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Abstract: Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogena-
tion coupled with H2 derived from water electrolysis is considered a promising route to mitigate
the negative impact of carbon emission and also promote the application of hydrogen. It is of great
significance to develop catalysts with excellent performance and large-scale implementation. In the
past decades, metal–organic frameworks (MOFs) have been widely involved in the rational design
of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered
pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or
MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts,
such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the
encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review
attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and
demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with
traditionally supported catalysts. Great emphasis will be placed on various confinement effects in
CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications
of MOF-confined catalysis for CO2 hydrogenation are also summarized.

Keywords: metal–organic frameworks; MOF-derived materials; confinement effects; selective CO2

hydrogenation; immobilization; encapsulation; size effect; synergy effect; interface catalysis

1. Introduction

Valorization of CO2 is a prerequisite for achieving a “carbon-neutral society” as de-
clared in the 2015 Paris Agreement. The chemical conversion of CO2 into value-added and
energy-intensive chemicals is a promising approach to achieve this goal, especially when
driven with the green hydrogen from water electrolysis powered by renewable electricity.
Accordingly, intensive research efforts have been dedicated to selective CO2 hydrogenation
to CO, formic acid, hydrocarbons, or oxygenates [1–5]. However, these processes suffer
from slow kinetics and low selectivity due to the strong strength of the C=O double bond
(806 kJ mol−1) [6]. Many advances have been made in various heterogeneous CO2 hydro-
genation catalysts, including oxide (e.g., Cu/ZnO/Al2O3 and ZnO-ZrO2), oxide/zeolite
(e.g., Na–Fe3O4/HZSM-5 and ZnZrOx/SAPO-34), supported monometallic or bimetallic
catalysts (Ru, Ir, Pt, Rh, PtCo, and PdRh), and immobilized molecular complexes [7–23].
The active sites are carefully designed to process special structural and electronic properties
for desired products. For example, the inverse ZrO2/Cu was designed to maximize the
Cu-ZrO2 interface, which promoted CH3OH synthesis activity and selectivity of supported
Cu [24]. The 8 nmsized Ni supported on CeO2 exhibited superior CH4 selectivity over
the 4 nm and 2 nm counterparts in CO2 hydrogenation due to the structure and size de-
pendency [25]. The artificial (C2+) hydrocarbons or their oxygenated derivatives could
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be produced via the rational design of catalysts using zeolite [26,27]. Hence, the rational
design of efficient catalysts is essential for achieving high catalytic activity and selectivity
during CO2 hydrogenation [28,29].

Besides the rational design of efficient catalysts, the confinement effects are also widely
utilized to stabilize active sites during catalytic CO2 hydrogenation [21,30–32]. The strong
interactions between metal nanoparticles (NPs) and supports (e.g., Cu/β-Mo2C, Ir/CeO2,
Ni/γ-Mo2N) are confirmed as an effective confinement strategy to prevent the aggregation
of NPs [33–35]. It modifies the electronic and geometric structures of catalytic active
sites. However, the catalyst structure derived from the strong metal–support interaction
(SMSI) effect is limited to certain metal and support combinations. Encapsulating the NPs
with porous materials or membranes (e.g., zeolite), and thus increasing their resistance
to sintering, is another effective and versatile strategy [36–39]. The fixation of metal
NPs with diameters of 0.8–3.6 nm into zeolite crystals (NPs@zeolite) was demonstrated
to be sinter-resistant at 600–700 ◦C and outperformed conventionally supported metal
catalysts (NPs/zeolite) during CO2 hydrogenation [36,37,40]. Unlike the utilization of
SMSI or the encapsulation by the zeolite (with fixed tetrahedral Si/Al coordination and
pore sizes <1 nm), the ordered three-dimensional metal–organic frameworks (MOFs), with
uniform cavities, tunable local environments, tailorable composites, and versatility to
introduce functional coordinators/groups, are highly attractive for the rational design of
heterogeneous catalysis with confinement effects.

The last decades have witnessed intensive research efforts in the reticular design
of various MOFs (>100,000), which have been explored in gas storage and separation,
vapor sorption, catalysis, biomedical application, and chemical sensing [41,42]. This review
only focuses on CO2 hydrogenation, where the high surface area and porosity of MOFs are
composed of various organic linkers, which can strongly bind metal atoms/clusters to serve
as active sites, proffering the ability to adjust the structural and electronic modularity [5,43,44].
These composite materials can combine both the confinement effect of the pores and the SMSI
or synergistic effects between active sites and organic chelates/metal-oxo clusters, providing
new opportunities in finely tuning the performance of CO2 hydrogenation [45–47]. Tsung and
coworkers successfully encapsulated atomic sites or ultra-small NPs in MOFs via a post-
synthesis method, which exhibited good activity and selectivity for CO2 hydrogenation
to formic acid, CH3OH, and C2H5OH, respectively [48–52]. Moreover, metal or metal
oxide NPs embedded in a porous carbon matrix can be produced by the pyrolysis of
MOFs. Since various elements in MOFs are initially well ordered, the new structures
can also contain highly dispersed single atoms, metal NPs, alloys, or dopants (e.g., N,
P, S, or B) (in the case of dopant-containing organic linkers) [53–55]. Compared with
conventional catalysts, the metal species are partially encapsulated by the deposited carbon,
which exhibits enhanced thermal stability in high-temperature CO2 hydrogenation reaction
conditions. For instance, iron (Fe)- and cobalt (Co)-containing nanomaterials derived from
MOFs showed superior selectivity and stability for CO2 hydrogenation compared with
traditional metal catalysts [56–58]. These pieces of evidence indicate that the introduction
of well-defined MOFs or MOF-derived materials with identical coordinated environments
is an effective strategy to unravel the key active sites for CO2 hydrogenation catalysts, and
then enhance the catalytic activity and selectivity.

In recent years, several reviews have introduced advances in the synthesis, characteri-
zation, and application of zeolite-fixed metal NPs as metal@zeolite catalysts [8,37,39,59].
For example, Xiao and coworkers reviewed the reported strategies for the construction
of metal@zeolite hybrid materials and described how the zeolite micropore and metal
nanoparticle synergistically worked to improve the catalytic performance [37,39]. Janiak
and coworkers highlighted the confinement of noble nanometals in a zeolite matrix in
heterogeneous catalysis [59]. Li et al. summarized the development of MOFs encapsulat-
ing active nanoparticles as emerging composites for various catalysis, including thermal
catalysis, electrocatalysis, and photocatalysis [60,61]. These works all produced excellent
reviews on the preparation of porous materials–confined metals and their applications



