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Abstract: In vivo models of acute myeloid leukemia (AML) are low throughput, and standard liquid
culture models fail to recapitulate the mechanical and biochemical properties of the extracellular
matrix-rich protective bone marrow niche that contributes to drug resistance. Candidate drug
discovery in AML requires advanced synthetic platforms to improve our understanding of the
impact of mechanical cues on drug sensitivity in AML. By use of a synthetic, self-assembling peptide
hydrogel (SAPH) of modifiable stiffness and composition, a 3D model of the bone marrow niche to
screen repurposed FDA-approved drugs has been developed and utilized. AML cell proliferation
was dependent on SAPH stiffness, which was optimized to facilitate colony growth. Three candidate
FDA-approved drugs were initially screened against the THP-1 cell line and mAF9 primary cells in
liquid culture, and EC50 values were used to inform drug sensitivity assays in the peptide hydrogel
models. Salinomycin demonstrated efficacy in both an ‘early-stage’ model in which treatment
was added shortly after initiation of AML cell encapsulation, and an ‘established’ model in which
time-encapsulated cells had started to form colonies. Sensitivity to Vidofludimus treatment was
not observed in the hydrogel models, and Atorvastatin demonstrated increased sensitivity in the
‘established’ compared to the ‘early-stage’ model. AML patient samples were equally sensitive to
Salinomycin in the 3D hydrogels and partially sensitive to Atorvastatin. Together, this confirms that
AML cell sensitivity is drug- and context-specific and that advanced synthetic platforms for higher
throughput are valuable tools for pre-clinical evaluation of candidate anti-AML drugs.

Keywords: acute myeloid leukemia; 3D peptide hydrogel model; candidate drugs

1. Introduction

Acute myelogenous leukemia (AML) is the most common type of acute leukemia
in adults and arises from genetic mutations in hematopoietic stem or progenitor cells,
which result in an uncontrollable proliferation of immature leukemic white blood cells
and a blockage of differentiation [1,2]. AML is an aggressive, heterogeneous disease
that can present in all age groups with an overall poor prognosis [3]. Increasing age
correlates with incidence, with the highest rates observed in people over 75 [4,5]. Due to
the intensity of standard chemotherapies, the cure rate for patients older than 60 years is
only 5–15% [6]. A better understanding of key pathways, molecular classification, and
monitoring of patients over the last two decades has resulted in the discovery of promising
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novel therapies, including FLT-3 inhibitors and Venetoclax (reviewed by Bazinet and
Assouline [7]).

An increasingly important challenge in cancer drug development is the cost-benefit
ratio. As of 2020, developing a drug treatment from discovery to clinical application costs
an average of 2.5 billion dollars, with the most expensive part of the process being clinical
trials, which consume approximately 50% of the total investment [8,9]. Drug repurposing—
a system for identifying new applications for drugs outside the disease of their initial
approval [10–12]—is emerging as a potential strategy for future cancer treatments. FDA-
approved repurposed drugs have long-term toxicity profiles that minimize the risk of
failure in the clinic due to side effects and thus reduce the overall time and cost. The major
effort is determining the efficacy of the repurposed drugs for the specific disease of interest.
We and others have demonstrated the efficacy of several drugs targeted towards other
diseases (e.g., sodium valproate) in the clinical setting against subtypes of AML [9,13]. More
recently, using a combination of connectivity mapping in a conditional model of Mixed-
Lineage Leukemia (MLL) AML and drug similarity analysis, we identified FDA-approved
candidate drugs (including Salinomycin, Atorvastatin, and Vidofludimus) that potentially
target HOXA-dependency in MLL-AF9 leukemia [14]. For candidate drug studies, the
human THP-1 cell line and murine mAF9 primary cells were selected as matched exemplars
of AML models that harbor the MLL-AF9 translocation.

Due to their ability to recapitulate the bone marrow niche, animal models remain the
current gold standard for pre-clinical AML research. However, the combination of difficulty
in interpreting key parameters that guide cell behavior [15,16], and the lack of translation
of positive findings to humans [17], suggests an inability of current preclinical testing to
accurately mimic the AML microenvironment and highlights the need for the development
of defined, customizable models. The structure-function relationship within 3D models
has been shown to significantly impact how cellular forces are generated and transduced
into biochemical or structural changes [18]. The addition of a 3D support helps regulate a
range of tissue mechanics, including the transport of nutrients and signaling molecules,
cell cytoskeleton organization, and cell morphology [18,19]. Compared to 2D models, this
behavior within 3D models has been shown to be more representative of the in vivo setting
from a biophysical perspective, and as such, there is a great need for accessible and tunable
3D platforms to mimic mechanical cues within AML disease models [20–22].

