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Abstract: The characterization and evaluation of skin tissue structures are crucial for dermatological
applications. Recently, Mueller matrix polarimetry and second harmonic generation microscopy
have been widely used in skin tissue imaging due to their unique advantages. However, the
features of layered skin tissue structures are too complicated to use a single imaging modality
for achieving a comprehensive evaluation. In this study, we propose a dual-modality imaging
method combining Mueller matrix polarimetry and second harmonic generation microscopy for
quantitative characterization of skin tissue structures. It is demonstrated that the dual-modality
method can well divide the mouse tail skin tissue specimens’ images into three layers of stratum
corneum, epidermis, and dermis. Then, to quantitatively analyze the structural features of different
skin layers, the gray level co-occurrence matrix is adopted to provide various evaluating parameters
after the image segmentations. Finally, to quantitatively measure the structural differences between
damaged and normal skin areas, an index named Q-Health is defined based on cosine similarity
and the gray-level co-occurrence matrix parameters of imaging results. The experiments confirm the
effectiveness of the dual-modality imaging parameters for skin tissue structure discrimination and
assessment. It shows the potential of the proposed method for dermatological practices and lays the
foundation for further, in-depth evaluation of the health status of human skin.

Keywords: Mueller matrix polarimetry; second harmonic generation; microscopy; dual-modality
imaging; skin tissue structures

1. Introduction

Skin diseases are prevalent and affect more than 30% of individuals worldwide [1–6].
During the development of skin diseases, structural changes in the different skin layers
(stratum corneum, epidermis, dermis, and hypodermis) often occur [7–10]. The charac-
terization of layered skin tissue structures can provide crucial information for various
applications, ranging from transdermal drug delivery [11], cancer diagnosis [12], skin lesion
detection [13], and wound healing and scarring evaluation [14]. Currently, the gold standard
for diagnosing pathological skin diseases is the microscopic observation of histological
tissue slices, which requires staining skin tissue sections with certain dyes and evaluation
by experienced pathologists [15]. The lack of quantitative evaluation indices often results
in significant interobserver and intraobserver variabilities. Thus, a quantitatively reliable
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method allowing for characterizing skin tissue structures would have a good application
prospect in dermatological practices.

Mueller matrix polarimetry has recently gained popularity in biomedical research due
to its high potential for detecting the microstructural and optical properties of label-free
samples [16–21]. Studies have demonstrated that Mueller matrix-derived parameters are
sensitive to different structures and have significant application prospects in the pathologi-
cal diagnosis of various abnormal tissues, such as skin cancer [22], breast cancer [23,24],
liver cirrhosis and cancer [25,26], thyroid cancer [27], colon cancer [28–30], cervical can-
cer [31–33], and lung cancer [34]. Mueller matrix polarimetry can also be used to visualize
brain white matter fiber tracts [35], explain the combined effects of scattering and absorption
changes in cancer growth [36], and assess β-amyloidosis in Alzheimer’s disease [37]. Specif-
ically, for skin tissue, its highly anisotropic nature induced by different ultra-structural
components such as collagen, elastin matrix, and fibers makes it a particularly suitable
investigation site for Mueller matrix polarimetry [38].

On the other hand, with the advantages of high imaging resolution, reasonable pen-
etration depth, and low phototoxicity, second harmonic generation (SHG) microscopy
has become a prevalent tool for biomedical detection and disease diagnosis [39–42]. For
skin tissue imaging, abundant collagen fibers distributed inside the dermis often produce
high second-harmonic signals [43,44]. Thus, the thickness, density, and orientation of skin
collagen fibers can be quantitatively evaluated by SHG imaging [45–47]. Moreover, it has
been demonstrated that polarization-sensitive SHG signals can effectively extend the SHG
imaging potential for extracting more detailed skin tissue structural information [48].

