–50 193
Protein transport; Golgi
vesicle transport; RNA

splicing; Translation

Cytoplasm; Vesicle; Golgi;
Cytoskeleton; EIF3;
Ribonucleoprotein
complex; Plasma
membrane part

Protein binding;
Nucleotide binding;
RNA binding; actin

binding; GTPase
activity; Translation

initiation
factor activity

Endocytosis

50–60 227

Vesicle mediated transport;
Cell cycle progress;

Membrane and cytoskeleton
organization; Translation

elongation; Protein folding

Cytoplasm; Ribosome;
Cytoskeleton;

Endoplasmic reticulum;

Protein binding;
Nucleotide binding;

RNA binding;
GTPase activity;

Structural constituent
of ribosome

Aminoacyl-tRNA
biosynthesis;

Ribosome

60–70 272

RNA processing; Translation;
Protein metabolism;

Ribosome biogenesis; Protein
folding; Ras protein
signal transduction

Cytosol; Mitochondria;
Nuclear part; Ribosome;

Cytoskeleton;
Proteasome complex

Structural constituent
of ribosome; actin
and cytoskeletal

protein binding; RNA
binding; Protein

binding;
Threonine-type en-

dopeptidase activity.

Ribosome;
Proteasome

70–80 170

Carbohydrate and protein
metabolism;

Oxidation-reduction process;
Cellular respiration; Protein

folding; Translation
elongation;

Acetyl-CoA metabolism;

Cytoplasm;
Mitochondrion;
Cytoskeleton;

Endoplasmic reticulum
part; Proteasome

complex; Melanosome

Peroxiredoxin
activity;

Oxidoreductase
activity;

endopeptidase
activity; Isomerase

activity; Cytoskeletal
protein binding;

Coenzyme binding;

Glycolysis/
Gluconeogenesis;

Proteasome;
Pyruvate metabolism;

TCA cycle;

80–90 76

Carbohydrate metabolism;
Generation of energy;

Carboxylic acid, alcohol, and
ketone metabolism;

Cytoplasm;
Mitochondrion;

Catalytic activity;
Monosaccharide

binding;
Oxidoreductase

activity;
Isomerase activity

Glycolysis/
Gluconeogenesis

>90 97

Generation of energy;
Oxidative phosphorylation;
Carboxylic acid, and ketone

metabolism; Chromatin
organization and
DNA packaging

Cytoplasm; ATP synthase
complex; Mitochondrion;

Nucleosome; Nuclear
membrane;

Protein-DNA complex
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Figure 6. Distribution of protein abundances. The average protein abundance estimated for the entire
protein set is shown in a logarithmic scale (Arbitrary Units) and spans 4 orders of magnitude.

This range was divided into 8 intervals, and proteins clustered in each interval were
analyzed for their interactions and functional enrichment using STRING v. 11.0, DAVID
v. 6.7, and Revigo. Results were filtered to keep only significant enriched terms with a
minimum of 4 counts and a p value < 0.001. The complete results are reported in Table S7
and graphically displayed in Figure S2. A summary of this analysis is reported in Table 5,
where Log2 abundance intervals, the number of proteins falling in each interval, and their
functional characterization are listed.

Table 5. Gene Ontology annotation of proteins grouped according to their average abundance.
Proteins are grouped in 8 arbitrary ranges of abundance (expressed as Log2 of arbitrary units), and
the most enriched and significant GO terms (Biological Process, Cellular Component, Molecular
Function, and KEGG pathways) are listed for each group.

Relative
Abundance
(Log2 A.U.)

# of Proteins Biological
Processes

Cellular
Component

Molecular
Function

KEGG
Pathways

>9.0 202

Translation elongation;
Protein folding; DNA

packaging;
Cytoskeleton

organization; Cell
redox homeostasis,
Glycolytic process

Cytosol; Nucleus;
Protein-DNA

complex;
Cytoskeleton;
Vesicle; Large

ribosomal subunit

RNA binding;
Structural

constituent of
ribosome; GTP

binding; Protein
binding;

Cytoskeletal and
actin binding

Ribosome; Systemic
lupus

erythematosus;
Pathogenic
Escherichia

coli infection

8.0–9.0 224

Translational
elongation; RNA

splicing; Cytoskeleton
organization; Protein

transport; Small
GTPase mediated

signal transduction;
Generation of

precursor metabolites
and energy

Cytoplasm; Actin
cytoskeleton; Small
ribosomal subunit;

Spliceosomal
complex; Vesicle

Protein binding;
GTP binding; RNA

binding;
Cytoskeletal

protein and actin
binding; Structural

constituent of
ribosome;

Hydrogen ion
transmembrane

transporter activity

Ribosome;
Spliceosome;

Parkinson’s disease
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Table 5. Cont.

Relative
Abundance
(Log2 A.U.)

# of Proteins Biological
Processes

Cellular
Component

Molecular
Function

KEGG
Pathways

7.5–8.0 180

Intracellular transport;
Vesicle mediated

transport; Localization;
Vesicle and membrane

organization; Small
GTPase mediated

signal transduction

Cytoplasm; Vesicle;
Endoplasmic

reticulum;
Cytoskeleton;

Arp2/3 protein
complex;

Proteasome core
complex;

Ribonucleopro-
tein complex

Protein binding;
Actin binding;

RNA binding; GTP
binding; GTPase

activity;
Threonine-type

peptidase activity

Proteasome;
Pathogenic
Escherichia

coli infection

7.0–7.5 220

Intracellular transport;
RNA processing and
splicing; Translation;

Membrane
organization; Protein

folding; Energy
derivation by
oxidation of

organic compounds

Cytosol;
Endoplasmic

reticulum; Vesicles;
Endomembrane

system;
Spliceosomal

complex;
EIF3 complex

Protein binding;
RNA binding;

Translation
initiation

factory activity;

6.5–7.0 283

Nucleotide
Metabolism;
Heterocycle

metabolism; Protein
metabolism; Protein

folding; RNA splicing;
Redox processes;