Hydrogels can be created using natural or synthetic components and prepared by
various methods depending on the desired functionality and application [23]. They have
emerged as 3D surrogate platforms for various disease models and applications, including
scaffolds, drug delivery, and cell transplantation, to mimic a wide range of tissues such as
neural tissue, breast tissue, or bone [23–28]. Compared to other methods for generating
3D models, e.g., the hanging-drop method or a bioreactor to drive cells to self-aggregate,
hydrogels have the advantage of being able to provide both chemical and mechanical
cues to resident cells. This is particularly important when modelling the AML microen-
vironment, as matrix stiffness has previously been shown to directly affect leukemic cell
proliferation and resistance to standard chemotherapy [22]. Due to their biological origin,
commonly used platforms, including Matrigel® and, to a lesser extent, collagen or hyaluro-
nan hydrogels, suffer from the fact that they are compositionally undefined and susceptible
to batch-to-batch variation, particularly around matrix stiffness. Conversely, synthetic
hydrogels are typically well-defined, have limited batch-to-batch variability, and often
provide the end user with the ability to tune their chemical and mechanical properties.

Herein, we use an unmodified, biologically inert synthetic self-assembling octapeptide
hydrogel (SAPH) previously optimized to create supportive environments for a variety of
cell types [29], with the ability to independently modify biochemical composition and sub-
sequent functionalization by addition of relevant extracellular matrix (ECM) molecules, pro-
teins, and growth factors [30,31]. The SAPH hydrogel provided a ‘blank canvas’ platform
capable of maintaining growth and monitoring of leukemic cell lines, primary leukemia and
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patient samples. Candidate repurposed drug treatments of leukemia cells in 3D hydrogels
were compared to current liquid and methylcellulose-based platforms.

2. Results
2.1. Unmodified SAPH Hydrogels Provide a Platform for Human Leukemia Cell Line Maintenance
and Survival

For optimization of culture methods within the SAPHs, several subtypes of human
leukemic cell lines were studied within the unmodified 3D model; these included U937,
THP-1, MV4-11, HL60, and OCI-AML3. The prototypical U937 suspension cell line (average
diameter 14 µm) was used to optimize the concentration of peptide in the hydrogel that
best supported AML cell survival and growth. A concentration of 6 mg/mL was identified
as optimal for U937 cells (Figure 1A) and used as the basis for other cell types. All human
leukemic cells survived and proliferated within the SAPH with some variation in growth
dynamics between cell lines (Figure 1B). The proliferation of the cells varied in colony size
and density, ranging from smaller, more compact colonies, as seen with THP-1 and HL60
cells, to larger, broader colonies as seen in the U937 and OCI-AML-3 cell cultures. The
optical transparency of the SAPHs allows for quantitative readouts of cell proliferation.
Seeding density does not appear to affect colony size in any cell line investigated, with both
cell concentrations studied producing similar-sized colonies. This supported the hypothesis
that the colonies are formed by cell proliferation rather than by cell migration from the
local microenvironment.
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Figure 1. Human leukemia cell lines grow and form colonies in unmodified self-assembling peptide
hydrogels (SAPH). (A) Cell viability assays determined by accrued luminescence measured by
RealTime-Glo™; for U937 cells in increasing concentrations of hydrogel. Statistical significance
(determined by two-way ANOVA in GraphPad Prism): ** p < 0.01, *** p < 0.001, **** p < 0.0001. N = 3,
n = 3. (B) Phase-contrast images of human leukemic cell lines seeded at 5 × 104/mL or 1 × 105/mL
in unmodified 6 mg/mL SAPH. Scale bars = 100 µm.