Considering that the structural features of skin tissue are often too complicated to
use a single imaging modality for a comprehensive evaluation, it is of great significance to
exploit multimodal imaging methods suitable for skin tissue characterization. In this study,
by combining the advantages of Mueller matrix polarimetry and SHG microscopy, a dual-
modality imaging method is proposed. This method can clearly identify the characteristic
layered structures of mouse tail skin tissue and provide a tool for the following evaluation
of the stratum corneum, epidermis, and dermis. We also adopt the gray level co-occurrence
matrix (GLCM) to quantitatively analyze the structural features of different skin tissue
layers after the image segmentations. Finally, to quantitatively measure the structural
differences between damaged and normal skin model tissue areas, an index named Q-
Health is defined based on cosine similarity and GLCM parameters. The experimental
results confirm the effectiveness of the dual-modality imaging parameters for skin tissue
structure discrimination and assessment. It shows the potential of the proposed method
for dermatological diagnosis and lays the foundation for the evaluation of the health status
of human skin.

2. Results and Discussions
2.1. Microscopic Imaging Results of Skin Tissue Samples

Figure 1a shows the microscopic unpolarized intensity image of a 4-µm-thick, de-
waxed, unstained transverse tissue section of normal mouse tail skin using a 20× objective
lens. Figure 1b shows the image of the corresponding H&E-stained slice of the same
area. It can be observed that the unpolarized intensity image of an unstained tissue slice
roughly shows the outlines and mixed undulating gully structures, making it challenging
to separate the layers of skin tissue. On the other hand, the image of the H&E-stained slice
clearly shows each layer of the skin, including the outermost red stratum corneum, the
middle lavender epidermis, and the inner pale pink dermis. Figure 1c shows the images
of H&E-stained slices of damaged skin models: I is the stratum corneum layer damaged
model; II is the stratum corneum and epidermis layers damaged model; III is the stratum
corneum, epidermis, and dermis layers damaged model. The damaged areas are marked by
the dashed rectangles. For stratification and quantitative assessment, both the microscopic
Mueller matrix and SHG images of the samples were acquired.
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Figure 1. Schematics of skin tissue samples and experimental setups: microscopic images of mouse 
tail skin tissues for (a) the unstained slice, (b) the corresponding H&E-stained slice using a 20×/0.75 
NA objective (UPlanSApo, Olympus, Tokyo, Japan); (c) H&E-stained tissue sections with damage 
areas in different layers indicated by dashed boxes, I: stratum corneum layer, defined as having a 
depth of less than 40 μm damage with partial loss of the stratum corneum layer, II: stratum corneum 

Figure 1. Schematics of skin tissue samples and experimental setups: microscopic images of mouse
tail skin tissues for (a) the unstained slice, (b) the corresponding H&E-stained slice using a 20×/0.75
NA objective (UPlanSApo, Olympus, Tokyo, Japan); (c) H&E-stained tissue sections with damage
areas in different layers indicated by dashed boxes, I: stratum corneum layer, defined as having a
depth of less than 40 µm damage with partial loss of the stratum corneum layer, II: stratum corneum
and epidermis layers, defined as having a depth between 40 and 140 µm damage, with complete
destruction of the stratum corneum layer and partial destruction of the epidermis layer, III: stratum



Int. J. Mol. Sci. 2023, 24, 4206 4 of 16

corneum, epidermis, and dermis layers, defined as having a depth larger than 140 µm damage to the
skin dermis layer; (d) schematic of the Mueller matrix microscope: LED (XLamp XP-E, 3.5 W, 633 nm,
∆λ = 20 nm, Cree Inc., Durham, NC, USA), P: polarizer (extinction ratio 1000:1, Daheng Optics, Beijing,
China), R: quarter-wave plate (Daheng Optics, Beijing, China), PSG: polarization state generator, PSA:
polarization state analyzer, CCD (74-0107A, 12-bit, QImaging, Surrey, BC, Canada); (e) schematic of
the SHG microscope, PMT: photomultiplier tube, F-ISO: Faraday isolator; (f) MMPD-δ image of the
mouse skin tissue slice; (g) SHG image of the same mouse skin tissue area; (h) RGB fusion process,
(h1): MMPD-δ image in R channel, (h2): SHG image in G channel, (h3): dual-modality fusion result.