Int. J. Mol. Sci. 2023, 24, 4228 3 of 27

in heterogeneous catalysis. However, a comprehensive review on confined catalysis in
MOFs or MOF-derived materials for CO2 hydrogenation is still lacking. The current
review mainly focuses on the confinement effects in MOFs or MOF-derived materials
during CO2 hydrogenation, as shown in Figure 1. Beginning with the introduction of the
preparation and application of MOF-confined catalysts, the confinement effects on CO2 hy-
drogenation will be discussed including molecular complexes in the immobilization effect,
atomic sites in the size effect, cage stabilization in the encapsulation effect, and adsorption
and activation in the synergy effect. Furthermore, the product distribution perturbed by
MOF-derived materials during CO2 hydrogenation will be interpreted. Finally, an outlook
on the future development of MOF-based confined catalysis for CO2 hydrogenation will be
given. We hope that the mechanistic insights interpreted by confinement effects in MOFs
or MOF-derived catalysts for CO2 hydrogenation could facilitate the development of clear
structure–activity relationships for rational catalyst design.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 28 
 

 

encapsulating active nanoparticles as emerging composites for various catalysis, includ-

ing thermal catalysis, electrocatalysis, and photocatalysis [60,61]. These works all pro-

duced excellent reviews on the preparation of porous materials–confined metals and their 

applications in heterogeneous catalysis. However, a comprehensive review on confined 

catalysis in MOFs or MOF-derived materials for CO2 hydrogenation is still lacking. The 

current review mainly focuses on the confinement effects in MOFs or MOF-derived ma-

terials during CO2 hydrogenation, as shown in Figure 1. Beginning with the introduction 

of the preparation and application of MOF-confined catalysts, the confinement effects on 

CO2 hydrogenation will be discussed including molecular complexes in the immobiliza-

tion effect, atomic sites in the size effect, cage stabilization in the encapsulation effect, and 

adsorption and activation in the synergy effect. Furthermore, the product distribution per-

turbed by MOF-derived materials during CO2 hydrogenation will be interpreted. Finally, 

an outlook on the future development of MOF-based confined catalysis for CO2 hydro-

genation will be given. We hope that the mechanistic insights interpreted by confinement 

effects in MOFs or MOF-derived catalysts for CO2 hydrogenation could facilitate the de-

velopment of clear structure–activity relationships for rational catalyst design. 

 

Figure 1. The summary of confinement effects for CO2 hydrogenation of MOFs or MOF-derived 

materials. 

2. Confined Synthesis and Confinement Effects of MOFs as Host Materials 

MOFs represent a frontier in advanced host materials for CO2 hydrogenation due to 

their tunable properties including: (1) semi-rigid and highly porous structures, (2) high 

physical and chemical host stability, (3) strong interaction for the stable dispersion of ac-

tive species, and (4) solid Lewis or Brønsted acid characteristic. These properties provide 

an opportunity to synthesize stable and active catalysts using MOFs as host materials in 

CO2 hydrogenation. In this section, various synthetic strategies for MOF-confined molec-

ular complexes, single atoms, NPs, or even micro-scale oxides were systematically sum-

marized, including a one-pot synthetic approach (active sites confined in MOF cavities or 

channels), post-synthetic modification (active sites interacting with functional cavities or 

channels), and a two-step synthetic approach (active species surrounded by MOF mem-

branes). For further details regarding the synthesis and characterization of various MOFs, 

the readers are referred to previous reviews and literature cited herein [62,63]. Moreover, 

the corresponding catalytic performance affected by confinement effects are detailed, in-

dicating that rational designs of the structures of MOFs and active sites are essential in the 

valorization of CO2.  

  

Figure 1. The summary of confinement effects for CO2 hydrogenation of MOFs or MOF-derived materials.

2. Confined Synthesis and Confinement Effects of MOFs as Host Materials

MOFs represent a frontier in advanced host materials for CO2 hydrogenation due to
their tunable properties including: (1) semi-rigid and highly porous structures, (2) high
physical and chemical host stability, (3) strong interaction for the stable dispersion of active
species, and (4) solid Lewis or Brønsted acid characteristic. These properties provide an
opportunity to synthesize stable and active catalysts using MOFs as host materials in CO2
hydrogenation. In this section, various synthetic strategies for MOF-confined molecular
complexes, single atoms, NPs, or even micro-scale oxides were systematically summarized,
including a one-pot synthetic approach (active sites confined in MOF cavities or channels),
post-synthetic modification (active sites interacting with functional cavities or channels),
and a two-step synthetic approach (active species surrounded by MOF membranes). For
further details regarding the synthesis and characterization of various MOFs, the readers are
referred to previous reviews and literature cited herein [62,63]. Moreover, the corresponding
catalytic performance affected by confinement effects are detailed, indicating that rational
designs of the structures of MOFs and active sites are essential in the valorization of CO2.

2.1. Molecular Complex Encapsulation in MOFs

Compared with heterogeneous CO2 hydrogenation conducted at higher temperature
and pressure conditions (e.g., >200 ◦C and >3 MPa), homogenous molecular complexes
can work at mild conditions (e.g., <150 ◦C) [64]. The well-defined structures of molecular
complexes facilitated the interpretation of reaction mechanisms at the molecular level,
which promotes the optimization of catalyst design. A remaining challenge for applying
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molecular complexes is their immobilization to fabricate stable and recyclable catalysts
for practical applications. The porosity and highly ordered structure of MOFs enable their
potential as ideal host materials to improve the accessibility of catalytic sites, which also
makes molecular complexes recyclable and productive.

The pioneering studies by Yoshio and coworkers demonstrated that homogeneous
ruthenium–phosphine catalysts could selectively catalyze CO2 hydrogenation to formic
acid at low temperatures [65]. Moreover, homogeneous molecular complexes containing
n-heterocyclic carbenes (NHCs) or phosphorus–nitrogen–phosphorus (PNP) pincer-type
ligands could facilitate CO2 hydrogenation due to the strong electron-donating ability,
where the Ru PNP-pincer catalyst could deliver a turnover frequency (TOF) value of
1,100,000 h−1 at 65 ◦C and 4 MPa (H2/CO2 (v/v) = 3:1) [66–70]. However, the chal-
lenges including catalysts and products separation and recyclability hindered their in-
dustrial applications. Accordingly, the heterogenization of molecular complexes is an
effective pathway, which could integrate the distinctive activity of homogeneous cata-
lysts with the advantages of heterogeneous catalysts [71,72]. MOFs are the potential
candidates to host molecular complexes. For example, Wu et al. reported various het-
erogeneous Ru-based molecular complexes immobilized on an azolium-based MOF via
post-synthetic metalation which were examined for CO2 hydrogenation toward formic acid,
as shown in Figure 2. The examined Ru molecular complexes included RuCl3, [RuCp*Cl2]2
(Cp* = pentamethylcyclopentadienyl), and [Ru(C6Me6)Cl2]2 (C6Me6 = hexamethylben-
zene); the corresponding hybrid catalysts were named Rux-NHC-MOF (x = 1, 2, 3). The
surface areas and total pore volumes of the three as-prepared catalysts decreased due to
the occupancy in the MOF pores (Figure 2b). The as-obtained Ru3-NHC-MOF catalyst
exhibited the highest activity due to the stronger electron-donating ability of the C6Me6
ligand in the [Ru(C6Me6)Cl2]2 complex. Specifically, values of the turnover number (TON)
up to 3803 were obtained at 120 ◦C under a total pressure of 8 MPa (H2/CO2 (v/v) = 1)
for 2 h in the presence of K2CO3 as the base in N, N-Dimethylformamide (DMF) solvent.
The strong polarity of the DMF solvent also facilitated the insertion of CO2 into the Ru−H
bond, which is the rate-determining step (RDS) for CO2 hydrogenation [73].
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Figure 2. (a) Ruthenium complexes confined in an azolium-based MOF for selective CO2 hydro-
genation to formic acid. Reproduced with permission. (b) N2 adsorption–desorption isotherms of
as-synthesized MOF, Ru1-NHC-MOF, Ru2-NHC-MOF, and Ru3-NHC-MOF catalysts. Reproduced
with permission [73]. Copyright 2018, Wiley-VCH.