2.2. Maintenance and Survival of Primary Murine Leukemia Cells in Unmodified and
Modified SAPH

mAF9 cells were seeded at different concentrations in standard (1×) or reduced growth
factor (0.5×) liquid culture media in unmodified (top panel) or modified (bottom panel)
hydrogels (Figure 2). Phase-contrast images taken 3 or 6 days following the initial cell
seeding clearly demonstrate colony formation of mAF9 cells in both unmodified and
modified SAPH. Seeding densities of 2 × 105 in reduced growth factor media (Condition
2) or 1 × 105 in standard growth factor media (Condition 4) produced a quantifiable level
of colony growth formation, according to standard counting techniques. Staining and
confocal imaging of the colonies (Calcein AM and Ethidium homodimer-1), taken 6 days
following initial seeding, supported the phase-contrast results and demonstrated little or
no cell death (red cells) by day 6 in mAF9 colony growth. The addition of methylcellulose
(Condition 5), laminin (Condition 6), fibronectin (Condition 7), or hyaluronan (Condition
8) increased the number of mAF9 colonies produced from the standard cell seeding and
growth factor media concentrations used in Condition 1.
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Figure 2. MLL-AF9 primary leukemia cells (mAF9) survive and form colonies in unmodified and
modified self-assembling peptide hydrogels. Phase-contrast (top panel) and confocal images (bottom
panel) of mAF9 cells in defined conditions of modified peptide hydrogels. Confocal images were
taken 6 days following initial seeding and stained with Calcein AM and Ethidium Homodimer-1 to
indicate viability. HA = Hyaluronan; scale bars = 100 µm.

2.3. Salinomycin, Vidofludimus, and Atorvastatin Show Efficacy in Liquid Culture Treatment of
Human and Murine AML Cells

To initially evaluate the potential efficacy of the candidate drugs, a broad range of
dosages of Salinomycin, Vidofludimus, and Atorvastatin were completed within liquid
culture for the THP-1 human leukemic cell line (Figure 3A) and the mAF9 primary mouse
leukemic cells (Figure 4A). Cells were assessed for viability at 24, 48, and 72 h following
treatment with each drug of interest and recorded as percentage survival compared to
vehicle control. The EC50 values, calculated where possible (Figures 3B and 4B), were in
the micromolar or sub-micromolar range for all drugs in both models by 72 h. Short-term
drug treatment (24 h) of mAF9 cells showed measurable efficacy that was not seen in the
growth factor-independent THP-1 cells, indicating greater sensitivity for the primary cells.
Atorvastatin and Salinomycin both showed time- and dose-dependent reductions in cell
viability across both models. Low dose Salinomycin (<250 nM) was sufficient to cause a
50% reduction in cell viability in mAF9 cells for all timepoints evaluated.
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Figure 3. Candidate drug dose response assays for THP-1 cells in liquid culture. (A) Line graphs
showing viability of THP-1 cells (as percentage survival) over time following candidate drug treat-
ment at the indicated dosage as compared to 0.2% DMSO vehicle control. Mean values ± standard
deviation of biological replicates (N = 4, n = 3) are plotted throughout. (B) Calculated EC50 values for
each candidate drug at 24, 48, and 72 h following treatment.
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Figure 4. Candidate drug dose response assays for mAF9 cells in liquid culture. (A) Line graphs
showing viability of mAF9 cells (as percentage survival) over time following drug treatment at the
indicated dosage as compared to 0.2% DMSO vehicle control. Mean values ± standard deviation
of biological replicates (N = 4, n = 3) are plotted throughout. (B) Calculated EC50 values for each
candidate drug at 24, 48, and 72 h following treatment.
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2.4. Salinomycin and Atorvastatin Demonstrate Drug Efficacy in THP-1 Cells Enapsulated
in SAPH