Cellular respiration;
Response to

oxidative stress

Cytoplasm;
Intracellular

organelle part;
Macromolecu-

lar complex

RNA binding;
Nucleotide

binding; NADH
dehydrogenase

activity;
Oxidoreductase
activity; Protein

binding;
Cofactor binding

Aminoacyl-tRNA
biosynthesis;
Proteasome;
Oxidative

phosphorylation;
Huntington’s

disease; Amino
sugar and nucleotide

sugar metabolism;
Alzheimer’s disease

6.0–6.5 261

Protein transport;
Protein metabolism;

Carboxylic acid
metabolism; Amine
metabolism; Mitotic

cell cycle; regulation of
ligase activity

Cytoplasm;
Mitochondrion;

Proteasome
complex;

Ribonucleoprotein
complex;
Organelle
membrane

Protein binding;
RNA binding;

Nucleotide
binding;

Cytoskeletal
proteins and actin

binding;
Translation
initiation

factor activity

Proteasome

5.0–6.0 298

Acetyl-CoA
metabolism;
Heterocycle
metabolism;
Nucleotide

biosynthesis;
carboxylic acid

metabolism; Cellular
respiration;

Protein transport

Cytoplasm;
Mitochondrion;
Golgi apparatus
part; Envelope

Catalytic activity;
Hydrolase activity;

Protein binding;
Purine nucleotide

binding; Pyrophos-
phatase activity

TCA cycle
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Table 5. Cont.

Relative
Abundance
(Log2 A.U.)

# of Proteins Biological
Processes

Cellular
Component

Molecular
Function

KEGG
Pathways

<5.0 135

mRNA transport;
Protein transport;

Cellular localization;
Oxidation-reduction

process

Cytoplasm;
Nuclear

part; Envelope

Purine nucleotide
binding; Catalytic
activity; Electron

carrier activity

Valine, leucine, and
isoleucine

degradation

In general, when plotting average protein abundance vs. average protein turnover rate
k (Figure 7, left upper and lower panels) or, alternatively, average relative protein abundance
vs. average protein half-life (Figure 7, right upper and lower panels), several clusters of
proteins can be easily identified. Based on pre-defined intervals, similar to those used in
the preview analyses, it is possible to distinguish four main groups of proteins: (1) proteins
with low turnover rate (long half-life) and high abundance (in red in Figure 7); (2) proteins
with high turnover rate (short half-life) and high abundance (in blue); (3) proteins with
high turnover rate (short half-life) and low abundance (in green); and finally (4) proteins
with low turnover rate (long half-life) and low abundance (in pink).

Figure 7. Distribution of turnover rates as a function of protein abundance. Left panels show the
turnover rate constant k as a function of protein abundance, while right panels show the protein
half-life as a function of protein abundance. Zoomed data are on display in the lower panels. Proteins
characterized by a low turnover rate and high abundance are depicted in red, proteins with a high
turnover rate and high abundance in blue, proteins with a high turnover rate and low abundance in
green, and proteins with a low turnover rate and low abundance in pink.
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The proteins belonging to each of these groups were analyzed with STRING to high-
light possible interactions and functional enrichment. The results, graphically displayed in
Figure S3 and detailed in Table S8, show that the first group is particularly enriched for
cytoskeletal proteins, proteins involved in chromatin organization, and proteins related
to energy production. The second group involves mainly proteins related to extracellular
matrix organization, cellular response to stress, metabolism of mRNA, and vesicle mediated
transport. The third group is enriched for secreted proteins and proteins involved in RNA
splicing, membrane trafficking, and the cell cycle. Finally, to the fourth group belong
mainly proteins involved in the metabolism of proteins, hydrocarbons, and lipids.

3. Discussion

In this work, we quantified protein turnover using in vitro cultured fibroblast cells
harvested from ten diabetic subjects, five of whom had nephropathy.

We performed a dynamic SILAC experiment on the cultured fibroblasts that had
reached confluence. At time T = 0, the regular culture medium was replaced with a
medium containing the heavy amino acid 13C6 Lysine, and cells were sampled at 4, 7.5, and
24 h (Figure 1). During the entire duration of the experiment, cells were regularly checked,
and no significant changes in their number or morphology could be detected (Table 1).
Cells were lysed, proteins were subjected to SDS-PAGE to reduce sample complexity, and
in-gel digestion was performed with the protease LysC. The choice of using only labeled
lysine and not also labeled arginine, as it is usually done in SILAC experiments, was made
to avoid any problem that could arise from the possible arginine-to-proline metabolic
conversion [29–31] and that could therefore affect the estimate of turnover rate. The use of
LysC as a digesting enzyme yields a lower number of protein identifications with respect to
the classical digestion with trypsin, since less and larger peptides are generated. However,
we preferred to acquire more robust data at the expense of a smaller dataset. In total, we
performed 300 nLC-MS/MS analyses. SILAC H/L ratios at different times were used to
estimate the turnover parameter k by using weighted least squares (as detailed in Section 4).
The CV of the parameter estimate, used to assess the goodness of fit, was lower than
15% in the vast majority of cases, thus confirming that the adopted model is adequate to
describe the data (Figure 3). With this strategy, we were able to confidently estimate the
turnover parameter k (and therefore the half-life) for 1642 different proteins, generating a
high-quality dataset of protein turnover rate from human fibroblasts isolated from type 1
diabetic patients (Table S2).

3.1. Proteins with a Significantly Different Turnover in Nephropathic Subjects

On the 974 proteins for which k was estimated in at least two subjects for each group,
we could perform a t-test to highlight proteins with a significant (p ≤ 0.05) different turnover
rate between diabetic and nephropathic subjects. Only the 20 proteins listed in Table 2
turned out to have half-lives different in the two groups. By looking at the reported data, it
is evident that all proteins except one (namely TOP2B) are characterized by longer half-lives
in nephropathic subjects with respect to the diabetic controls. A screening of the literature
reveals that almost all proteins listed in Table 2 have been reported to be implicated in
nephropathy, often of diabetic origin.