Host (MOF)-guest (molecular complexes) composites have already demonstrated
their advantages in CO2 hydrogenation. However, the successful synthesis of host–
guest composites is limited, and they can only be prepared via de novo synthesis and
post-synthetic modification [49,74,75], where the size of molecular complexes should be
smaller than the pore of MOFs. Recently, the Tsung group developed a post-synthetic ap-
proach to synthesize host–guest composites, where guest molecular complexes were larger
(e.g., 3–4 times) than the aperture size of the MOF host but could also be encapsulated into
MOFs via aperture-opening events [50]. Guest molecular complexes were encapsulated
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effectively due to the short-lived “open” states of the pores formed upon linker disso-
ciation, which circumvented the disadvantages of previous strategies including tedious
synthetic processes and poor encapsulation efficiency. The aperture-opening process oc-
curred even in the robust MOF, which was significantly affected by the identity of the
selected solvent, as shown in Figure 3. A Zr-based MOF consisting of a cubic framework
of cationic Zr6O4(OH)4 nodes and 1,4-benzenedicarboxylate linkers (BDC) was selected
as the host material, named UiO-66. The (tBuPNP)Ru(CO)HCl (tBuPNP = 2,6-bis((di-
tert-butyl-phosphino)methyl)pyridine) was successfully encapsulated into UiO-66 (named
[Ru]@UiO-66) by exposing UiO-66 to methanol solvent containing (tBuPNP)Ru(CO)HCl at
55 ◦C for 5 days in Figure 3. [Ru]@UiO-66 exhibited a comparable TON of ca. 280,000 with
that of homogeneous molecular catalysts for CO2 hydrogenation to formic acid in DMF at
27 ◦C and 1.5 MPa (H2/CO2 (v/v) = 4:1). Interestingly, the recyclability and stability of the
encapsulated composites were much better than those of homogeneous ones, where the
activity of [Ru]@UiO-66 was maintained after five successive cycles. The homogeneous
composite lost more than half of its original activity in the second cycle, which was likely
due to the biomolecular deactivation [48].
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Figure 3. Encapsulation of molecular complexes (R6G or BBG) in UiO-66 in methanol and DMF at
55 ◦C for 5 days. Reproduced with permission [48]. Copyright 2018, American Chemical Society.

Apart from formic acid as the main product during CO2 hydrogenation, CH3OH also
could be produced on MOF-confined molecular complexes. Inspired by biological organ-
isms [76,77], Rayder et al. developed a multi-component catalyst system by integrating
[Ru]@MOF and another Ru molecular catalyst to achieve a three-step cascade CO2 hydro-
genation toward CH3OH. More specifically, the molecular complexes (tBuPNP)Ru(CO)-HCl
(Ru-1) were firstly encapsulated within the pores of UiO-66 (named Ru-1@UiO-66) by the
aperture-opening strategy, where Ru-1 served as an active site to hydrogenate CO2 to
formic acid [71], and the zirconium oxide nodes with Lewis acidity in UiO-66 served as
active sites to catalyze formic acid to a formate ester [78]. Then, another homogenous
Ru-based complex (tBuPNN)RuH(CO)Cl (Ru-2) was necessary to catalyze ester hydro-
genation to CH3OH, as illustrated in Figure 4a [79]. This multi-component catalyst system
could deliver a TON of 4710 ± 150 in DMF in the presence of ethanol at 70 ◦C and 4 MPa
(H2/CO2 (v/v) = 37:3) after 16 h. In contrast, Ru-1, UiO-66, or Ru-2 ([Ru-1, Ru-2]@UiO-66)
were found to be inactive, when independently or physically mixed for CO2 hydrogenation.
More interestingly, the co-encapsulation of Ru-1 and Ru-2 in UiO-66 was also prepared
successfully, which exhibited higher activity toward CH3OH than that of mixtures of
Ru-1@UiO-66 and Ru-2@UiO-66 as shown in Figure 4b. Even though some activity loss
was observed over [Ru-1, Ru-2]@UiO-66, the durability was enhanced and no significant
loss was found during the five successive cycles, which was likely due to the isolated sites
achieved by the MOF avoiding possible bimolecular decomposition pathways [51]. In this
study, UiO-66 not only served as the host material, but also provided a solid Lewis site to
transform formic acid to formate ester.
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Figure 4. (a) The scheme of cascade hydrogenation of CO2 to CH3OH on MOF–molecular complex
host–guest composites. (b) The turnover number (TON) was summarized over various kinds of
hybrid composites. Reproduced with permission [51]. Copyright 2020, Elsevier Inc. 2020.

Beyond the primary coordination sphere, second-sphere interactions in host–guest mul-
ticomponent catalysts also significantly affect the catalytic activity and selectivity [80–86].
Tsung and coworkers extensively investigated the second sphere interactions in multicom-
ponent catalyst systems by combining ligand design in the MOFs and the aperture-opening
encapsulation strategy for CO2 hydrogenation to CH3OH [52]. The structure–activity
relationships during CO2 hydrogenation were efficiently established using various func-
tionalized UiO-66-X hosts (X = -CH3, -F, -Br, -NO2, -NH2, and -NH3

+), as shown in Figure 5,
where the UiO-66-NH3

+ host was found to significantly increase CH3OH activity compared
with that utilized by other UiO-66-Xs as the host. Mechanistic experiments revealed that
the NH3

+ functionality could serve as Brønsted acid and facilitate the CO2 hydrogenation
to formic acid with autocatalytic features. Importantly, the synergistic effect from the host
worked only when the functional group was physically close to the encapsulated molecular
complexes. The combination of Ru-1@UiO-66-NH3