From the Mueller matrix image of the sample shown in Figure 1d, we can see that there
are apparent imaging contrasts in the elements M24, M34, M42, and M43, indicating that the
skin tissue has a strong linear birefringence effect. Therefore, we further decomposed the
Mueller matrix to get the Mueller matrix polar decomposition (MMPD)-δ image, as shown
in Figure 1f. It can be intuitively seen from the MMPD-δ image that the outermost stratum
corneum layer of the skin tissue has a concentrated and strong signal, while the signals of
other layers are relatively weak and scattered. This phenomenon is probably due to the
strong birefringence effect induced by the neat and dense protein structures in the stratum
corneum that form the skin barrier. Thus, the MMPD-δ image can be used to distinguish
the stratum corneum from other skin layers.

From the SHG image of the same sample area shown in Figure 1g, we can observe a
randomly arranged network structure with strong SHG signals, resulting from the non-
centrosymmetric and long-range ordered collagen fibers in skin. Specifically, collagen fibers
are the main components in the dermis, accounting for 95–98% of the total fiber mass, while
there are no collagen fibers in the stratum corneum and epidermis [49]. It means SHG
imaging can be used to identify and characterize the dermal layer of the skin.

According to the above results, the information provided by dual-modality imaging
of the Mueller matrix and SHG can be used to distinguish between different skin layers. As
shown in Figure 1h, we fused the two imaging modalities’ results via the RGB channels [38].
Here the MMPD-δ and SHG images were input to the R and G channels, respectively, while
the B channel was set to be 0. In the fusion process, the feature point matching method
was adopted to deal with the pixels registration problem between the MMPD-δ and SHG
images foremost, since the sizes of these two modalities images do not match. Based on the
approximate local transformation of feature points [50], this method registers images by
mathematically transforming a series of corresponding feature points on the MMPD-δ and
SHG images. Figure 1(h3) shows the images fusion result, in which the left region or the
dermis layer appears yellow-green because of the superimposition between red MMPD-δ
and green SHG images; while the outermost dense red region shows the stratum corneum
layer, and the middle between the two regions is the epidermis layer. The results shown
in Figure 1 demonstrated that the stratum corneum, epidermis, and dermal layers can be
effectively discriminated by using the dual-modality imaging method.

2.2. Skin Layers Segmentation Results

As shown in Figure 2, we then segmented the three layers of skin tissue using the dual-
modality image. The layer segmentation is the basis for the following quantitative damage
assessment. Figure 2(a1–a4) show the segmentation process of the stratum corneum, which
was acquired by multiplying the original MMPD-δ image and the corresponding mask
obtained by the regional growth algorithm. It is worth noting that the algorithm was
applied to the gray-scale image converted from the MMPD-δ imageFigure 2(b1–b4) show
the segmentation process of the dermis. The SHG image clearly identifies the dermal abun-
dance of non-neutral symmetric collagen fibers. There is no SHG signal in the epidermis
and stratum corneum layers without collagen fiber. After the registration of the SHG and
MMPD-δ images, the dermis layer was acquired by multiplying the original MMPD-δ
image and the corresponding mask obtained by morphological optimization methods such
as median filtering, dilation, and filling. Figure 2(c1–c3) show the segmentation process
of the epidermis, which was acquired by multiplying the original MMPD-δ image and
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the corresponding mask obtained by subtracting the air mask from the regional growth
algorithm, the stratum corneum mask (shown in Figure 2(a3)), and the dermis mask (shown
in Figure 2(b3)) from an all-one mask with the same size as the MMPD-δ image in turn. All
15 skin tissue images were sequentially segmented according to the process indicated in
Figure 2.
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Figure 2. Skin layer segmentation process based on dual-modality Mueller matrix and SHG imaging:
(a1–a4) stratum corneum layer segmentation process: (a1) MMPD-δ image, (a2) gray-scale image
converted from the MMPD-δ image, (a3) stratum corneum mask, (a4) segmented stratum corneum
layer; (b1–b4) dermis layer segmentation process: (b1) SHG image, (b2) gray-scale image converted
from the SHG image, (b3) dermis mask, (b4) segmented dermis layer; (c1–c3) epidermis layer segmen-
tation process: (c1) all-one mask, air mask, stratum corneum mask, and dermis mask, (c2) epidermis
mask, (c3) segmented epidermis layer.