3.1.1. Mesangial Proteins

The Rab family of small G proteins plays important roles in mediating vesicular
membrane trafficking in eukaryotic cells [32,33], and more than 60 mammalian Rab proteins
have been identified and characterized.
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Rab13 and its effector protein, JRAB/MICAL-L2, are involved in the transport of the
cell adhesion molecules occludin and claudins to the tight junctional area in epithelial
cells [34,35]. Rab13 was identified in a gene expression profiling study to be altered in a
population of macrophages from nephritic NZB/W mice [36].

Knocking-down or overexpressing Rab23 affected the expression of collagen in cul-
tured mesangial cells, thus suggesting that Rab23 may be overexpressed in FSGS mice to
suppress hedgehog signaling and/or influence collagen synthesis [37]. A proteomic study
conducted on mesangial cells points to the possible involvement of Rab23 in a variety of
cellular events, such as gene expression, signaling, protein synthesis, organ and tissue
morphology, cellular movement, and contraction function [38].

3.1.2. Chaperone and Cytoskeleton Proteins

In this study, we identified TCP1 and CCT8 as proteins with an altered turnover rate
in nephropathic subjects. The chaperonin-containing T-complex (TRiC/CCT complex) is
a chaperone machinery that assists the folding of dozens of proteins, in particular those
that appear to be slow-folding and aggregation-prone [39]. However, this complex has
been known for a long time to fold actin and tubulin [40–42] and evidence suggests that
disruptions of actin dynamics result in altered cytoskeletal organization [43]. Interestingly,
TRiC/CCT was also identified in our Gene Set Enrichment Analysis as one of the major
Reactome Pathways to be affected in our model of diabetic nephropathy (Table S4). It has
been reported that the beta subunit of the complex may play a central role in mesangial cell
hypo-contractility in diabetic nephropathy [44], while both CCT2 and CCT8 were found
to be significantly altered in exosomes derived from primary human proximal tubular
epithelial cells (PTEC) under diseased conditions [45].

Actin and tubulin are the major components of the cytoskeletal structure. A disassem-
bly of the actin cytoskeleton and marked alterations of beta tubulin, a major component
of microtubules, represent prominent features of DN [46,47]. Modifications of chaperone-
like proteins have been previously detected in cultured fibroblasts from T1DM subjects
with nephropathy, and they may be patho-physiologically related to the development
of diabetic renal disease [20,48]. Changes in the cytoskeleton are key alterations in the
pathophysiology of DN: substantial differences in cytoskeletal and cytoskeleton-related
protein expression were found between normal subjects and T1DM patients with DN but
not with T1DM patients without DN [20], suggesting that nephropathy, and not diabetes
per se, was associated with the observed changes.

3.1.3. Proteins Associated to Hydrogen Sulfide (H2S) Metabolism

Just like other gaseous compounds, such as nitric oxide (NO) and carbon monoxide
(CO), H2S is known to act as a signaling molecule [49,50] and modulate a vast array of
biological functions [51]. The conversion of hydrogen sulfide to thiosulfate and sulfane is
catalyzed by the mitochondrial protein sulfide quinone oxidoreductase (SQRDL or SQOR)
with the help of a quinone, usually ubiquinone [52].

Ubiquinone (also known as Coenzyme Q10 or CoQ10) is involved in several processes
(primarily the electron transport chain) and functions as a cofactor for several enzymes,
among them the SQRDL protein. CoQ10 deficiency is the cause of several human diseases,
and mutations in the COQ8B gene result mainly in the disruption of kidney function,
causing a steroid-resistant nephrotic syndrome [53]. Interestingly, H2S oxidation impair-
ment causes CoQ10 associated nephrotic syndrome, a chronic kidney disease related to
CoQ10 deficiency, and it has been shown that reduced SQOR levels lead to increased
ROS production, thus contributing to oxidative stress in conditions of CoQ deficiency [54].
Our data show a strong increase in SQOR half-life in nephropathic subjects (123.6 h) with
respect to the diabetic controls (74.6 h); however, the physiological significance of such
a finding is difficult to grasp. On one hand, it may indicate a reduced enzyme efficiency
and a higher oxidative stress. On the other hand, longer enzyme survival could instead
determine a decrease in the H2S levels and a reduced oxidative stress. Therefore, the
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increased half-life of this enzyme in the cultured fibroblasts from T1DM subjects with
nephropathy could be interpreted as an attempt to activate a protective mechanism through
a reduction of oxidative stress, inflammation, mesangial cell proliferation, and an inhibition
of the renin-angiotensin system activity [55–57].

3.1.4. Proteins Involved in Translation and Kidney Hypertrophy

Kidney hypertrophy and matrix accumulation are associated with the development of
long-term complications of diabetes [58], and translation has been reported to represent a
potential biomarker for the prognosis of kidney disease [59].

We identified three subunits of the eIF4F complex (EIF4A1, EIF4G1, and EIF4H) and
the PABPC1 protein, all of which had a turnover rate ≈20% greater in the nephropathic
than in control subjects (Table 2). EIF4A is an ATP-dependent RNA helicase with low
activity. However, the ATPase and helicase activities are strongly stimulated when EIF4A
is in complex with eIF4G, eIF4E, eIF4B, and eIF4H [60].

Interestingly, accumulating evidence has highlighted a central role for translation in
hypertrophy in models of diabetic nephropathy, both in vivo and in vitro [61,62]. More-
over, EIF4F has been reported to be a potential biomarker for membranous nephropathy
prognosis [63], and PABPC1 is listed among the proteins associated with kidney diseases
from the curated CTD Gene-Disease Associations dataset (http://ctdbase.org/detail.go?
type=disease&acc=MESH:D007674 accessed on 1 July 2022).

3.1.5. Other Proteins with Altered Turnover Rate

Glutathione S-transferase Mu 5 protein (GSTM5) exhibits an almost doubled half-life
in the nephropathic vs. the non-nephropathic T1DM subjects (Table 2). Little has been
reported in the literature regarding the possible association between this protein and the
development or progression of diabetic nephropathy, although other members of the same
protein family have been reported as putative biomarkers of diabetic nephropathy [64,65].