+ and Ru-2@UiO-66 could achieve the
highest TON of 10,900 at 70 ◦C and 4 MPa (H2/CO2 (v:v) = 37:3) in molecular sieves treated
with DMF with 10−5 mmol 2,2,2-trifluoroethanol after 16 h [52].
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Despite the above advances, it still remains challenging to realize the precise control of
the position of molecular complexes in MOFs [52,87–90]. To achieve the controllable modu-
lation of the local environment of active sites in MOFs, organic linkers with some functional
groups have been introduced to anchor the metal ions [75,91,92], mimicking ligands in
organometallic complexes to stabilize homogeneous organometallic complex catalysts in a
solid matrix [93]. An et al. reported a novel heterogenized molecular catalyst for CO2 hydro-
genation to formic acid via incorporating IrIII ions into UiO-type MOFs using post-synthetic
metalation followed by NaBhEt3 treatment, where 2,2′-bipyridine-5,5′-dicarboxylate lig-
ands (bpydc) with or without −OH substitution of the 6-position were synthesized, as
shown in Figure 6a. The TON of as-obtained bpydcOH-IrIII-UiO and bpydc-IrIII-UiO achieved
6149 and 417 at 85 ◦C and 0.1 MPa (H2/CO2 (v:v) = 1:1) over 15 h, respectively. The isotopic
effect and DFT calculations revealed that concerted proton–hydride transfer was the RDS of
CO2 hydrogenation. Then, the electron-donating groups from -OH and the pyridyl nitrogen
were ascribed to facilitate the RDS [94]. Tshuma et al. presented the rational design and
synthesis of novel isostructural MOFs containing catalytically active Pd(II) sites by using
2,2′-bipyridine-4,4′-dicarboxylate linkers, named (Mg(bpdc)(DMF)2PdCl2]n (Pd@Mg:JMS-2)
and [Mn(bpdc)(DMF)2PdCl2]n (Pd@Mn:JMS-2)), respectively. Figure 6b shows the packing
diagram and channel structure of Pd@Mg:JMS-2. For CO2 hydrogenation to formic acid in
ethanol with KOH as the base at 100 ◦C and 5 MPa (H2/CO2 (v:v) = 4:1), Pd@Mn:JMS-2
and Pd@Mg:JMS-2 gave the TOF values of 409 h−1 and 303 h−1, respectively, which were
higher than that of the homogeneous complex of 170 h−1 (Pd directly anchored on 2,2′-
bipyridine-4,4′-dicarboxylate). The presence of open metal sites and the encapsulation
effect are beneficial to concentrate the CO2 and H2 gases and avoid deactivation. The reac-
tion mechanism was proposed as follows: (1) H2 was first activated to form Pd-dihydride
intermediate; (2) the Pd-hydride complex attacked CO2 to generate the formate complex,
then desorbed to regenerate the active sites [95].
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2020, American Chemical Society. (c) The molecular structure of the as-prepared Ru-based catalysts.
Reproduced with permission [96]. Copyright 2019, Elsevier.
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It was also noticed that different linkers could significantly affect the catalytic perfor-
mance during CO2 hydrogenation. Wang et al. successfully immobilized Ru-based molecu-
lar complexes into terminal amino functionalized MIL-101(Cr)-NH2 by post-synthetic mod-
ification, where salicylaldehyde (Sal) and 2-diphenylphosphinobenzaldehyde (DPPBde)
were utilized as bridging linkers between MOF and Ru (III) ions. The structure of active
sites is shown in Figure 6c, where RuCl3 coordinated with the amino group in the MIL-101
(Cr)-NH2 (RuCl3@MOF), the N atom of carbon–nitrogen double bonds and the O atom
of Sal (RuCl3@MIL-101(Cr)-Sal), and the N atom of carbon–nitrogen double bonds and
the P atom from linker DPPBde (RuCl3@MIL-101(Cr)-DPPB), respectively. Among them,
RuCl3@MIL-101(Cr)-DPPB delivered the highest TON of 242 under 120 ◦C and 6 MPa
(H2/CO2 (v:v) = 4:1) with triethylamine (Et3N) as the base in ethanol during CO2 hydro-
genation toward formic acid. Mechanistic insights suggested that the stronger electron-
donating ability of P sites in DPPBde promoted the RDS, namely, the insertion of CO2
into Ru-H [96]. Similarly, ZIF-8 was also utilized as the host, and 3-methyl-1,2,4-triazole
with uncoordinated N sites was introduced to anchor Ru by post-synthetic modification,
which was examined for CO2 hydrogenation to formic acid. The donated electron to Ru
from uncoordinated N sites in linkers decreased the activation energy of CO2 activation, as
revealed by experiments and theoretical calculations [97].

Overall, the host–guest composites not only maintain the distinctive activity in low-
temperature CO2 hydrogenation and increase the stability and recyclability of molecular
complexes but also provide a platform to further enhance their activity and/or selectivity
via engineering the primary coordination sphere and second sphere interactions. The one-
pot synthesis is relatively simple to encapsulate molecular complexes into an MOF cage or
channel, but it is limited by the size of the MOF channel and remains challenging to tune
the encapsulation location and uniformity. It is worth noting that guest molecule leaching
always hinders this kind of catalyst in large-scale applications. The post-synthetic modi-
fication via the aperture-opening strategy could break the limitation of the MOF channel
and guest molecule leaching, but the underlying mechanism remains elusive, impeding the
rational design. Moreover, these strategies are applicable only after sophisticated synthetic
techniques to construct the desired structure, which would limit large-scale applications.
Thus, the development of novel and efficient strategies to prepare MOF-based host–guest
composites is highly desired.

2.2. Active NPs Confined into MOFs’ Cavities or Channels

Nanometals or oxides have been demonstrated to be effective catalysts for CO2 hy-
drogenation [3,98,99]. Nanoscale effects have been well examined in the rational design
of high-performance catalysts due to their specific structural and electronic effects (e.g.,
facet, coordination, or unsaturated sites) [58,100,101]. High surface-area supports (e.g.,
zeolite, carbon, oxide, and MOF) are needed to stabilize active sites due to their thermody-
namic instability at the nano-/atomic scale, especially at high temperature and pressure
conditions in the presence of H2O. Among them, the active sites confined in MOFs provide
more opportunities, resulting from their chemically tunable pore surfaces [102], framework
flexibility [103], and various modification strategies (e.g., post-synthetic modification and
exchangeable ligands) [104,105]. Apart from active NPs directly confined in MOFs, the
functionalization of linkers with catalytically active species [93,106] and utilization of the
modified MOF nodes as the active sites [107] were also designed. The functionalized
linkers with different chemical groups could also enhance reactant adsorption [108,109],
promoting CO2 hydrogenation. In this section, the strategies for MOFs confined in NPs
catalysts will be reviewed and the confinement effects will be presented, including size
effects, encapsulation effects, and synergistic effects, to provide deeper insights into the
advantages and features of confined catalysis.
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2.2.1. Atomically Active Sites Confined in MOFs

The electronic and geometric structures of supported NPs can result in dramatic
changes in catalytic performance [110–114]. Atomically active sites have been well studied
for hydrogenation reactions due to their unique electronic and geometric structures, 100%
atom utilization, and unique reaction micro-environments [115–118]. Recent theoretical and
experimental studies have found that atomically active sites exhibit better catalytic activity
or selectivity than their nanometer-sized counterparts [118–120]. Moreover, the rapid devel-
opment of related synthetic strategies, characterizations, and theoretical interpretation of
atomically active sites provide an ideal platform to understand the structure–performance
relationship and reaction mechanisms.