To evaluate the potential efficacy of candidate drugs in 3D culture, the calculated
EC50 values for Salinomycin, Vidofludimus, and Atorvastatin for THP-1 cells in liquid
culture were used for encapsulated SAPH models. An ‘early-stage’ model, to mimic
leukemia initiation, was generated by treating hydrogels with the candidate drug or vehicle
control during cell encapsulation (~10 min). To evaluate the effect of drug treatment
on previously formed leukemia, an ‘established’ model was generated whereby drug or
vehicle were added 72 h following complete THP-1 cell encapsulation within the SAPHs. In
support of the liquid culture results, Salinomycin and Atorvastatin showed efficacy against
THP-1 leukemia cells in both the ‘early-stage’ (Figure 5A) and ‘established’ (Figure 5B)
encapsulated 3D SAPH models. The sensitivity to Salinomycin treatment in SAPHs was
comparable to that observed in liquid culture of THP-1 cells for all timepoints. Short-
term (24 h) Atorvastatin treatment demonstrated reduced sensitivity in both ‘early-stage’
and ‘established’ SAPH models. THP-1-encapsulated cells demonstrated resistance to
Vidofludimus using the established liquid culture EC50 values.
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Figure 5. Candidate drug efficacy of THP-1 cells encapsulated in 6 mg/mL self-assembling peptide
hydrogel (SAPH). (A) Bar graphs displaying the percentage survival of treated THP-1 cells 72 h after
drug addition to ‘early-stage’ SAPH models. (B) Bar graphs displaying the percentage survival of
treated THP-1 cells 72 h after drug addition in ‘established’ SAPH models. For all results, mean values
± standard deviation of biological replicates (N = 3, n = 3) are plotted throughout. Statistical signifi-
cance (determined by two-way ANOVA in GraphPad Prism): * p < 0.05, ** p < 0.01, **** p < 0.0001.
All results are presented as percentages compared to vehicle (DMSO) control of 0.02% for calculated
EC50 values in liquid culture (Figure 3).

2.5. Decreased Viability and Colony Formation in Salinomycin and Atorvastatin-Treated AML
Patient Samples

To further examine the efficacy of Salinomycin and Atorvastatin, the two drugs that
demonstrated consistent effects on THP-1 and mAF9 cells, they were applied to AML
patient samples. As liquid culture of primary AML patient samples alone is problematic,
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cell viability assays for 3D SAPH models were compared with an established liquid culture
plus MS-5 stromal cell co-culture (Figure 6A). As can be seen, Atorvastatin treatments in
the co-culture setting produced ~50% reduction in cell viability in both patient samples
following 72 h treatment, whereas in this setting, Salinomycin only showed a reduction
(~40%) in survival for patient #694. In the 3D SAPH cultures, Salinomycin showed a
consistent time- and dose-dependent reduction in cell viability for both AML patient
samples (#522 and #694 denoted by *). Longer-term and functional effects of the drugs were
also monitored using methylcellulose colony assay formation (Figure 6B). Salinomycin
(500 nM) was more potent than Atorvastatin (5 µM) in reducing colony numbers (right
panel) and the colonies that were produced following either drug treatment were of the
more differentiated type II subtype than vehicle control treatment (left panel).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 16 
 

 

Figure 6. Atorvastatin and Salinomycin reduce the viability of AML patient samples in self-assem-

bling peptide hydrogel (SAPH) culture and colony formation. (A) Line graphs displaying percent-

age survival of two AML patient samples (#522 and #694) treated with 5µM Atorvastatin (Ator) or 

500 nM Salinomycin (Sal) for up to 72 h in standard co-culture (LC + MS-5) or 3D SAPH (n = 3 for 

LC + MS-5; n = 4 for Hydrogel). (B) Representative phase-contrast images, and (C) efficiency as per-

centage of control (n = 3) of colony formation in AML patient samples (#522 and #694) 14 days fol-

lowing treatment with 0.02% DMSO vehicle (Control), 5µM Atorvastatin, or 500 nM Salinomycin. 

3. Discussion 

The development of pathophysiologically relevant in vitro cancer models for drug 

discovery is one of the major challenges facing researchers in the desire to improve the 

low translation of therapies into clinics [8,32]. This study presented for the first time a 

defined SAPH model free of matrix motifs to examine the impact of 3D structure on AML 

cell sensitivity to drug treatments. This novel approach enabled direct comparison of the 

AML treatment response of repurposed drugs in liquid culture and simple, non-function-

alized 3D SAPH, providing unique insight into the importance of mechanical cues within 

AML models. 

Increased peptide concentration, resulting in a stiffer gel (Figure S1A), affected both 

the number of cell colonies formed and the structure of the colonies. As the concentration 

increased from 6 mg/mL to 10 mg/mL, the SAPH continued to support cell proliferation; 

however, the colonies became fewer in number and appeared denser and more rounded 

(Figure S1B).  