The half-life of Heterogeneous Nuclear Ribonucleoprotein F (HNRNPF) in nephro-
pathic subjects is about 30% greater than that in non-nephropathic subjects (Table 2). Very
interestingly, this protein is known to exert a protective role against oxidative stress and
to attenuate nephropathy progression in diabetic mice and possibly in human kidneys
via stimulation of Sirtuin-1 expression [66]. Therefore, the reduced turnover rate might
be explained as an attempt to mitigate and counteract the adverse effects of nephropa-
thy. Moreover, HNRNPF has been suggested to be a potential target for the treatment of
hypertension and kidney injury in diabetes [67,68].

The transferrin receptor (TFRC) also shows an increased half-life in nephropathic
subjects. An altered expression of TFRC has been detected on mesangial cells in IgA
nephropathy [69,70], and recently the TFRC gene was reported to be downregulated in
tubules of samples derived from patients affected by chronic kidney diseases [71].

Caprin-1 is an ubiquitous protein highly expressed in dividing cells [72]. The Caprin-1
gene has been found to be downregulated in B2R knockout (B2R−/−) mice, a mouse model
of diabetic nephropathy [73].

The Proliferation-associated protein 2G4 (PA2G4) and the topoisomerase DNA II beta
(TOP2B) genes were found to be downregulated in the obstructive nephropathy of PAI-1–
overexpressing mice [74]. PA2G4 was also evaluated as a potential biomarker in the serum
of type 1 diabetes patients [75].

The ATP-Citrate Lyase (ACLY), the enzyme that converts citrate to acetyl-CoA, shows
an increased half-life of about 25% in nephropathic subjects with respect to the diabetic
controls. Interestingly, very recently, ACLY has been reported as a critical epigenetic
regulator that promotes renal injury in obesity and type 2 diabetes [76,77], while other
researchers have used two independent mouse models of kidney fibrosis to demonstrate
that the AKT-dependent modulation of this enzyme is involved in kidney fibrogenesis and
ECM deposition [78].

http://ctdbase.org/detail.go?type=disease&acc=MESH:D007674
http://ctdbase.org/detail.go?type=disease&acc=MESH:D007674
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3.1.6. GSEA Reveals That Proteasomal Proteins Have Longer Half-Lives in
Nephropathic Subjects

Although only 20 proteins show a significant difference in protein turnover rate
between diabetic controls and nephropathic subjects, GSEA highlighted a number of
Reactome Pathways that are significantly different (FDR q-value < 0.05) in the two groups
of patients. In particular, the proteins belonging to the pathways, identified and reported
in Table S4, show an increased half-life in in all nephropathic subjects. A scrutiny of the
GSEA output highlights that a large part of the proteins that contribute to the significant
pathways belong to the proteasomal complex.

The ubiquitin proteasome system (UPS) plays a central role in the pathogenesis and
progression of various diseases, among which is diabetic nephropathy [79,80]. The UPS is
predominantly involved in protein homeostasis through the ubiquitination and proteaso-
mal degradation of proteins. However, ubiquitination is not only involved in proteasome
degradation, but also regulates the participation of substrate proteins in a variety of cell
signaling pathways [80]. Proteasome inhibition has been shown to attenuate diabetic
nephropathy [81] and have a protective effect against renal dysfunction [82,83]. Moreover,
the deletion of the proteasome activator genes, PA28α and PA28β, resulted in protection
against renal injury and retinal microvascular injury in diabetic mouse models [84]. Other
researchers reported that an increased level of ROS induced by hyperglycemia covalently
modifies the 20S proteasome subunits, thus decreasing its activity in the diabetic kid-
ney [85]. Moreover, proteasome inhibitors improve renal fibrosis in rats with obstructive
nephropathy [86], reduce collagen production, proliferation, and inflammation in nasal
fibroblasts [87], and seem to be effective for the treatment of nephropathy [88]. Therefore,
our data showing an increased half-life for a high number of proteasomal proteins in
nephropathic subjects corroborates data already reported in the literature and suggests that
the UPS could be a potential target for treatment of diabetic nephropathy.

3.2. Proteins with Different Abundance in Nephropathic Subjects

Our analysis led to the identification of 40 proteins with a significantly different
abundance in diabetic controls vs. nephropathic subjects (Table 3). Most of these proteins
were already reported as related to DN and are listed among the proteins associated
with kidney diseases in the CTD Gene-Disease Associations dataset. For example, the
GLI pathogenesis-related 2 has a fold change of -1.8 in our dataset; curiously, it has been
reported that GLIPR-2 is elevated in the kidneys of patients affected by DN [89] and that
miR-30e targeting GLIPR-2 is downregulated in DN, while its overexpression inhibits
GLIPR-2, thus protecting from renal fibrosis in DN [90]. The fact that we found the protein
to have a lower abundance in DN with respect to the diabetic controls seems, therefore, to
be in contrast with the previous observations. However, it is worth noting that GLIPR-2
was found to be elevated in nephropathic kidneys with respect to normal kidneys, while
we observed a reduction with respect to diabetic subjects.

We identified three members of the SLC25A family (the phosphate carrier SCL25A3,
and the adenine nucleotide translocators SLC25A5 and SLCA25A6), all of them with a
reduced abundance in nephropathic subjects. SCL25A3 was found to be differentially ex-
pressed in sclerosis-prone ROP-Os/+ and sclerosis resistant C57-Os/+ mouse kidneys [91],
and both SLC25A5 and SLCA25A6 genes are reported to be modulated in type 2 diabetic
patients with end-stage renal disease [92]. Interestingly, other 3 proteins (NDUFB10, SDHB
and COX4I1) known to be functionally related to the SLC25 complex were identified with
a lower abundance in nephropathic subjects, and with a fold change very similar to that
found in the SCL25 proteins. Moreover, other three proteins that function generally in
the processes of electron transport (NQO1, CYB5A, and QDPR) were also found to have
decreased abundance in DN patients. The quinoid dihydropteridine reductase (QDPR)
has been suggested to be an important modulator of diabetic nephropathy through the
regulation of the TGF-β1/Smad3 signaling pathway [93] and to play an important role as a
protective factor against oxidative stress [94], while NQO1 polymorphism has been recently
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associated with the risk of diabetic nephropathy [95]. Altogether, these data suggest a possi-
ble impairment of general electron transfer activity—in particular in the mitochondria—in
nephropathic subjects, in agreement with data reported in the literature [96,97].