A unique example is that a well-defined MOF containing functionalized linkers with
catalytically active species was utilized as a model material to interpret the reaction mech-
anism during CO2 hydrogenation to examine the structural requirements for CH3OH
production on ZrZnOx. The well-defined Zn2+–O–Zr4+ sites were constructed by post-
synthetic treatment of Zr6(µ3-O)4(µ3-OH)4 nodes of MOF-808 with ZnEt2 and then followed
by a mild thermal treatment to remove capping formats on Zr SBUs. The as-prepared
composites delivered a high CH3OH yield of 5.72 mmolCH3OH gZn

−1 h−1, >99% CH3OH
selectivity, and excellent stability (e.g., >100 h) in CO2 hydrogenation at 250 ◦C. A syner-
gistic effect between open Zr4+ sites and Zn2+ centers was proven to be indispensable to
the generation of CH3OH. Mechanistic investigations disclosed that (1) Zn2+ was responsi-
ble for H2 activation by TPD of H2 and H/D exchange tests; (2) CO2 was adsorbed and
activated on open Zr4+ sites in the nearby Zr4+–O–Zn2+ interface, as shown in Figure 7. In
situ DRIFT and DFT calculations further showed that the activated CO2 reacted with the
heterolytic splitting H− to form *HCOO intermediate on Zn2+ sites, followed by hydro-
genation to dioxomethylene (*H2COO), formaldehyde (*H2CO), methoxy (*H3CO), and
finally methanol [121]. These findings demonstrated that Zn was active for H2 activation;
meanwhile, both Zn and Zr participated in CO2 activation, in agreement with previous
studies [10,31,122]. Moreover, this study revealed the precise chemical structures of Zn and
Zr in their active forms during CO2 hydrogenation.
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Multifunctional sites in MOFs were also facilitated, enabling cascade CO2 hydrogena-
tion to multi-carbon products (e.g., C2H5OH and C2H4). An et al. designed well-defined
Cu active sites on deprotonated [Zr12O8(µ3-O)8(µ2-O)6(carboxylate)18]14

− SBUs in the
Zr12-MOF for selective CO2 hydrogenation to ethanol [123]. Regarding the synthesis,
Zr12-SBUs with an average thickness of 50 nm were prepared and the SBUs were depro-
tonated by LiCH2SiMe3, followed by metalation with [CuI(CH3CN)4](BF4), which was
confirmed by infrared (IR) spectrum. Two types of Cu species were formed: 1) four-
coordinated tetrahedral CuI centers([(µ4-O−)(µ2OCO carboxylate)2 CuI(THF)]) (site 1,
3) and [(µ4-O−Li+)(µ3-O−)(µ4-O−)CuI(THF)] (site 2), as shown in Figure 8. Moreover,
different alkali cations were also introduced into the MOF structure to modify the local
environment of Cu, which was confirmed by XAS analysis. Among them, the Cs+-modified
MOF catalyst achieved a TON of 4080 and >99% selectivity of ethanol in supercritical CO2
(30 MPa CO2 /5 MPa H2) at 85 ◦C. In contrast, the randomly supporting active Cu sites
on ZrO2 preferred CH3OH formation under identical reaction conditions, as the aggrega-
tion occurred. The experimental results and DFT calculations disclosed that the H2 was
activated on (CuI)2 sites by a bimetallic oxidative addition process to form (Cu2+–H−)2
and then reacted with CO2 to produce methanol and *CHO species, where electron-rich
CuI induced by the effective electron-donating effect of Cs could facilitate these steps. The
C–C bond was formed to get the CH3CHO intermediate via the nucleophilic attack on
methanol by the CHO intermediate on bimetallic Cu sites; ethanol was formed by further
hydrogenation. Additionally, alkali metals could stabilize *CHO intermediate to direct the
C2H5OH formation. Overall, the synergistic effect between the cooperative nature of the
bimetallic CuI

2 centers and the electron-rich environment for the Cu center was interpreted
to contribute to the higher activity for C2H5OH formation.
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Figure 8. Synthesis and structures of Zr12-bpdc and Zr12-bpdc-CuLi catalysts. Reproduced with
permission [123]. Copyright 2019, Nature publishing group.

To better understand the multi-functionality of MOFs, MOFs involved in catalytic
cycles were also investigated. For example, Zeng et al. developed a cascade catalyst, CuI

centers supported on MIL-125 ([Ti8(µ2-O)8(µ2-OH)4(BDC)6]), where the CuI catalyzed CO2
hydrogenation to C2H5OH, but C2H5OH dehydration on Ti2-µ2-O–M+ (M+ = H+, Li+) sites
occurred. The post-synthetic metalation of SBUs was utilized for catalyst preparation and
MIL-125-NH2-CuI-4 was obtained, as shown in Figure 9a [124,125]. The as-obtained com-
posites exhibited >90% selectivity toward C2H4 during CO2 hydrogenation with a reaction
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rate of up to 514 µmol gcat
–1 h–1 at 100 ◦C and 5 MPa (H2/CO2 = 3:1) in THF. The choice

of MIL-125 as the support was critical to the tandem CO2-to-C2H4 transformation: (1) the
Ti8(µ2-O)8(µ2-OH)4 SBU rather than other SBUs stabilized CuI to avoid Cu0 formation;
(2) the short CuI–CuI distance in Ti8(µ2-O)8(µ2-O-CuI)4 enhanced the synergistic effect
on C2 formation; (3) the strong Lewis acid TiIV catalyzed C2H5OH dehydration at low
temperatures (∼100 ◦C); and (4) C2H5OH was easily adsorbed on the Ti2(µ2-O–M+) site in
Ti8(µ2-O)8(µ2-O–CuI)4, which further induced β-elimination to produce C2H4 (Figure 9b,c).
This work highlighted new opportunities in using MOFs as novel supports for CO2 hydro-
genation to C2H4 [126]. Moreover, this study indicated the pore-dependent activity and
selectivity during CO2 hydrogenation in tunable and ordered structure MOFs.
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Apart from the transition metals (Zn or Cu), noble metals (e.g., Pt) are also able to encap-
sulate into MOFs, where the atomically dispersed Pt1 atom was coordinated by four O atoms
in MIL-101, as shown in Figure 10a. The active sites created by metal–ligand cooperativity
led to the dissociation of H2 to form hydroxyl groups, attacking CO2 to produce the key
intermediates of HCOO*, evidenced by DFT calculations and operando spectroscopies
(Figure 10b). In contrast, the Pt cluster (Ptn) encapsulated in MIL-101 preferred hydride
formation and then hydrogenated CO2 into COOH* as key intermediates. The divergence
in reaction paths resulted in different catalytic selectivity between Pt1@MIL-101(90%) and
Ptn@MIL-101 (58%), where the *HCOO intermediates went through stepwise hydrogena-
tion to produce CH3OH, while *COOH was hydrogenated into various products including
HCOOH, CH3OH, CO, and CH4 (Figure 10c,d) [127].
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Accordingly, atomically dispersed active sites in MOFs are an ideal target in catalyst
design, especially for noble metals, which not only increase the exposed active sites per
molar amount of metals but also create new prospects for the controllable surface free energy
of the metal atoms. The synergistic effect in MOFs is of great importance for the rational
design of catalysts to achieve excellent performance for desired products. The design of
atomically distributed active metals in MOFs with reasonable catalytic performance has
been demonstrated in the lab; however, no related application was found on a large scale,
hence, more efforts should be directed to developing more efficient strategies for confined
catalysts using MOFs as hosts.