2.3. Quantitative Damage Assessment of Different Skin Layers

After the segmentation, damaged regions in each skin layer can be recognized, and
the damage degree evaluation is of further interest. For quantification, we calculated the
GLCM and first-order statistical parameters, namely contrast, homogeneity, correlation,
energy, and mean of the damaged areas. Meanwhile, the same group of parameters
for normal skin regions were also calculated for comparison. As an unbiased selection,
each parameter was obtained by taking the average of five regions selected by experi-
enced pathologists. The quantitative assessment results of the damaged and normal
regions are shown in Figure 3, where the black dots and red diamonds represent the
damaged and normal areas, respectively. The first row (Figure 3(a1–a5)), the second row
(Figure 3(b1–b5)), and the third row (Figure 3(c1–c5)) show the results of the stratum
corneum, epidermis, and dermis layers in turn. The first column through the fifth column,
in turn, represent the values of contrast, homogeneity, correlation, energy, and mean. In
addition, the data of damaged and normal areas from the same layer in each sub-figure
were compared by using the t-test. No “*” symbol means p > 0.5, or not significant;
“*” means p < 0.05, or significant; “**” means p < 0.01, or very significant. It should
be noted that samples with invalid values were excluded from the calculation process.
Finally, there were 12 stratum corneum samples, 13 epidermis samples, and 15 dermal
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samples for analysis. First, we can observe from Figure 3(a1–c1) that the T-test analysis
of the contrast shows no significant distinctions between damaged and normal areas
for all three skin layers, which confirms the fixed-point damage has a limited effect on
the texture depth of each skin layer. The value distribution of the contrast parameter
indicates that the damage does not significantly change the difference between the maxi-
mum and minimum values of the linear retardation of the skin sample. Second, it can
be noticed from Figure 3(a2–c2) that the T-test values of homogeneity for all three layers
show significant distinctions, indicating that the local distribution of linear retardation re-
sulting from fibers changes very frequently, which is consistent with the damage-induced
irregular structural distribution. Third, as illustrated in Figure 3(a3–c3), the correlation
values of the normal regions are larger than those of the damaged regions in both the
stratum corneum and epidermis layers, while the opposite trend happens for the dermis
layer. It proves that, compared to the dermis, the structures of the stratum corneum
and epidermis are neater. Though there is no significant distinction, the correlation can
also be used to describe the consistency of the texture declining after damage. Fourth,
as shown in Figure 3(a4–c4), the energy values change significantly after the stratum
corneum and epidermis layers were damaged, which indicates that the texture uniformity
of the MMPD-δ images of these two layers change prominently. That may be related to
the disorder of the arrangement or fluctuation angle of microstructures. However, for
the dermis layer, the energy values are relatively small for both normal and damaged
areas. It verifies that the dermal structure is looser and more disordered compared to
those of the other two layers. Last, Figure 3(a5–c5) show the mean values to reflect the
sample population information. Obviously, the mean values of the stratum corneum and
dermal layers change significantly after the damage, but not in the epidermis. It shows
that a change occurred in the fundamental frequency signal of MMPD-δ images after the
stratum corneum and epidermis layers were damaged to be more dispersal, while the
change in the epidermis is not significant because of the fundamental frequency signal of
the MMPD-δ images here is generally low. Combining the mean value with the GLCM
statistic parameters, a quantitative and comprehensive evaluation of the skin structures
can be achieved.

In summary, the parameters listed in Figure 3 can provide quantitative structural
information about the skin sample. Specifically, for the stratum corneum damage models,
significant differences exist in the three parameters of homogeneity, energy, and mean.
While for the epidermis damage cases, the two parameters of homogeneity and energy
show statistical differences. As for the dermal damage cases, the mean is statistically
different. The results demonstrate that combining the five parameters into a new index for
comprehensive skin damage evaluation is promising.