Three members of the tubulin family (namely TUBB4A, TUBB4B, and TUBA1C) show
an increased abundance, in agreement with previous data that demonstrated that tubulins
are strongly modulated in nephropathic subjects [20]. Moreover, other cytoskeletal proteins
and cytoskeletal-regulating proteins with different abundances were identified in our study,
namely SYNE1, CAPNS1, MTPN, MYO1B, and RRAS. Microarray studies have highlighted
CAPNS1 as being modulated in membranous nephropathy [63] and in immunoglobulin A
nephropathy [98], while other studies have reported the importance of miR-375 (for which
myotrophin MTPN is a target) for glucose homeostasis and as a potential biomarker in
type 2 diabetes [99,100]. Finally, both SYNE1 and MYO1B have been described as related
to diabetic nephropathy before [101–103].

Although, to the best of our knowledge, not much is known about a possible role
of the DNA repair proteins, XRCC5 and XRCC6, in the context of diabetic nephropathy.
Recently an association between other members of the same protein family (XRCC1 and
XRCC3) and diabetic nephropathy has been suggested [104].

We also identified two proteasomal proteins (PSMA7 and PSMB2), with some other
functional related proteins (RPS3, RPS3A, and EEF1B2), all of them with a lower abundance
in nephropathic subjects. The role of proteasomal proteins in the context of nephropathy
was discussed above (paragraph 3.1.6). Interestingly, RPS3 was described to be associated
with diabetic nephropathy [92], while RPS3A was also reported to have an increased
expression in membranous nephropathic kidneys [105].

Galectin-3 (LGALS3) is upregulated under diabetic conditions, providing protection
toward tissue injury induced by advanced glycation end-products (AGEs) [106]. It has been
considered as a possible therapeutic target for prevention and treatment of diabetes and its
complications [107]. In our analysis, LGALS3 has a reduced abundance in nephropathic
subjects, suggesting a possible lack of a protective effect in this group of patients. On the
other hand, we found SerpinB2 to be more abundant in nephropathic subjects. Interestingly,
reduced levels of SerpinB2 have been associated with the delayed development of diabetic
nephropathy [108].

Other proteins found with an altered abundance in our study and known to be re-
lated to diabetic nephropathy are CTSD, FHL2, and Sec31A. This latter was associated
with DN [109] and is involved in the inhibition of nerve regeneration in diabetic neu-
ropathy [110]. CTSD expression was found to be altered in the renal tubular epithelium
in patients with DN [111], and very recently, a urinary proteomic study conducted on a
large cohort of type 1 diabetic subjects identified cathepsin D as a promising biomarker of
rapid eGFR (estimated glomerular filtration rate) decline, which reflects kidney injury [112].
FLH2, a protein implicated in Wnt/β-catenin signaling, plays a crucial role in albuminuria
and has been indicated as a potential therapeutic target against diabetic kidney damage and
fibrotic kidney disease [113,114]. Finally, we found a member of the MAPK family, namely
MAPK14, with a reduced abundance in nephropathic subjects with respect to diabetic con-
trols. In agreement with our data, the implication of MAPK signaling in the development
and progression of diabetic nephropathy has been amply documented [115,116].

3.3. Proteins with Similar Half-Life and Abundance Are Functionally Related

The data synthetically summarized in Table 4 and fully displayed in Table S6 and
Figure S1 highlight the notion that proteins with similar half-lives are also very often
functionally related. To perform this analysis, proteins were divided into 9 arbitrary groups
based on their estimated half-lives, and the enrichment of gene ontology terms was assessed
using the bioinformatic tools specified in Section 4. What emerges from this analysis did
not come entirely as a surprise, since our data reveal that the most stable proteins (i.e., those
with T1/2 > 70 h) are mainly mitochondrial, nuclear, and cytoskeletal proteins involved in
energy metabolism, cellular respiration, structural functions, protein folding, translation,
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chromatin organization, and DNA packaging. All these basic and very important biological
functions rely on proteins that are also characterized by a medium-to-high abundance
(Tables 5 and S7 and Figure S2), and therefore their rapid turnover would require a very
high energy consumption. In other words, the cell invests lots of energy in the synthesis of
these proteins, and therefore their half-lives are conveniently long. On the other hand, if
cells need to modulate the abundance of these proteins (either increasing or decreasing it)
the adjustment to the new conditions cannot be obtained in a short time, therefore requiring
a longer adaptation.

Proteins characterized by shorter half-lives (between 60 and 70 h) are mainly ribosomal
and proteasomal, proteins related to RNA metabolism and to Ras signal transduction.
Half-lives in the range 50–60 h are typical of proteins related to cell cycle, vesicle mediated
transport, and actin cytoskeletal organization, while in the range 30–50 h fall predominantly
proteins involved in mRNA processing, in small GTPase mediated signal transduction
and Golgi vesicle transport. Finally, it was not completely surprising to identify mainly
secreted proteins and proteins involved in extracellular matrix organization among those
characterized by a higher turnover rate (i.e., those with T1/2 < 30 h). Indeed, for the
category of secreted proteins, our estimated half-life is given by the contribution of two
different processes: the turnover rate and the rate of secretion. Since we only measured
intracellular proteins, we cannot distinguish between these two processes, although the
particularly short half-life of these proteins suggests that the rate of secretion is probably
much faster than the intracellular turnover rate. Regarding this aspect, it is interesting
to note that collagens have estimated half-lives that are generally shorter (although not
statistically significant) in nephropathic subjects with respect to diabetic controls. This
might reflect the notion that nephropathic conditions are characterized by increased matrix
accumulation [58].