2.2.2. Active NPs Confined in Monocrystal MOF

Heterogeneous catalysts are usually prepared by loading active metal sites onto
a support, where both the structure of active metal sites (e.g., facet, morphology, and
electronic state) and properties of supports (physical properties and chemical properties)
will affect the catalytic performance [116,128–133]. For example, the different facets of
active NPs result in different unsaturated metal surface atoms, which can change the
catalytic processes; the supports not only affect the dispersion of active NPs but also
tune the electronic and/or geometrical structure of active NPs via SMSI [132,134–136].
Actually, the sintering under harsh reaction conditions due to Ostwald ripening or particle
migration and coalescence makes it challenging for industrial application [137,138]. An
efficient and sustainable strategy, encapsulation has been well investigated to increase their
long-term stability [139].

Rungtaweevoranit et al. successfully synthesized single nanocrystalline UiO-66 encapsu-
lated 18 nm Cu via the bottom-up method using Zr(OPrn)4 as a precursor (Figure 11a,b). The
as-prepared Cu@UiO-66 was demonstrated to be active and selective for CO2 hydrogenation
toward CH3OH, and the TOF was 3.7 × 10−3 s−1 at 175 ◦C and 1 MPa (H2/CO2 = 3/1).
The formation rate of CH3OH on Cu@UiO-66 was almost two and nine times higher than
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those of Cu supported on UiO-66 and commercial Cu/Zn/Al2O3, respectively. Moreover,
100% selectivity was observed on Cu@UiO-66. The strong interaction between Cu NPs
and Zr oxide SBUs of the MOF was interpreted as leading to the higher catalytic perfor-
mance [140]. Kobayashi et al. investigated the coated effects of MOFs including ZIF-8,
MIL-100, and functionalized UiO-66 on CO2 hydrogenation for CH3OH formation, as
shown in Figure 11c. The charge transfer was observed between Cu and MOF substrates,
and UiO-66 was found to be the most active support. Interestingly, the replacement of Zr4+

with Hf4+ or functional groups (e.g., from -NH2 to -COOH) in UiO-66 enhanced the rate of
CH3OH production [141]. Truhlar and coworkers provided deeper insight into the molec-
ular interactions between Cu and Zr in UiO-66. The experimental and theoretical results
disclosed that the direct interaction between Cu NPs and ZrO2 nodes was essential for CO2
hydrogenation to CH3OH (Figure 11d) [142]. The quantitative effects of the missing-linker
defects on H2 and CO2 activation were carried out using a detailed quantum mechanical study.
It was found that the optimum number of missing linkers (ca. 5–7 per unit cell) balanced the
steric effects and the strong CO2 binding on the ZrO2 node delivered a maximum TOF of
CH3OH formation [143].
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Figure 11. (a) TEM image of Cu@UiO-66. (b) The scheme of CO2 hydrogenation over Cu@UiO-66.
Reproduced with permission [140]. Copyright 2016, American Chemical Society. (c) The amount
of CH3OH synthesized from CO2 and H2 using Cu/γ-Al2O3 and various Cu/MOF composite
catalysts. Reproduced with permission [141]. Copyright 2019, Royal Society Chemistry. (d) The
structure–performance relationship of Cu@UiO-66 during CO2 hydrogenation. Reproduced with
permission [143]. Copyright 2022, American Chemical Society.

MOFs further provide a specific platform for NPs including protective microenvi-
ronments and functional sites. Zheng et al. reported that the core–shell monodispersed
nanosphere Au@Pd could be encapsulated by the UiO-66 membrane to protect its mor-
phology and then the microporous characteristic of UiO-66 preferred the adsorption of
Pt NPs on its surface to impart its functionality. This kind of assembly enhanced the
interaction between NPs and UiO-66, allowing for the spatial distribution of NPs in MOFs.
Furthermore, the catalysts for the RWGS in a fixed-bed flow reactor exhibited high catalytic
activity and CO selectivity [144].
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MOFs can also serve as novel supports for mixed oxide catalysts via taking advantage
of tunable and specific strong metal–support interactions. Lin and coworkers demonstrated
a strategy to utilize the UiO-bpy MOF constructed by bpy and Zr6(µ3-O)4(µ3-OH)4 to
encapsulate ultrasmall Cu/ZnOx nanoparticles, which selectively catalyzed high-rate CO2
hydrogenation to CH3OH with the yield up to 2.59 gCH3OH kgCu

–1 h–1, 100% CH3OH
selectivity, and high stability over 100 h (Figure 12a). The UiO-bpy MOF was chosen
because of its exceptional hydrothermal stability. Post-synthetic metalation was developed
to introduce Cu2+ and Zn2+ ions sequentially, which were coordinated to the bpy and
µ3-OH sites in the MOF, respectively. Finally, ultra-small Cu/ZnOx NPs generated under
reaction conditions were encapsulated in the tetrahedral and octahedral cages confined by
the ligands as the active sites. The as-prepared composite exhibited much better CH3OH
selectivity and stability than those of commercial Cu/ZnO/Al2O3 (Figure 12b), likely
resulting from the suppression of Cu NPs’ agglomeration and phase separation between
Cu and ZnOx. Regarding mechanistic understanding, the authors proposed that CO2 was
adsorbed on unsaturated ZrOx and ZnOx sites to form carbonates and bicarbonates; the
homolytic dissociation of H on Cu spill over to the Zr sites on the SBUs and defect sites
of ZnOx (Figure 12c). Overall, the synergistic combination of hydrogen activation sites
on Cu and CO2 activation on ZnOx and Zr SBUs contributes to superior performance
of the CuZn@UiO-bpy catalyst [145]. Similarly, Yu et al. also reported that ultra-small
bimetallic Cu/ZnOx NPs was encapsulated in UiO-66 by the deposition–precipitation
method; both metal loading and the Cu/Zn mole ratio could regulate the Cu-Zn interaction.
The highest CH3OH yield of 9.1% was obtained over the Cu-Zn@UiO-66 catalyst (Cu-Zn
loading: 35 wt.% and Cu/Zn mole ratio: 2.5) [146].
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2.2.3. Active Species Confined in MOF Membrane