Limited cell proliferation was observed within the maximum stiffness SAPH inves-

tigated (15 mg/mL). This concentration equates to a storage modulus of ~5 kPa, whereas 

6 mg/mL SAPH yields a storage modulus of ~600 Pa as measured by bulk rheology [33]. 

Maximum leukemia cell proliferation over 72 h occurred in 6 mg/mL SAPH, which was 

higher than established liquid culture. For this reason, 6 mg/mL SAPH was used for all 

future leukemia cell experiments. Both the THP-1 human AML cell line and mAF9 pri-

mary leukemias grew well in 6 mg/mL SAPH following optimized seeding densities 

which provided a basis for the drug treatments. 

Figure 6. Atorvastatin and Salinomycin reduce the viability of AML patient samples in self-
assembling peptide hydrogel (SAPH) culture and colony formation. (A) Line graphs displaying
percentage survival of two AML patient samples (#522 and #694) treated with 5µM Atorvastatin
(Ator) or 500 nM Salinomycin (Sal) for up to 72 h in standard co-culture (LC + MS-5) or 3D SAPH
(n = 3 for LC + MS-5; n = 4 for Hydrogel). (B) Representative phase-contrast images, and (C) efficiency
as percentage of control (n = 3) of colony formation in AML patient samples (#522 and #694) 14 days
following treatment with 0.02% DMSO vehicle (Control), 5 µM Atorvastatin, or 500 nM Salinomycin.

3. Discussion

The development of pathophysiologically relevant in vitro cancer models for drug
discovery is one of the major challenges facing researchers in the desire to improve the
low translation of therapies into clinics [8,32]. This study presented for the first time
a defined SAPH model free of matrix motifs to examine the impact of 3D structure on
AML cell sensitivity to drug treatments. This novel approach enabled direct comparison
of the AML treatment response of repurposed drugs in liquid culture and simple, non-
functionalized 3D SAPH, providing unique insight into the importance of mechanical cues
within AML models.
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Increased peptide concentration, resulting in a stiffer gel (Figure S1A), affected both
the number of cell colonies formed and the structure of the colonies. As the concentration
increased from 6 mg/mL to 10 mg/mL, the SAPH continued to support cell proliferation;
however, the colonies became fewer in number and appeared denser and more rounded
(Figure S1B).

Limited cell proliferation was observed within the maximum stiffness SAPH investi-
gated (15 mg/mL). This concentration equates to a storage modulus of ~5 kPa, whereas
6 mg/mL SAPH yields a storage modulus of ~600 Pa as measured by bulk rheology [33].
Maximum leukemia cell proliferation over 72 h occurred in 6 mg/mL SAPH, which was
higher than established liquid culture. For this reason, 6 mg/mL SAPH was used for all
future leukemia cell experiments. Both the THP-1 human AML cell line and mAF9 primary
leukemias grew well in 6 mg/mL SAPH following optimized seeding densities which
provided a basis for the drug treatments.

Dihydroorotate dehydrogenase (DHODH) is a key enzyme that catalyzes the rate-
limiting step in pyrimidine biosynthesis. Vidofludimus is a DHODH inhibitor with po-
tential anti-inflammatory, immunomodulating, and anti-viral activities, recently shown to
promote cell cycle arrest in lymphoblastoid and lymphoma cell lines [34]. Although the
MLL-AF9 harboring THP-1 and mAF9 cells showed limited sensitivity to Vidofludimus,
recent reports suggest that second-generation DHODH inhibitors may have a particular
role to play in MLL-AF9 AML and are now available at low concentrations (74 nM) with
low toxicity [35].

Targeting metabolic pathways is becoming an established anti-cancer strategy. Anti-
cholesterol drugs such as statins are reported to inhibit the proliferation and survival of
cancer cells, including leukemia, alone or in combination with other drugs [36]. Atorvas-
tatin in particular, as a single agent, has been shown to induce cell cycle arrest, induce
apoptosis, and inhibit the YAP pathway in HL60 and K562 cells [37].