2.4. Q-Health Index Analysis

The Q-Health index can be calculated according to Equation (5), where the feature
vectors of damaged and normal skin tissue samples were constructed via the five param-
eters as shown in Figure 3. Figure 4a shows the Q-Health index analyzing results for all
the samples. For confirmation, here are the damage grades of specimens assessed by the
pathologists from the Chinese Academy of Chinese Medical Sciences.

As shown in Figure 4a, according to the pathological evaluation results for the stratum
corneum, epidermis, and dermis skin layers, the Q-Health index distributed between 80
and 100% can be regarded as damage grade I, that distributed between 40 and 80% can be
regarded as damage grade II, and that distributed between 0 and 40% as damage grade III.
As the detailed examples show, Figure 4(b1–b3) show the stratum corneum, epidermis, and
dermis layers of damage grade I, respectively. Their Q-Health index values are distributed
in the range of 80–100%, indicating that the deviation of the feature vectors between the
normal and damaged regions is slight. It reflects the complete appearance of the tissue in
grade I, and no fracture or ulceration occurs. Figure 4(c1–c3) and Figure 4(d1–d3) are the
stratum corneum, epidermis, and dermal layers of damage grades II and III, respectively.
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With the decrease of the Q-Health index values, the damaged regions gradually appear
faulty, where the tissue structures become loose. We can notice that there are large areas of
cavities, and the textures of the images have been considerably changed. Table 1 shows the
Q-Health index values of the samples in Figure 4. It can be observed from Figure 4 and
Table 1 that the Q-Health index has the potential for quantitative and automatic assessment
of skin tissue damage grade in different layers.
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diamonds) regions: (a1–a5) distributions of the parameters contrast, homogeneity, correlation, energy,
and mean for the stratum corneum layer; (b1–b5) distributions of the parameters contrast, homogene-
ity, correlation, energy, and mean for the epidermis layer; and (c1–c5) distributions of the parameters
contrast, homogeneity, correlation, energy, and mean for the dermis layer. No “*” symbol means
p > 0.5, or not significant; “*” means p < 0.05, or significant; “**” means p < 0.01, or very significant.
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Figure 4. Q-Health index analyzing results: (a) Q-Health index distributions of all samples, the red
dots represent the Q-Health values of the damaged stratum corneum samples, the blue diamonds
represent the Q-health values of the damaged stratum corneum samples, the purple pentagrams
represent the Q-health values of the damaged dermis samples, the “×” symbols represent the
maximum and minimum Q-health values of each group, and the “+ ” symbols represent the average
Q-health values of each group; (b1–b3) stratum corneum, epidermis, and dermis samples of damage
grade I; (c1–c3) stratum corneum, epidermis, and dermis samples of damage grade II; (d1–d3) stratum
corneum, epidermis, and dermis samples of damage grade III.
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Table 1. Q-Health index values of the samples shown in Figure 4(b1–b3, c1–c3, and d1–d3).

Damage Grade I Damage Grade II Damage Grade III

Stratum corneum 88.8% 45.4% 18.3%
Epidermis 95.7% 47.5% 18.3%

Dermis 88.6% 60.1% 27.6%

It is worth mentioning that there are also several other techniques available for the
characterization and quantitative evaluation of layered skin tissue structures, each with its
own strengths and limitations. Compared to histology [51] and confocal microscopy [52],
the proposed dual-modality imaging method can provide real-time results of skin tissue
structure and composition. Compared to optical coherence tomography [53] and ultra-
sound imaging [54], the proposed method can provide a higher imaging resolution of skin
tissue structure to distinguish different types of fibers. Additionally, compared to Raman
spectroscopy, the proposed dual-modality imaging method can provide more detailed
information about the orientation and density of collagen fibers, which are crucial for
understanding the mechanical properties and function of the skin tissue [55].

The developed dual-modality imaging method has been proven to be a valuable tool
for characterizing and quantitatively evaluating skin tissue due to its advantages, such
as label-freeness, high sensitivity, and specificity. As a result, it holds the potential to
be applied to a variety of tissues. For instance, it may be useful in the examination of
extracellular matrix in cardiovascular [56] and respiratory tissues [57] or in characterizing
connective tissues in musculoskeletal systems [58]. Nevertheless, additional research is
needed to assess the ability of this technique for the characterization of other tissues and to
develop approaches for optimizing the imaging method for each specific tissue.

