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Abstract: The non-histone chromatin binding protein High Mobility Group AT-hook protein 2
(HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection.
Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell
aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides
with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin
alone but involve complex interactions with other proteins that are incompletely understood. The
present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear
interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2
and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners,
with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer
exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear
HMGA2 interactomes during drug treatments.

Keywords: HMGA2; nuclear; biotin; proximity labeling; BioID; miniTurbo

1. Introduction

High Mobility Group AT-hook protein 2 (HMGA2) is a nuclear non-histone DNA-
binding protein that is expressed in embryonic tissues [1] and embryonic stem (ES) cells [2],
absent in most normal adult cells, and re-expressed in cancer (stem) cells [3–6]. The pres-
ence of this oncofetal stem cell factor directly correlates with the level of malignancy and
metastasis in different cancers [3,7–9]. Complex and cell type specific positive and negative
transcriptional and translational regulation of HMGA2 expression is tightly controlled by
proteins [10] and specific micro and circular RNAs [11–15]. Mutations in the 3′ untrans-
lated region of the HMGA2 gene can impair the binding of specific microRNAs, and this
contributes to oncogenic transformation [16]. Cells with reduced HMGA2 protein levels
show attenuated epithelial-mesenchymal transition (EMT). The LIN28-Let-7-HMGA2 axis
is known to increase cellular HMGA2 levels in stem cells [17] and complex regulatory
processes, including a protein complex of Hmga2 with transcription factor Otx2, ensure
increased Hmga2 and Lin28 protein levels as a critical step for mouse ESCs transitioning
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into epiblast-like cell states [18,19]. IGFBP1 RNA binding protein and downstream target
of HMGA2 [20] may also support HMGA2 functions in ESC, by binding and promoting
translation of mRNAs encoding HMGA2 and LIN28 [21]. In breast, prostate, tongue, and
gastric cancers, increased Wnt/β-catenin signaling up-regulates HMGA2 protein and this
coincides with EMT and increased tumor aggressiveness [22–24].

The ability of HMGA2 to interact with both chromatin and proteins is a critical
determinant of HMGA2 functional complexity at the DNA-protein interface. HMGA2
utilizes three multi-functional AT-hook domains for the interaction with AT-rich DNA
at the minor groove to cause DNA conformational changes and facilitate transcriptional
regulation [25,26]. The AT1-3 hooks possess apurinic/deoxyribo-5′-phosphate (AP/dRP)
lyase activity, to promote base-excision repair upon chemotherapeutic stress [27], and
a nuclear localization motif in AT2 ensures nuclear localization of HMGA2 [25]. The
two linker regions that separate the AT hooks and the second AT-hook are important
protein interaction sites, and post-translational modifications of the acidic C-terminus
can affect HMGA2 DNA- and protein-binding [25,28–30]. Known to participate in the
formation of transcription factor complexes and enhanceosomes [11,31], HMGA2 is also
recruited to DNA repair complexes at DNA damaged sites [32,33]. The interaction of
HMGA2 with retinoblastoma protein (Rb1) activates E2F1, which is a driving force in
pituitary adenoma formation in HMGA2 over-expressing mice [34–36]. The contributions
of HMGA2 to maintaining genomic stability and enhancing resistance against genotoxic
stress include protein interactions with both key DNA damage signaling factors, Ataxia
teleangiectasia mutated (ATM) and Ataxia teleangiectasia, and Rad3 related (ATR) [37,38]
and TFR2, a key member of the shelterin complex at telomeres [39]. At replication forks
(RFs), HMGA2 interacts with the replication proteins RPA and PCNA, which protects
stalled RFs from collapsing and facilitates early RF re-start [40]. We recently identified
PARP1 as a new interaction partner of HMGA2 and showed that high cellular HMGA2
correlated with increased resistance to the PARP inhibitor Olaparib, which coincided with
reduced PARP1 trapping to chromatin under Olaparib [41]. Collectively, the impacts
of HMGA2 interactions with specific protein partners on cell survival, genome stability,
proliferation, and differentiation programs highlight the clinical relevance of HMGA2
protein interactions in stem cell and cancer biology.