Salinomycin is a coccidiostat ionophore first identified as an antibacterial drug. In a
screen of over 16,000 compounds, Salinomycin was found to be one hundred times more
effective than paclitaxel in the treatment of breast cancer in mice with selectivity against
cancer stem cells [38]. Following this, Roulston et al. showed that Salinomycin could
eradicate human AML cell lines and mouse primary AML cells in liquid culture without
affecting the colony formation of normal hematopoietic cells [39]. Salinomycin is reported
to have anti-cancer effects by accumulating and sequestering iron in lysosomes [40] leading
to local iron deficiency. In response to this, target cells degrade ferritin [41] to restore local
iron levels, which leads to increased production of reactive oxygen species, lysosomal
membrane permeabilization, and cell death consistent with ferroptosis. As cancer stem
cells are characterized by high intracellular iron content, Salinomycin is able to selectively
target them [42].

Vidofludimus was the only candidate drug to show consistently decreased drug
sensitivity in the SAPH models compared to liquid culture. Decreased drug sensitivity
in the hydrogel setting may be due to reduced perfusion in the 3D models due to several
factors, including size, structure, and charge of the drug. However, reduced perfusion
is unlikely as normal leukemia cell proliferation and growth throughout the 3D cultures
indicate that the full depth of the gel is perfused by the media components, including large
and charged serum proteins. Another possible explanation for decreased drug sensitivity
is impairment of local accessibility due to cell encapsulation. Ishikawa et al. demonstrated
that the tumour microenvironment can induce dormancy in leukemia cells, potentially
increasing the resistance to anti-cancer drugs [43]. Encapsulation of cells in the SAPH and
induced ECM formation by the cells could act as a mechanical cue and create a protective
leukemia microenvironment [44–46]. This could explain, in part, the reduced sensitivity
to Atorvastatin in the ‘early stage’ SAPH model compared to the ‘established’ model, but
would require further analysis.

Of the three candidate drugs investigated, Salinomycin and Atorvastatin demonstrated
more reliable and measurable anti-leukemia effects across all pre-clinical models used. The
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data presented for Salinomycin supports and extends our previous findings [39] to include
the MLL-AF9-expressing THP-1 cell line along with the 3D SAPH platform. Within this
study, Salinomycin was the only drug to exhibit a similar EC50 value in all three models
investigated (liquid culture (2D), ‘early-stage’ gel, and ‘established’ gel). This indicates that
the 3D structure of the SAPH, or encapsulation of cells, did not have a significant negative
biological impact on the cells’ responsiveness to Salinomycin. However, the reduced
sensitivity to Atorvastatin in the ‘early stage’ model, as cells are becoming encapsulated,
suggests that impaired biological response may be drug and cell context dependent in our
AML-SAPH model, as reported for other cell types and hydrogel systems [15,17,19,47].

Candidate drug sensitivity studies on primary AML patient samples are notoriously
difficult due to poor ex vivo growth caused by spontaneous differentiation and increased
cell death. Co-culturing on MS-5 stromal cells is an established protocol to improve the
viability of AML blasts in liquid culture [48]. Two AML patient samples were able to be
maintained in the co-culture and SAPH models. Salinomycin effectively eradicated the
AML cells from both patients within three days of treatment in the SAPH model. However,
this response was blunted in the co-culture model, suggesting that additional survival
cues from stromal cells impaired the mechanism of action of Salinomycin. Atorvastatin
proved more successful in eliminating AML cells in the co-culture setting compared to the
SAPH model, supporting reports that the YAP pathway and focal adhesion are inhibited
by this molecule.

4. Materials and Methods
4.1. Cell Culture

Human leukemic cell lines (THP-1, U937, MV4-11, HL60, and OCI-AML3) were
maintained in suspension culture in RPMI-1640 supplemented with 10% fetal bovine
serum (FBS) and 1% L-Glutamine (all supplied by Gibco, Life Technologies, Waltham,
MA, USA) and incubated at 37 ◦C and 5% CO2 in a humidified atmosphere. Cultures
were passaged every 2–3 days to maintain a cell number of 1 × 105/mL to 1 × 106/mL.
Primary murine cells (mAF9) were previously expanded from MLL-AF9 leukemic mice
generated by retroviral transfection of donor primary bone marrow cells. For continuous
culture of MLL-AF9 mouse primary leukemic cells (mAF9) the cells were cultured in
leukemic mouse media i.e., RPMI-1640 with additions of 10% FBS (HyClone, Logan, UT,
USA), 1% L Glutamine, 5 ng/mL mIL-3 (#130-099-508), 5 ng/mL mIL-6 (#130-096-682),
5 ng/mL mGM-CSF (#130-095-742), 50 ng/mL mSCF (130-101-693; all growth factors from
Miltenyl Biotec, Bisley, UK). Phase-contrast or viability dye-based imaging (Calcein AM
and ethidium homodimer) was used to periodically observe cell growth and viability
(Eclipse TI-S; Nikon, Tokyo, Japan).