3. Materials and Methods
3.1. Mouse Tail Skin Tissue

As shown in Figure 1a, the tissue samples used in this study are 4-µm-thick, de-
waxed, unstained transverse slice sections of mouse tail skin, provided and prepared by
the Experimental Research Center, China Academy of Chinese Medical Sciences. Before
measurement, the stratum corneum, epidermis, and dermis of the tissue sections were
identified and fixed-point damaged by experienced pathologists. Each layer contains both
damaged and normal areas. In total, we obtained 15 samples with normal and damaged
dermis, 15 samples with normal and damaged epidermis, and 15 samples with normal and
damaged stratum corneum. After acquiring their Mueller matrix microscopic and SHG
images, the tissue sections were stained with hematoxylin and eosin (H&E) for the follow-
ing pathological observations: The stained normal mouse tail skin tissue structure and
damaged areas in various skin layers are shown in Figure 1b,c. The study was approved by
the Ethics Committee of the Tsinghua Shenzhen International Graduate School.

3.2. Mueller Matrix Microscope

The schematic of the Mueller matrix microscope used in this study is shown in Figure 1d.
By adding the polarization state generator and analyzer (PSG and PSA) modules to the optical
path of a transmitted light microscope (L2050, Liss Optical Instrument Factory, Guangzhou,
China), the setup can measure the Mueller matrix of a sample based on the dual-rotating
retarder method [59–61]. During each measurement, two fixed linear polarizers (P1, P2,
extinction ratio 1000:1, Daheng Optics, Beijing, China) and two rotatable quarter-wave plates
(R1, R2, Daheng Optics, Beijing, China) are combined to achieve different polarization state
modulations. Specifically, the quarter-wave plates are driven by the servo motor drivers
(PRM1Z8E, Thorlabs Inc., Newton, NJ, USA) to rotate 30 times. R1 is rotated 6 deg, and R2
is rotated 30 deg each time. After the rotation, thirty polarized light intensity images are
collected by the gray-scale CCD (74-0107A, 12-bit, QImaging, Surrey, BC, Canada). Then,
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the Mueller matrix of the sample can be calculated based on Fourier analysis using the
coefficients αn and βn shown in Equation (1)

I = α0 +
12

∑
n=1

(αn cos 2nθ + βn sin 2nθ) (1)

where I is the light intensity image collected by the CCD each time, and the Fourier
coefficients αn and βn are the functions of the 16 Mueller matrix elements, each of which
can be calculated by inverse operation. θ is the angle of each rotation of the quarter-wave
plate R1.

More details of the dual-rotating retarder method and the calculation process of
the Mueller matrix can be found in [62,63]. Before measurements, the microscope was
calibrated by measuring standard samples such as air, polarizers, and quarter-wave plates
along different axis directions [64]. The results showed that the maximum error of the
measured Mueller matrix element is about 1%.

3.3. Mueller Matrix Polar Decomposition

Mueller matrix polarimetry has been proven to be a powerful tool for probing the
microstructures of biological tissues [16]. However, it is inconvenient to directly use a
single Mueller matrix element for structure detection and evaluation since it lacks a clear
association with certain microstructures [21,65,66]. To address this issue, several Mueller
matrix analyzing methods have been proposed over the years, including the Mueller matrix
polar decomposition (MMPD) technique, which is widely used in biomedical studies and
clinical applications. The MMPD method derives parameters from the Mueller matrix
that are more relevant to the microstructural features of interest [67]. Specifically, the
MMPD decomposes the interaction between light and medium into three main processes
of polarization properties, namely diattenuation (D), retardation (R), and depolarization
(∆), as shown in Equation (2). Further, through the decomposition process, we can obtain
a group of polarization parameters, among which the MMPD-D, MMPD-δ, and MMPD-
∆ corresponding to dichroism, linear retardation, and depolarization are mostly used in
biomedical trials [68,69]. The detailed polar decomposition process is shown in Equation (2)