The active species of CO2 hydrogenation are not only encapsulated in monocrystal
MOFs, but also confined by the MOF membrane. The combination of guest species and
different types of MOF active sites (e.g., metal nodes, functional organic linkers) makes
MOFs promising multifunctional materials for synergistic catalysis [47]. For example,
the ZnZrOx/SAPO-34 composite was able to selectively catalyze CO2 hydrogenation to
paraffin. Jiang et al. shifted the product distributions from paraffins to olefins via the
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introduction of the UiO-66 membrane as a coating layer on the SAPO-34 surface. It was
demonstrated that the stable UiO-n membrane passivated the excessive Brønsted acid
sites of SAPO-34, suppressing the hydrogenation of olefins to paraffins. Meanwhile, the
uniform UiO-66 membrane had no effect on the diffusion step during CO2 hydrogenation,
where the selectivity of the C2−C4 olefins was increased from 57% on ZnZrOx/SAPO-34
to 80% on that with a UiO-66 membrane under 380 ◦C, 3 MPa, and GHSV of 6000 h–1

(CO2/H2/Ar = 24:72:4), as shown in Figure 13a [147]. Compared with the existing strate-
gies of adjusting the acidity of zeolites by changing the structure of the zeolite framework
(e.g., alkali treatment or increasing calcination temperature), the method of membranization
by coating a layer of a functional MOF membrane on the zeolite surface did not affect the
framework structure. Moreover, a UiO-66 membrane was epitaxially grown on the surface
of nano-SAPO-34 clusters as a support for dispersed Pt for CO2 hydrogenation. The MOF
membrane not only overcomes the noble metal agglomeration and enhances the molecular
sieve synergistic catalysis, but also provides sites for CO2 adsorption, significantly enhanc-
ing the selectivity and yield [148]. Similarly, Pan et al. developed a strategy for the epitaxial
growth of the UiO-66-NH2 shell to obtain an MOF-membranized bicomponent core−shell
catalyst, HZSM-5@UiO-66-NH2/Pd. By coating UiO-66-NH2 on the surface of HZSM-5,
the highly dispersed and small Pd NPs can be anchored on the HZSM-5@UiO-66-NH2
supports owing to the affinity between UiO-66-NH2 and Pd NPs. The as-prepared HZSM-
5@UiO-66-NH2/Pd exhibited high CO selectivity (92.2%) with 17.1% CO2 conversion in
CO2 hydrogenation toward CO at 320 ◦C [149].
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Apart from Cu/ZnO catalysts, Pd/ZnO catalysts are also active for CH3OH production
in CO2 hydrogenation [150,151]. Li et al. designed core–shell ZnO@ZIF-8 nanorods with
an ultrathin ZIF-8 membrane overcoating to confine Pd NPs at the ZnO/ZIF-8 interface
for CO2 hydrogenation, as shown in Figure 13b. Surface oxygen defects of ZnO were
generated during the formation of ZIF-8 shells, which facilitated the chemisorption of
CO2 by promoting electron transfer to CO2. Sub-nano PdZn alloy was confined at the
ZnO/ZIF-8 interface after H2 reduction, giving a high CH3OH selectivity and long-term
stability. The thickness of ZIF-8 significantly dominated the activity of CH3OH formation,
which was related to the number of PdZn alloy sites at the interface with O-defective ZnO.
The optimized catalyst achieved 66–78% of CH3OH selectivity and 12.1–19.8 g gPd

−1 h−1

of methanol yield at 250–290 ◦C and 4.5 MPa, showing much higher values than those of
reported Pd-based catalysts under comparable conditions [1].

With the rapid development of synthetic chemistry, various MOF-confined catalysts
with different structures and interfaces were successfully constructed via one-pot synthesis
and post-synthetic modification, which impressively exhibited unique properties over
traditionally supported catalysts. The catalytic performance of various catalysts in CO2
hydrogenation is summarized in Table 1. However, they still suffered from big challenges,
especially MOF stability in fixed-bed type reactors. Most MOFs were easily decomposed
in high-polar solvents or at temperatures higher than 300 ◦C, especially in the presence
of water [152–154].

Table 1. Summary of CO2 hydrogenation over various catalysts.

Catalysts
Reaction Conditions Performance Ref.

P (MPa) T (◦C) CO2/H2 TON Product

Ru3-NHC-MOF 8 120 1 3803 HCOOH [65]

[Ru]@UiO-661 1.5 27 4 280,000 HCOOH [48]

Ru-1@UiO-66+Ru-2

4 70 12

6600

CH3OH [79]
Ru-2@UiO-66+Ru-1 5700

Ru-1@UiO-66+Ru-2@UiO-66 3500

[Ru-1, Ru-2]@UiO-66 4300

Ru-1@UiO-66-NH3
+

4 70 12

10,900

CH3OH [52]
Ru-1@UiO-66 6900

Ru-1@UiO-67 7100

Ru-1@UiO-66-NH3
+ 8300

bpydcOH-IrIII-UiO
0.1 85 1

6149
CH3OH [87]

bpydc-IrIII-UiO 417

Pd@Mn:JMS-2 5 100 4 409 C2H5OH [88]

RuCl3@MIL-101(Cr)-DPPB 6 120 4 242 HCOOH [89]

Zn-MOF-88 4 250 3 5.9 a CH3OH [121]

[CuI] 35 85 0.2 4080 C2H5OH [123]

Cu/MIL-125 5 100 3 514 a C2H4 [126]

Pt1@MIL-101 3.2 150 3 0.6 a CH3OH (90%) [127]

CuNP@UiO-66 1 175 3 0.004 b CH3OH [140]

CuZn@UiO-bpy 4 250 3 2.6 c CH3OH [145]
Note: [Ru]: (tBuPNP)Ru(CO)HCl; Ru-1: (tBuPNP)Ru(CO)-HCl; Ru-2: (tBuPNN)RuH(CO)Cl; bpydcOH:
2,2′-bipyridine-5,5′-dicarboxylate ligands (bpydc) with −OH substitution on the 6-position; Pd@Mn:JMS-2:
[Mn(bpdc)(DMF)2PdCl2]n and 2,2′-bipyridine-4,4′-dicarboxylate (bpdc); DPPB: 2-diphenylphosphinobenzaldehyde
(DPPBde); a: mgCH3OH gZn−1 h−1; [CuI]: [(µ4-O−Li+)(µ3-O−)(µ4-O−)CuI(THF)]; b: s−1; c: gMeOH kgCu–1 h–1.

3. Confined Synthesis and Confinement Effects for MOF-Derived Materials

MOFs have been explored as potential templates or precursors to prepare highly
dispersed NPs via thermal decomposition due to their unique structure and textural prop-
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erties [57,155–157]. Carbon-encapsulated NPs derived from MOFs as emerging catalysts
received tremendous research efforts [158–160]. The framework of MOFs could protect the
active site aggregation to generate highly dispersed NPs during high-temperature pyroly-
sis. Moreover, the confinement effects induced by the encapsulation carbon layer provide
robust microenvironments for CO2 hydrogenation, which could tune the binding energy
of key intermediates and affect the adsorption of CO2 and transportation of products. In
this section, we will simply highlight some important merits of the encapsulated metal
nanoparticles for CO2 hydrogenation, including modification of local reaction environment,
electronic transfer, and interfacial catalysis to enhance catalytic performance.