Classical antibody-based affinity purification/mass spectrometry (AP/MS) strategies
are limited by the quality of the antibodies used for immunoprecipitation (IP). We have
used HMGA2 fused to a promiscuous biotin ligase, which served as a bait in quantitative
biotin proximity labeling (BPL), to identify stable or transient protein interaction partners
of this architectural chromatin binding factor. When the cells are provided with excess
biotin, the ligase generates a reactive biotin derivative that diffuses from its active site
and can react with free primary amines of exposed lysine residues, resulting in covalent
attachment of biotin to proteins in close proximity (<10 nm) to HMGA2. The biotinylated
proteins can then be extracted from cells and captured on a streptavidin affinity matrix for
identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). BioID
provides the ability to capture weak/transient interactions that can be lost in standard AP
approaches, while the strength of the association of biotin with streptavidin permits efficient
high-stringency protein extraction and capture methods that help minimize background
contaminants [42]. A wide range of biotin ligases have been isolated from bacteria and
engineered for use in BioID experiments, with the ongoing aim of improving labeling
efficiency (to increase time resolution) while reducing background labeling and tag size.
They range from the original 37 kDa E. coli-derived BirA* and its more active TurboID
and miniTurbo variants, to the recently described hyperactive BioID2-derivative ultraID
(~20kDa) [43–45]. The original BioID2 was derived from A. aeolicus, both for its smaller
size relative to BirA* (~28 kDa) and the fact that, unlike BirA*, it does not contain a DNA
binding domain that could complicate the analysis of chromatin-associated proteins [46].
MiniTurbo was derived from TurboID for the same reason (N-terminal DNA binding
domain removed).
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In the present study, we have used both HMGA2-BioID2 and HMGA2-miniTurbo
fusion proteins to map the HMGA2 interactome in unchallenged HEK293 cells. The selected
targets were validated in MDA231 human breast cancer cells and HEK293 cells. These BPL
experiments identified new, and confirmed previously described, HMGA2 partners.

2. Results
2.1. HMGA2-BioID2 Fusion Protein Biotinylates Nuclear Proteins

The Flag-tagged HMGA2-BioID2 fusion protein, and Myc-tagged BioID2 biotin ligase
control, run at the expected sizes on a Western blot when detected in HEK293 lysates using
anti-Flag and anti-myc antibodies, respectively (Figure 1a). Providing excess biotin to
the cells for 4 h induced distinct protein biotinylation patterns that could be detected by
probing cell lysates with streptavidin-HRP on a Western blot (Figure 1b), or by staining
fixed cells with fluorophore-tagged streptavidin (Figure 1c). Consistent with HMGA2
being predominantly associated with chromatin, the biotinylation pattern of BioID2-tagged
HMGA2 was almost exclusively nuclear. In contrast, the diffuse BioID2 ligase alone
non-specifically biotinylated proteins throughout the cell (Figure 1c). The biotinylated
protein bands observed in the parental HEK cell lysates (Figure 1b) primarily represent
mitochondrial carboxylases (e.g., PC, MCCC1/2) that can bind biotin directly, and were
also detected as a weak mitochondrial staining pattern in fixed HEK cells (Figure 1c) [42].
These proteins are known background contaminants found in all BioID experiments and
are useful for normalization.
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Figure 1. (a–c) Validation of BioID2 stable cell lines for BioID. (a) Western blot analysis of the
apparent MW of myc-tagged BioID2 and Flag-BioID2-tagged HMGA2 stably expressed in HEK cells
and detected using anti-myc (Millipore Sigma, Burlington, MA, USA) or anti-Flag (Millipore Sigma,
Burlington, MA, USA) antibodies, respectively. (b) Western blot analysis of whole cell lysates (50 µg
total protein loaded) harvested from the HEK parental cell line and HEK-BioID2 and HEK-HMGA2-
BioID2 stable cell lines after 4 h labeling with 50 µM biotin. Ponceau S staining of the membrane after
transfer is shown on the left, and Streptavidin-HRP (Thermo-Fisher, Waltham, MA, USA) detection
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of biotinylated proteins on the right. (c) Cells grown on coverslips in the same dishes were
formaldehyde-fixed, permeabilized, and stained with Streptavidin-AlexaFluor 568 (Thermo-Fisher,
Waltham, MA, USA) (red; biotinylated proteins) and Hoechst 33342 (Millipore Sigma, Burlington,
MA, USA) (blue; DNA). Scale bars are 20 µm.