M = M∆ MR MD

D =
√

M2
12 + M2

13 + M2
14

δ = arccos(
√
(MR22 + MR33)

2 + (MR32 −MR23)
2 − 1)

∆ = 1− 1
3 |tr(M∆)|

(2)

where M is the measured Mueller matrix, Mij is the element of M; M∆, MR and MD are
the sub-matrices of depolarization, retardation and diattenuation, respectively, MRij is the
element of MR; D is the diattenuation, δ is the linear retardation, ∆ is the depolarization.

Skin tissues are thin, heterogeneously layered media with significant linear retardation
distribution due to different cell types and tissue densities [38]. Therefore, in this study, we
employ the MMPD parameter δ reflecting linear retardation for the evaluation of mouse
skin tissue samples.

3.4. Second Harmonic Generation Microscope

The schematic of the SHG microscope (LMS 710, Zeiss, Jane, Germany) is shown in
Figure 1e. The confocal microscope is equipped with a Ti:Sapphire Chameleon multiphoton
tunable laser (Coherent, Santa Clara, CA, USA) at 800 nm. For the SHG imaging, a dichroic
mirror, a custom filter set (BP: 414/46, DC: 495, and BP: 525/50), and a 20×water immersion
objective are used.
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3.5. Image Segmentation Algorithms

For quantitative evaluation of the mouse tail skin tissue samples, we segmented the
skin layers based on both the MMPD-δ and SHG images. Here the widely acknowledged
three-layered model is adopted to divide the skin structure into the stratum corneum,
epidermis, and dermis, which show differences in the optical anisotropy [70]. To accurately
segment the three layers, we employed the regional growth algorithm, which is often used
in recognition tasks such as remote sensing [71] and disease diagnosis with high simplicity
and efficiency [72]. The regional growth algorithm collects similar pixels to form regions
as follows: First, multiple initial points of the segmented region are selected as seeds;
second, a similarity evaluation is performed to determine whether or not to grow; and last,
the growth is stopped until a certain threshold is reached. The accuracy of segmentation
depends significantly on the threshold selection [73]. Thus, to ensure the adaptability of the
algorithm and the accuracy of segmentation, we used the maximum inter-class variance
method to find the best threshold in each image. The maximum inter-class variance method
proposed by Otsu in 1978 [74] is an adaptive algorithm that calculates the inter-class
variance based on the grayscale characteristics of the image and finds the grayscale value
corresponding to the maximum inter-class variance as the optimal threshold. The schematic
of the skin layer segmentation process based on dual-modality Mueller matrix and SHG
imaging in this study is shown in Figure 2.

3.6. Image Texture Analysis

To further quantitatively assess the damage degree of each skin layer, we performed
texture analysis on MMPD-δ images using the GLCM method [75]. The GLCM is a vital
method to characterize texture differences based on gray-scale spatial distribution and has
shown great potential for the detection and quantitative staging of abnormal tissues [76].
Here, the GLCM parameters contrast, correlation, homogeneity, and energy shown in
Equation (3) are chosen to analyze the texture features of the MMPD-δ images. Among
them, (a) contrast represents the depth of the texture. The smaller the contrast, the less
difference there is between the gray levels, and the shallower the image texture grooves;
(b) the homogeneity measures the local change of the image texture. The smaller the
homogeneity, the more uneven the local area, and the more frequent the changes between
different texture regions, (c) the correlation shows the consistency of image texture. The
smaller the correlation, the less similar the pixels are in the row or column direction, and
the greater the difference between the pixels. (d) The energy reflects the uniformity of
the gray-scale distribution of the image. The smaller the energy, the more uneven the
distribution of an image texture.