Carbon-encapsulated highly dispersed NPs derived from MOFs were widely investi-
gated for selective CO2 hydrogenation. Lu et al. reported a one-step pyrolysis of MOFs
containing both an N-free and an N-containing linker to obtain highly dispersed cobalt NPs
embedded in a carbon matrix for selective CO2 hydrogenation to CO (Figure 14a,b) [161].
The presence of N in the MOF precursor could not only decrease the size of generated
Co [162,163], but also modulate local reaction conditions because of the formation of a
Mott–Schottky interface, which lowered the energy barrier for the formation of formate
intermediates [164–166]. Similar enhancement was also observed in Fischer–Tropsch syn-
thesis [167]. Moreover, Ni-based MOFs could generate hierarchical Ni@C hollow spheres
composed of highly dispersed Ni NPs confined in carbon shells, which was active and
selective for CO2 hydrogenation to CH4 (Figure 14c,d). The high surface area and highly
dispersed active sites were ascribed to promote CO2 adsorption and redox catalysis [168].
Apart from C1 products, highly dispersed Fe-based catalysts derived from Fe-MIL-88B
could catalyze CO2 actively and selectively to valuable hydrocarbons (C2+) [169–174].
Ramirez et al. examined the promotion effects of various elements (Cu, Mo, Li, Na, K, Mg,
Ca, Zn, Ni, Co, Mn, Fe, Pt, and Rh) for the resulting Fe@C-based composites during CO2
hydrogenation, where the Basolite F300(Fe) was used as a template and incipient wetness
impregnation was utilized to add the various promotors (Figure 14e) [56]. Among them,
only K could increase the activity and enhance C2–C6 olefin selectivity from 0.7% to 36%.

Another property of the confinement effects is the strong interaction between the
metal NPs and the encapsulating materials, which facilitates the electron transfer under
some conditions and maximizes the interfacial area due to their close contact [175–190]
Pustovarenko et al. demonstrated the MOF-mediated route for the preparation of highly
efficient Co3O4-supported In2O3 catalyst via stepwise pyrolytic–oxidative decomposi-
tion, as shown in Figure 15a, which selectively catalyzed selective CO2 hydrogenation to
CH3OH [191]. The stable Cu-ZnO interfacial sites were also constructed using a novel
bimetallic CuZn-BTC MOF for CO2 hydrogenation to CH3OH [192]. Additionally, Cu-
based catalysts were revealed to be structure sensitive, including facet, defect, particle size,
and interface [22,193–196]. Han et al. prepared hollow Cu@ZrO2 catalysts through pyroly-
sis of Cu-loaded Zr-MOF, where low-temperature pyrolysis (e.g., 300 ◦C) produced highly
dispersed Cu nanoparticles with balanced Cu0/Cu+ sites, larger amounts of surface basic
sites, and an abundant Cu-ZrO2 interface in the hollow structure, as shown in Figure 15b,
which delivered the best performance for CO2 hydrogenation to CH3OH with 5% CO2
conversion and 85% CH3OH selectivity at a reaction temperature of 220 ◦C [197]. Similarly,
Yu et al. prepared highly dispersed Cu NPs on ZrO2 via the calcination and reduction of
ZrO2@HKUST-1 (Figure 15c). Due to the confinement of MOFs, highly dispersed Cu on
ZrO2 was generated, which increased the efficient active sites and produced more interface
between the Cu and ZrO2. The as-prepared catalysts exhibited 5.2 times higher CH3OH
yield than that of those catalysts prepared by the conventional impregnation method [198].
Similar enhancement was also demonstrated in the PdZn alloy and In2O3/Pd during
CO2 hydrogenation [199,200].
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permission [56]. Copyright 2018, American Chemical Society.
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Overall, the MOF-derived materials exhibited higher stability than MOFs themselves
in CO2 hydrogenation. The electronic effects of SMSI and interfacial catalysis could dramat-
ically enhance catalytic performance. However, the reaction mechanism at the molecular
level remains elusive; more advanced operando characterizations in conjunction with
theoretical calculation are needed in further work to decipher the mechanism in greater
detail. It is worth noting that the encapsulating layer (especially the carbon layer) seems to
be consumed on stream to decrease the catalytic performance because of the involvement
in CO2 hydrogenation.

4. Conclusions and Outlook

Different from zeolite with fixed tetrahedral Si/Al coordination and pore sizes (<1 nm) [201],
the uniform and tunable cavities and tailorable composite make MOFs especially attractive
for heterogeneous catalysis. The confinement effects in MOFs or MOF-derived materials
involving immobilization, size of active sites, encapsulation, and synergy effect significantly
perturb the catalytic performance of CO2 hydrogenation. In this review, the microstructural
optimization and engineering of MOF-based catalysts for CO2 hydrogenation were system-
atically summarized. The MOFs or MOF-derived catalysts can be simply divided into three
categories: (1) molecular complexes, atomic or nanosized active species are confined into
cavities or channels of MOFs via one-pot synthesis or post-synthetic modification; (2) active
species are surrounded by MOFs or MOF membranes by epitaxial growth; (3) active sites
are embedded in carbon or oxide layers derived from MOFs. The most important merits
of the heterogenized molecular complexes are their dramatically enhanced recyclability
and stability. The advantages of the confined NPs are the cage or channel stabilization and
modification of the local reaction microenvironment. The composites derived from MOFs
exhibited strong electronic transfer effects and increased interface catalysis between active
sites and the encapsulating layers.

Despite all the progress achieved by researchers, many problems remain unsolved. For
example, the precise synthesis with desired spatial distribution, loading, and size of active
species in MOFs represent the biggest challenges in this field; the hydrothermal stability
of host MOFs under reaction conditions is still limited; most products are CO, CH4, and
CH3OH, but the high-value-added chemicals or fuels produced from CO2 hydrogenation
are limited; and the enhancement interpretation of confinement effects at the molecular
level is less than well understood.

In the future, extensive efforts are required to resolve the existing challenges. The
detailed directions are as follows:

1. The development of sophisticated organic synthesis to design more linkers with
desired functional groups is highly needed, which will make the precise tailoring
of active sites highly possible. For example, some functional groups (e.g., carboxyl,
sulfonic acid, or amino groups) are effective to stabilize the active sites; therefore,
their controllable synthesis with desired positions and contents are essential to obtain
rationally designed catalysts.

2. More fundamental interpretations for MOF nucleation, growth, decomposition, and
collapsing can provide a strong foundation for more stable MOFs preparations. Since
the generated water in CO2 hydrogenation is unavoidable, water management near
the active sites can change the stability of MOFs and tune product distributions.

3. To date, only imidazole or carboxylate-based MOFs were widely investigated for CO2
hydrogenation; more linkers and metal nodes (e.g., Ru, Ti, Mo, and Mn) are needed
to obtain a higher diversity of applicable MOFs. Apart from Cu-, Zr-, or Zn-based
composites, some new catalyst systems (e.g., Ru, Mn, and Rh) are more interesting for
high-value-added chemicals or fuel formation.

4. Advanced characterization techniques are required to reveal the structure of the
active sites; the reaction mechanisms at the molecular scale are helpful to increase the
selectivity of target products.
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