To further confirm, as already reported by others [13,117], that proteins involved
in common biological processes tend to have similar turnover rates, we compared the
half-lives of a number of proteins that are subunits of specific, well-characterized macro-
molecular complexes. Some examples of this analysis are reported in Figure 8, where the
half-lives of proteasomal alpha subunits, subunits of the coatomer and of the chaperone
protein TCP1 complex, and ribosomal subunits of the 40S complex are shown.

Figure 8. Half-lives of proteins belonging to selected macromolecular complexes. The graphs show
the estimated half-lives for proteins that are part of specific, well-characterized macromolecular
complexes. Error bars indicate standard errors.

It is evident that proteins belonging to the same functional complex have very similar
estimated half-lives, with the remarkable exception of proteins RPS27A and RPS27 of
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the 40S ribosomal complex, which show a much faster turnover rate as compared to
almost all the other subunits. Interestingly, the RPS27A gene codes for a single copy of
ubiquitin fused to the ribosomal protein S27a; therefore, it is post-translationally regulated,
and its turnover rate might therefore be strongly influenced by this process. RPS27 is a
ribosomal protein with extra-ribosomal functions: it has been reported as involved in DNA
repair, transcription, and signal transduction [118,119], and for these unique features, it
is conceivable that its turnover rate is regulated independently of the other ribosomal
subunits. To rule out the possibility that the constant trend visible in Figure 8 might be due
to a fortunate coincidence, we compared the distribution of half-lives of the subunits of
each complex with the distribution of 10 populations randomly generated starting from the
same dataset and using the same number of proteins. The selection of the populations was
performed automatically using the “Random” function of Excel. As shown in Figure 9, it is
evident that in all cases the pattern relative to the randomly selected proteins is much more
scattered compared to the behavior of the proteins belonging to some complex, indicating
that the similar turnover rate estimated for subunits belonging to the same complex reflects
a true cellular regulation.

Figure 9. Box plots showing the distribution of half-lives for proteins belonging to the macromolecular
complexes indicated in Figure 8, compared to the distribution of half-lives relative to 10 randomly
selected populations of proteins generated automatically from the same dataset.

Similarly to what we did for the categorization of proteins with comparable turnover
rate, we decided to group proteins based on their relative protein abundance. To this
purpose, the abundance range was divided in arbitrarily pre-defined intervals, and GO-
enriched terms were assessed for each cluster. Table 5 summarizes the results of this analysis
(for more detailed results, see Table S6 and Figure S2), which show that the most abundant
proteins are those related to DNA packaging, cytoskeletal organization, translation, RNA
metabolism, and energy production. Protein folding and vesicle-mediated transport are
mainly associated with proteins with an average medium/high abundance, while terms
related to nucleotide metabolism, RNA splicing, cellular respiration, and the cell cycle are
particularly enriched among proteins with a medium/low abundance. Finally, proteins
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characterized by low abundance are mainly related to the TCA cycle, mRNA and protein
transport, nucleotide biosynthesis, and redox processes.

When protein half-lives are plotted as a function of abundance (Figure 7), some
particularly interesting clusters of proteins emerge. Not surprisingly, proteins with both
a long half-life and high abundance (in red in Figure 7) belong mainly to the category
of structural proteins and proteins related to very basic and important cellular functions
such as chromatin organization and energy production. Proteins with a short half-life
and high abundance (in blue in Figure 7) require a particularly high energy consumption
to be maintained and are mainly involved in extracellular matrix organization, cellular
response to stress, metabolism of mRNA, and vesicle-mediated transport. Note that, as
discussed above, extracellular matrix proteins are probably in this category (i.e., short
half-life) only because we cannot distinguish between turnover rate and secretion rate.
Beside proteins that are secreted, proteins with a short half-life and low abundance (in
green in Figure 7) are mainly involved in RNA splicing, membrane trafficking, and the cell
cycle. It is worth noting that the concentration of these proteins can be rapidly increased in
case of need by simply limiting their degradation rate, leading to their fast accumulation.
Finally, proteins with a long half-life and low abundance (in pink in Figure 7) are involved
in the metabolism of proteins, hydrocarbons, and lipids. The cell does not require many
copies of these proteins, but nevertheless they are involved in basic cellular functions and
appear, therefore, particularly stable.

We must finally highlight that it is difficult to compare our results with similar data
previously published by other research groups. For instance, when comparing the average
protein half-lives obtained in this study across 10 subjects with those reported in the
seminal work of Schwanhausser et al. on a single sample [9], it appears that the half-life
that we estimate tends to be consistently lower, although the order of magnitude is pretty
similar. These differences can be attributed to several reasons. First of all, we used patient-
derived primary fibroblasts, whereas murine fibroblasts were used in [9], and moreover, we
considered cells at confluence, whereas in Schwanhausser et al., the total protein abundance
is assumed to double during the duration of one cell cycle. Another important difference is
that the last time-point measured in our experiment is 24 h vs. 13.5 h in Schwanhausser
et al. Given that the ratio r of proteins labeled with heavy and light amino acids increases
slowly for high half-life proteins, having late time points in the experimental set-up should
guarantee a better estimate of k for these kinds of proteins. Finally, while in Schwanhausser
et al., a simple least square estimation is used, here a weighted least square estimate of
parameter k was adopted.

A more reasonable comparison can be made with the data reported by Welle et al. [120],
where protein turnover rate is estimated in immortalized human fibroblasts. Although
both the analytical approach (classical dynamic-SILAC vs. a hyperplexing strategy) and
the cellular model (patient-derived primary fibroblasts vs. immortalized fibroblasts) are
not identical, the half-lives we estimated appear to be in good agreement with the data they
have published (same average value of k and a correlation coefficient > 0.6), thus further
supporting the reliability of our dataset.