In this study, the region of interest (ROI) was selected under experienced pathologists’
guidance, including the damaged and normal regions. The size of the ROI was 20 pixels
× 20 pixels. The GLCM was calculated using MATLAB (graycomatrix function [77]),
and four correlation statistics were derived from the obtained GLCM through MATLAB
(graycoprops function [78]). The gray value range of the MMPD-δ images is normalized
to [0, 255], the gray level Ng is set to 64, and the inter-pixel displacement d is 1. Each
derived correlation statistic is the average of the features in the four directions (0◦, 45◦,
90◦, and 135◦).
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px(i) =
Ng

∑
j=1

p(i, j), py(j) =
Ng

∑
i=1

p(i, j)

Contrast =
Ng−1

∑
n=0

n2

{
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

∣∣∣∣∣| i− j| = n

}
Homogeneity = ∑

i
∑
j

1
1+(i−j)2 p(i, j)

Correlation =
∑
i

∑
j
(ij)p(i,j)−µxµy

σxσy

Energy = ∑
i

∑
j

p(i, j)2

(3)

In Equation (3), Ng is the quantized gray level, p(i, j) is the relative probability that two
gray levels of i and j appear on the image by d pixels displaced in a particular direction, µx,
µy, σx, and σy are the mean and standard deviation of px and py.

3.7. Q-Health Index

To seek a comprehensive index for characterizing and evaluating the damage degree
of skin tissue layers, we propose the Q-Health, a custom index based on cosine similarity
and GLCM parameters. Cosine similarity converts the similarity measure into an angle
between two vectors, which has many applications because of its simplicity and practicality,
such as document information retrieval [79] and face recognition [80]. The construction of
the Q-Health index includes two steps. First, a 5-dimensional feature vector is constructed
by synthesizing the GLCM texture parameters contrast, correlation, homogeneity, energy,
and the first-order statistical feature mean as shown in Equation (4)

Mean = ∑
i

zi p(zi) (4)

where p(zi) is the proportion of pixels with the value of zi to the total number of pixels.
Second, the Q-Health index is obtained by calculating the cosine similarity between the
feature vectors of the damaged and normal skin regions, as shown in Equation (5)

Q− Health =
A·B
‖A‖‖B‖ =

n
∑

i=1
Ai×Bi√

n
∑

i=1
(Ai)

2 ×
√

n
∑

i=1
(Bi)

2
(5)

where A and B are the feature vectors of the damaged skin region and the normal skin
region, n is the dimension of the eigenvectors, and here is 5. The method is inspired by
the ability of cosine similarity to assess the deviation between two vectors. To measure
the damage degree, we used the feature vector of the normal skin region as a benchmark
and then calculated the deviation between the benchmark and the feature vector of the
damaged region of the corresponding skin layer. The Q-Health index has a positive value
distributed from 0 to 1 because the feature vectors in this study are positive. The larger
value of the Q-Health index means a smaller deviation.

4. Conclusions

In this study, we proposed a dual-modality imaging method based on Mueller matrix
polarimetry and second harmonic generation to realize the characterization and quantitative
evaluation of layered skin tissue structures. The imaging results of mouse skin tissue slices
showed that the stratum corneum layer of the skin tissue has a concentrated and strong
linear retardance signal induced by the neat and dense protein structures that form the
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skin barrier. As a result, the MMPD-δ image can be used to distinguish the stratum
corneum from other skin layers. Meanwhile, SHG imaging can be used to identify and
characterize the dermal layer of the skin, which is abundant in collagen fibers and generates
strong SHG signals. We demonstrated that the stratum corneum, epidermis, and dermis
layers of skin tissue specimens can be effectively segmented using dual-modality images.
Then, the GLCM method was carried out to analyze the texture features of different skin
layers after the segmentations. The results showed significant differences in the MMPD-δ
parameter images among different skin layers and areas, indicating that the GLCM method
can provide the metrics for skin tissue structures assessment. Finally, to quantitatively
evaluate the structural differences between damaged and normal skin tissues, we proposed
the Q-Health index based on the cosine similarity to measure the texture feature vector
deviation between the damaged and normal areas. The experimental results confirmed
that, the texture features of the MMPD-δ parameter images could be used for the accurate
characterization and evaluation of skin tissue structures. It shows the potential of the
proposed method for dermatological diagnosis and lays the foundation for the evaluation
of the health status of human skin.
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