4.2. SAPH Preparation

Peptides (SAPH, Phe-Glu-Phe-Glu-Phe-Lys-Phe-Lys, Cambridge Research Biochemi-
cals, UK/Pepceuticals, Leicester, UK) at the desired concentration were dissolved in sterile
water (W3500, Sigma Aldrich, St. Louis, MO, USA). Following incubation at 80 ◦C for 2 h,
0.5 M NaOH was used to elevate the hydrogel pH until an optically clear, self-supporting,
viscous solution was formed. 10× phosphate buffered saline (PBS) (Gibco, Life Technolo-
gies, Waltham, MA, USA) was added to produce a final hydrogel of 1× PBS. Hydrogels
were vortexed and centrifuged at 1000 rpm (Heraeus Megafuge 40R, Thermo Scientific,
Waltham, MA, USA) after each addition to ensure a homogeneous composition. Following
all additions, the hydrogels were incubated overnight at 80 ◦C and then stored at 4 ◦C
until required for cell encapsulation. All batches of peptide were analyzed for similarity
in rheological properties prior to use to ensure comparability of results. Briefly, SAPH
preparations were mounted onto a Physica MCR 301 rheometer (Anton Paar, Graz, Austria)
with the Peltier plate set to 37 ◦C and the linear viscoelastic region for each set of samples
determined. Firstly, an amplitude sweep from 0.1 to 100% strain at 1 rad/s was done to
determine a range that would not destroy the structure of the sample. A frequency sweep



Int. J. Mol. Sci. 2023, 24, 4235 11 of 15

with a constant strain of 0.5% and constant frequency of 1 rad/s, with 10 measurements
in 5 min, was then used to determine the approximate stiffness, expressed as its Young’s
modulus (Figure S1A).

4.3. Cell Encapsulation into Unmodified SAPHs

Hydrogels were incubated at 80 ◦C for at least 2 h prior to encapsulation to decrease
viscosity, then placed into a 37 ◦C water bath during cell preparation. Suspension cells were
counted, re-suspended at required concentrations, and 250 µL was carefully mixed into
1 mL of hydrogel, creating a media ratio of 1:5 and a final cell concentration of 1 × 104/mL
to 1 × 105/mL for human cell lines and patient samples, and 5 × 104/mL to 5 × 105/mL
for mAF9 cells. The cell-seeded SAPH were then transferred into 8-well µ-slides (Ibidi,
Germany) or 24-well, PET 1 µm, transwell plates (Millicell Cell Culture Inserts, Millipore,
Burlington, MA, USA), or 96-well plates (ViewPlate-96 Black, Perkin Elmer, Waltham, MA,
USA) and incubated at 37 ◦C/5% CO2 in a humidified atmosphere for 10 min (Figure S2).
Appropriate cell media was then added on top of the SAPH, and at least two media changes
were performed in the following hour to fully neutralize the SAPH. Media changes were
subsequently performed every 1–3 days, depending on the experiment.

For the ‘early-stage’ drug treatment leukemia models, following 10 min of cell incu-
bation with SAPH, 200 µL of the relevant media was added on top of the gel. Following
two media changes within an hour after seeding, 100 µL of media with RealTime-Glo™
(Promega, Chilworth, UK) and the required drug/DMSO control were added to the SAPH.
For the ‘established’ models, encapsulated cells were cultured without vehicles or drugs for
72 h but with a media change after 24 h. At 72 h, the RTG and required drug concentrations
were added in the same way as described for the ‘early-stage’ model. All plates were
protected from light and incubated at 37 ◦C with 5% CO2 in a humidified atmosphere.
Luminescence plate reads were performed at 24 h, 48 h, and 72 h.