4. Materials and Methods
4.1. Patients’ Selection and Enrolment

We sought to quantify protein turnover in unperturbed fibroblast cells in a popu-
lation of 10 diabetic subjects, five of whom had nephropathy. Five Caucasian T1DM
patients with DN (i.e., with a urinary albumin excretion rate (AER) > 200 mg/min in sterile
urine, not associated with other proteinuric diseases) and five T1DM patients without DN
(AER < 20 mg/min) were recruited. The aims of the study were explained in detail, and
each subject gave informed consent to the study. The protocol had been approved by the
Ethical Committee of the Medical Faculty at the University of Padova and was performed
according to the Helsinki Declaration (1983 revision).
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The patients’ characteristics are reported in detail elsewhere [20]. Age (means: 36–39 yrs),
male/female ratio (2/3), body mass index (BMI) (means: 22–24 kg/m2), diabetes duration
(≈20 yrs), and glycated hemoglobin levels (means: 9–11%) were not different between the
two groups of diabetic subjects. Their albumin excretion rate (AER) was determined on
three timed overnight urine collections, by a turbidimetric method (Turbiquant Albumin,
Dade Behring, Marburg, Germany), and the median value was used for DN classification.
The mean blood pressure was calculated as diastolic blood pressure plus one-third systolic
(i.e., pulse) pressure. All drugs were suspended the day before the study.

4.2. Cell Collection and Culture

The fibroblasts were obtained by skin biopsies as described in detail elsewhere [25].
The skin explants were incubated at 37 ◦C after addition of HAM’S F-10 Nutrient Mixture
medium (Sigma Aldrich, St. Louis, MO, USA) supplemented with 20% foetal bovine
serum (FBS Sigma Aldrich), 1 mM glutamine, (Sigma Aldrich), 100 U/mL penicillin
and 100 µg/mL streptomycin (Sigma Aldrich). The growth medium was changed ev-
ery 3–4 days. Usually, the fibroblasts became visible after 4–5 days of culture, and they
reached the confluence after about 3 weeks. Thereafter, the culture medium was aspirated,
and cells were washed three times with PBS. The fibroblasts were recovered by adding
0.05% trypsin and 0.02% EDTA (Sigma-Aldrich), transferred into 75 cm2 flasks and cultured
with the culture medium containing 10% FBS. After the third passage, cells were frozen and
kept in liquid nitrogen. Before each experiment, the fibroblasts were thawed and grown up
to the 4th–5th passage.

4.3. Dynamic-SILAC Experiment, Sample Preparation and In-Gel Protein Digestion

For the dynamic SILAC experiment a custom-made Dulbecco’s Modified Eagles
Medium (DMEM) without L-arginine, L-lysine, and L-glutamine (Athena Enzyme systems,
Baltimore, MD, USA) was used after adding L-arginine, L-glutamine, and L-lysine (Sigma)
or 13C6-Lysine (Cambridge Isotope Laboratories, Tewksbury, MA, USA), and 10% dialyzed
foetal bovine serum (FBS, Invitrogen, Paisley, UK). To determine protein half-lives, a
dynamic-SILAC approach was used. The fibroblasts were cultured in standard, light (L)
DMEM medium until they reached confluence. Thereafter, the standard medium was
removed, the cells were washed three times with 10 mL of phosphate-saline buffer (PBS,
pH = 7.4, Sigma Aldrich), and the heavy medium (containing the13C6-Lysine) was added
to the culture at time T = 0.

Cells were harvested at 4, 7.5, and 24 h, lysed by the addition of 70 µL of Tris-HCl
62.5 mM, pH 7.2, 1% SDS, and protease inhibitors (Protease Inhibitor Cocktails, Sigma
Aldrich), and by repeated freeze-thaw cycles in liquid nitrogen. The samples were then
centrifuged at 14,000 rpm for 15 min to remove cell debris, and the protein concentration in
the supernatant was quantified by the Lowry method. Thereafter, 70 µg of total proteins
for each time point and for each subject were loaded onto a 12% precast gel (NuPAGE,
Invitrogen). The electrophoretic separation was performed by applying a constant voltage
of 80 V for 30 min. Gel was then stained for 3 h with colloidal coomassie (SimplyBlue Safe
Stain, Invitrogen) and then destained with water. Each gel lane was cut into five bands that
were then subjected to in-gel enzymatic digestion with LysC protease (Promega, Madison,
WI, USA) as described in [121].

4.4. LC-MS/MS Analysis

Each of the fractions obtained as specified above was analyzed by LC-MS/MS. Data
were submitted for database search and quantification of SILAC H/L ratios. The analysis
was conducted with a LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific)
interfaced to a nano-HPLC Ultimate 3000 (Dionex—Thermo Fisher Scientific, Waltham,
MA, USA). Samples were loaded into a 10 cm pico-frit capillary column (75 µm I.D., 15 µm
tip, New Objective, Littleton, MA, USA) packed in-house with C18 material (Aeris peptide
3.6 um XB-C18, Phenomenex, Torrance, CA, USA), and peptides were separated by a linear



Int. J. Mol. Sci. 2023, 24, 2811 23 of 30

gradient from 3% to 40% acetonitrile/0.1% formic acid in 40 min. The instrument operated
in a Top4 data-dependent mode, with a full MS scan from 300 to 1700 Da acquired at high
resolution (60,000) in the Orbitrap, followed by 4 MS/MS spectra of the most intense ions
acquired in the linear trap.

To increase the number of identifications and robustness of quantification, each sample
was analyzed twice. After the first round of analysis, all data files were searched against the
human section of the Uniprot database (as specified below). All peptides that were identi-
fied with high confidence were used to create a static exclusion list that was then inserted
into the instrument method. All samples were analyzed again under identical chromato-
graphic and instrumental conditions, but with the application of the static exclusion list.
The second round of analysis allows for an increase in the number of protein groups and
unique peptides confidently identified, thus increasing the robustness of quantification. A
series of representative Venn diagrams showing the performance of this analytical strategy
are reported in Figure S4. In total, 300 LC-MS/MS analyses were performed (2 analyses for
each of the five gel bands, for the three time points, and for the 10 patients).