2.2. HMGA2 Proximity Labeling Identifies A Unique Nuclear HMGA2 Interactome

For the first HMGA2 interactome mapping experiment, HEK293 cells stably expressing
HMGA2-BioID2 were labeled with Heavy SILAC media, and we included two controls
(HEK293 parental cells labeled with Light media, and BirA*-expressing cells labeled with
Heavy media) (Figure 2a). The parental cells served as a control for sticky abundant
proteins that may bind non-specifically to the affinity matrix, and also showed biotinylation
of the mitochondrial carboxylases that directly bind biotin. BirA* was used in lieu of BioID2
as the ligase alone control, to mark proteins that are non-specifically biotinylated in this
experiment, as we had not yet isolated a stable line that expressed BioID2 alone at a similar
level to that of the HMGA2-BioID2 fusion protein. For the second experiment, with BioID2
control cells in place, we flipped the SILAC labeling so that the control cells expressing
BioID2 alone were labeled with Heavy media, and the HMGA2-BioID2 cells with Light
media (Figure 2b). The graph in Figure 2c plots log2 SILAC ratios calculated for 62 proteins
that were detected and quantified in both experiments. The log2 H:M ratio (HMGA2 vs.
BirA*) was plotted on the x-axis for experiment 1 and the log2 L:H ratio (HMGA2 vs.
BioID2) on the y-axis for experiment 2. The gray lines in the upper right quadrant delineate
proteins that were enriched > 2-fold above the ratio of the mitochondrial contaminants
(indicated on the graph). There were numerous proteins that were only biotinylated in
the presence of HMGA2-BD2 in one or both experiments (which precludes quantification
of an H:L ratio). Those that were detected in both BioID2 AP/MS experiments were also
considered high confidence interactors.
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(a) Design of the first SILAC BioID experiment, in which the HEK-HMGA2-BioID2 cells were la-
beled with Heavy Arg10Lys8 media. Two controls were included: cells transiently overexpressing
ligase alone (in this case BirA*), to highlight proteins that are non-specifically biotinylated (labeled
with Medium Arg6Lys4 media); and parental cells, to highlight sticky proteins (labeled with Light
Arg0Lys0 media). (b) Design of the second SILAC BioID experiment, in which the labeling was
flipped so that the HEK-HMGA2-BioID2 cells were grown in Light R0K0 media and the control ligase
alone cells (in this case, HEK-BioID2 stable cells) in Heavy R10K8 media. For both experiments, cells
were provided with 50 µM biotin for 18 hrs prior to harvesting (c) Graph plotting the log2 Ratio L:H
(HMGA2-BD2:BD2) for experiment 2 vs. the log2 Ratio H:M (HMGA2-BD2:BirA*) for experiment
1 for 78 proteins that were detected and quantified in both. Proteins enriched > 2-fold above back-
ground in both experiments are indicated (gray circles) and considered high-confidence interactors.
Mitochondrial carboxylases that bind biotin directly and represent background contaminants are
shown as orange circles.

A caveat of this approach, is that the BioID2 biotin ligase requires several hours
for efficient BPL, which limits the ability to study dynamic HMGA2 interactions in the
presence and absence of short-term treatments. To address this, we generated HEK293
cell lines stably expressing miniTurbo biotin ligase constructs, that allow BPL studies with
significantly shorter labeling times (10–60 min). As expected, the biotinylation pattern for
HMGA2-miniTurbo is significantly different from that of miniTurbo alone, and localizes
predominantly to the nucleus (Figure 3a–c). Importantly, a SILAC BioID AP/MS experiment
with a 1 hr labeling time identified our highest confidence HMGA2 interactors, as shown
in the graph in Figure 3d (as compared to the BioID2 graph in Figure 2c).

Lastly, we generated an annotated list of high confidence interactors that were enriched
in both the BioID2 and the miniTurbo interactome experiments (Table 1). This reveals an
exclusive HMGA2 nuclear interactome and highlights the strength of a quantitative BioID
approach for interactome mapping.