4.4. Functionalization of 6 mg/mL SAPH

Modified SAPH incorporating matrix additions of methylcellulose, (MethocultTM
GF M3434, Stem Cell Technologies, Vancouver, BC, Canada), laminin, (L2020, Sigma
Aldrich, St. Louis, MO, USA), fibronectin, (07159, Stem Cell Technologies, Vancouver, BC,
Canada), and hyaluronan, (HA1M, Lifecore Biomedical, Chaska, MN, USA) were created
by preparing a 250 µL volume of cell suspension containing each matrix component at 5×
the desired final concentration (diluted with 0.5× leukemic mouse media if required) and
mixed with 1 mL of the precursor gel.

4.5. Cell Quantification Using Luminescence

Luminescence assays RealTime-Glo™ MT Cell Viability Assay (RTG) (Promega,
Chilworth, UK) was routinely used to quantify the number of cells within liquid culture
according to the manufacturer’s protocol. For 3D SAPH assays, 100 µL of cell-seeded
gel was transferred to wells of a black 96-well plate in triplicates of each condition. Fol-
lowing the two required media changes after initial seeding of the plates, all media was
removed and 100 µL of 2× RTG components diluted in media was added to produce a
final concentration of 1× RTG (media and gel volume inclusive). The plates were protected
from light and incubated at 37 ◦C and 5% CO2 in a humidified atmosphere for 1 h before
luminescence plate reading (Fluorestar Omega Plate Reader, BMG LabTech, Ortenberg,
Germany). Samples were prepared within black 96-well plates with an optically clear
bottom to minimize background and bleed-through between wells. For all results collected
using luminescence assays ‘no cell’ controls were performed to record any background
fluorescence, which was averaged and removed from the results. All values were obtained
in technical triplicates and were represented as a standard curve of known cell number
against luminescence.
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4.6. Drug Screening

Human leukemic cell lines and mAF9 cells were treated with a dose range of each
candidate drug: Salinomycin (Sigma Aldrich, St. Louis, MO, USA), Vidofludimus, and
Atorvastatin (both SelleckChem, Planegg, Germany). Drug treatments were compared to
the well-established vehicle control (DMSO) at a concentration that does not affect cell
survival (up to 0.2%) and is equal to the highest DMSO concentration within the drug
dilutions. Graphing and the effective concentration of drug required to provoke a response
halfway between the baseline and maximum responses (EC50 values) were calculated from
non-linear regression analysis using Prism 8.3.1 statistical software (Graphpad, Boston,
MA, USA).

4.7. AML Patient Samples

As a proof-of-principle, blood or bone marrow samples were obtained from AML
patients #522 and #694 at diagnosis (Supplementary Materials). Mononuclear cells were
isolated using a standard density gradient centrifugation method using histopaque material
and cryopreserved in liquid nitrogen. Only samples with >90% post-thaw viability were
assayed. Samples at 1 × 106/mL were treated as per cell lines in peptide hydrogels and
cultured in RPMI supplemented with 10% FCS, 1% L-glut, 20 ng/mL IL3, 20 ng/mL SCF,
20 ng/mL IL-6, 25 ng/mL G-CSF (all R&D Systems, Oxfordshire, UK), and 0.07 µL/mL
beta-mercaptoethanol with candidate drug or vehicle control (DMSO) in the presence
or absence of MS-5 stromal cells (ACC441, DSMZ, Gottingen, Germany). Cell viability
was assessed at 24, 48, and 72 h using the Real-Time Glo MT Cell viability assay (G9713,
Promega, Chilworth, UK). Samples at 1 × 105/mL were also cultured in methylcellulose
(Methocult TM H4534, Stem Cell Technologies, Vancouver, BC, Canada) with candidate
drug or vehicle control (DMSO). Colonies were counted by light microscopy on day 14.
Graphing and analysis was performed using Prism 8.3.1 statistical software (GraphPad,
Boston, MA, USA).

5. Conclusions

Together, the data highlights the effectiveness of unmodified SAPH with appropriate
stiffness to support the cell growth of AML cells from different sources for drug sensitivity
studies. Such models provide a robust platform to further modify and functionalize
hydrogels to better mimic the hematopoietic niche, potentially for both leukemic and
normal blood stem cell research. These advanced pre-clinical models will help identify and
de-risk effective, non-toxic drugs for future clinical applications.
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