4.5. Protein Identification and Quantification

All raw files generated in the study were analyzed with the software Proteome Dis-
coverer (version 1.2, Thermo Fisher Scientific) interfaced to a Mascot server (version 2.2.4,
Matrix Science, Chicago, IL, USA). The search was performed against the human section
of the Uniprot Database (www.uniprot.org, accessed on 1 April 2013) using the MudPIT
protocol. LysC was selected as the digesting enzyme, with up to one missed cleavage
allowed. Precursor and fragment tolerances were set at 10 ppm and 0.6 Da, respectively.
Carbamidomethyl cysteine was selected as a static modification, while methionine oxida-
tion and 13C6-lysine were set as variable modifications. Data were filtered based on the
search against a corresponding randomized database, and the false discovery rate (FDR)
was calculated by the software. Only proteins identified with at least 2 unique peptides
with high confidence (>99%) were considered positive hits. SILAC ratios were calculated by
the software for each identified peptide, and peptides were grouped into protein families
according to the principle of maximum parsimony. Protein quantification was calculated as
the median value of the quantification of all peptides belonging to the same protein family.
For each cell line, all the data obtained from the five gel bands, both with and without the
application of the excluding list, were merged into a single msf output file. Msf files relative
to the three time points for each cell line were finally merged into a single multi-report file.

4.6. Kinetic Analyses

As derived in the following equations, for constant incorporation rates, the logarithm
of the SILAC H/L ratios increases linearly with time; therefore, protein half-lives can be
obtained by properly fitting H/L rations measured at different time points. Five biological
replicates were available for each group to assess statistical significance.

Proteins labeled with light amino acids (PL) are assumed to decay exponentially with
the degradation rate constant k (Equation (2)).

PL = PTOT ·e−kt (2)

Our experiment is conducted with cells at confluence and at constant volume. Under
the hypothesis of steady state, i.e., PTOT, k and protein synthesis constant in time, no amino
acid recycling, and assuming a mono-compartmental model, the protein labelled with
heavy amino acids (PH) can be expressed as the difference between the total number of a
specific protein (PTOT) and PL as in Equation (3).

PH = PTOT − PL = PTOT ·
(

1 − e−kt
)

(3)

www.uniprot.org
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The rate constant of the protein decay k can then be obtained by fitting the model
of the ratio r of protein labeled with heavy and light amino acids at different time points
(Equation (4)).

r =
PH
PL

=
1 − e−kt

e−kt (4)

By taking the natural logarithm (ln), Equation (4) can be transformed into:

ln(r + 1) = kt (5)

Proteins whose SILAC ratio was not available for the time of 24 h, and for at least
one of the other time points (4 or 7.5 h), were filtered out. For the remaining proteins, the
parameter k was identified by fitting the H/L ratio r data according to Equation (5), using
the weighted least square method. Weights were calculated as the inverse of the variance
of ln(r + 1) data, starting from Equation (1) and using the error propagation rules.

Equation (1) is a model of the technical variability of r derived from peptide measure-
ments, using these latter as replicate protein measurements. In more detail, the standard
deviation (SD) and the coefficient of variation (CV) of the H/L ratio r were calculated for
each protein, for each subject, and for each time point. Measurements with CV% higher
than 50% were excluded from downstream analysis. The range of r values were then
divided into intervals of the same bin size (0.05) or containing at least 10 protein measure-
ments, and, for each interval, the median of the SDs and the CVs was considered to fit a
model of technical variability.

The goodness of fit was evaluated using the precision of parameter k estimates; pa-
rameters with coefficients of variation higher than 50% were considered unreliable.

Once k is determined, the protein half-life, i.e., the time required for the amount of the
protein to fall to half its initial value if the synthesis is zero, can be calculated as:

T1/2 =
ln(2)

k
(6)

4.7. Protein Abundance

In parallel, we quantified the relative protein abundance using the sum of peak
intensities of all peptides matching a specific protein divided by the number of observed
peptides for that protein and by the total sum of peaks in each LC-MS/MS run [9]. Under
the hypothesis of steady state, protein abundance levels were averaged across the three
time points.

4.8. Bioinformatic and Statistical Analysis

A number of bioinformatic tools were used to assess whether proteins characterized
by similar half-lives or abundance tend to share interacting partners and be associated
with similar Gene Ontology (GO) terms. For this purpose, our datasets were analyzed
with STRING v. 11.0 [122] to highlight physical/functional interactions among proteins
and with David Bioinformatic Resources v. 6.7 [123,124] and Revigo [125] to underline and
graphically visualize enriched GO terms associated with the different classes of proteins.

Gene set enrichment analysis (GSEA) was also performed on our data using MSigDB
Canonical pathways gene set collection [126]. The GSEA was used to determine whether
the members of a given gene set were associated with a group. If a gene set had a positive
enrichment score, a significant number of its gene members had higher expression in
one of the predefined groups, and the gene set was termed “enriched”. A 1000 random
sample permutations were carried out, and the significance threshold was set at FDR < 0.05.
All comparisons between groups were performed using the two-tailed Student t-test for
unpaired data.
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5. Conclusions

In this manuscript, we describe the application of a dynamic-SILAC approach to
study the turnover rate and the relative abundance of proteins using a cellular model
of diabetic nephropathy. Under the hypothesis of steady state, no amino acid recycling,
and assuming a mono-compartmental model, we adopted a model describing the SD as
a function of heavy to light ratio and estimated the parameter k using the least square
method weighted accordingly to the model of technical variability. We could reliably
estimate the turnover rate for more than 1600 proteins and the relative abundance for more
than 2200 individual proteins. Several of these turned out to be significantly different in
either half-life or abundance between nephropathic subjects and diabetic controls. Many of
these proteins were already known to be related to diabetic complications and therefore
represent possible biomarkers or therapeutic targets. However, beside the aspects strictly
related to the pathological condition, the data collected in this study represent a reliable
compendium of protein half-lives in human fibroblasts and a rich source of important
information related to basic cell biology.
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