Table 1. Top HMGA2 interacting candidates identified in both SILAC BioID2 and miniTurbo AP/MS
experiments. For each experiment, the # of peptides identified is noted, along with the log2 SILAC
ratio quantified by MaxQuant or calculated based on intensity values (italicized). “Bait only” indicates
that the protein was only biotinylated/captured from cells expressing ligase-tagged HMGA2. Proteins
annotated on Biogrid as putative HMGA2 interactors are indicated. Comparison to the Gingras lab’s
BioID control dataset [47] is annotated as follows: (-) not detected, (≤) fewer or same number of
peptides detected in NLS-BirA* datasets compared to GFP-BirA* datasets, (# peptides detected in
NLS-BirA* datasets/# peptides detected in GFP-BirA* datasets). Proteins in bold text were further
validated by co-precipitation or BioID/Western blot analysis (see Figure 4).

BioID2 AP/MS
miniTurbo AP/MS

Experiment 1 Experiment 2

UniProt Gene # pep log2 Ratio # pep log2 Ratio # pep log2 Ratio Biogrid
Bait

FSH2U8 HMGA2 6 Bait only 4 Bait only 3 Bait only
Histones

O75367 H2AY 13 8.52 9 2.95 4 1.28 *

P16403 HIST1H1C 11 2.96 12 1.49 12 0.68

P10412 HIST1H1E 9 Bait only 11 1.46 11 0.42

Q93077 HIST1H2AC 6 5.5 7 3.16 5 1.55 *

Q99878 HIST1H2AJ 8 6.22 8 3.22 5 1.57

P62805 HIST1H4F 13 6.34 12 3.15 10 1.58

Q71DI3 HIST2H3D 9 6.23 11 3.06 4 1.63

Q99880 H2B1L/M 11 6.22 9 3.1 4 1.56



Int. J. Mol. Sci. 2023, 24, 4246 6 of 19

Table 1. Cont.

BioID2 AP/MS
miniTurbo AP/MS

Experiment 1 Experiment 2

UniProt Gene # pep log2 Ratio # pep log2 Ratio # pep log2 Ratio Biogrid
Other Hits

P25440 BRD2 10 Bait only 5 Bait only 7 Bait only

Q13185 CBX3 6 Bait only 6 1.07 7 1.38

E9PEI0 CDCA2 4 Bait only 1 1.73 7 3.26

Q53HL2 CDCA8 6 Bait only 2 2.53 10 5.55

Q96JM3 CHAMP1 18 Bait only 14 1.34 13 1.41

Q5QJE6 DNTTIP2 8 Bait only 3 2.05 7 1.41

P78347 GTF2I 26 Bait only 16 1.59 20 0.46

O14929 HAT1 3 Bait only 4 2.48 1 Bait only

Q5T7C4 HMGB1 6 3.05 4 0.82 5 1.85

D6R9A6 HMGB2 5 4.13 4 0.82 4 1.66

Q9H0C8 ILKAP 11 Bait only 9 1.8 5 0.85

P42167 LAP2B 19 Bait only 22 1.08 9 2.19

Q14676 MDC1 32 Bait only 39 2.61 5 0.62

P46013 MKI67 4 Bait only 83 1.62 106 2.51

Q14980 NUMA1 91 3.25 46 2.49 12 1.29

P09874 PARP1 66 5.65 54 3.9 24 2.19 *

Q7Z3K3 POGZ 15 Bait only 6 4.23 4 1.19

O75475 PSIP1 16 Bait only 7 3.02 3 Bait only *

Q08945 SSRP1 17 Bait only 8 1.48 2 1.26

P11388 TOP2A 55 4.13 33 1.9 15 1.86

Q9ULW0 TPX2 20 Bait only 20 1.56 23 2.96

Q14669 TRIPC 25 Bait only 14 2.37 20 1.59

B7ZM82 WIZ 13 Bait only 9 1.95 11 Bait only

P13010 XRCC5 32 4.13 20 2.8 10 0.86 *

P12956 XRCC6 29 4.29 20 2.8 10 0.75 *

P17028 ZNF24 6 Bait only 3 Bait only 2 Bait only

Q96KM6 ZNF512B 3 Bait only 5 2.57 2 Bait only

2.3. Nuclear HMGA2-BioID2 Interactome Confirms Known and Discovers New
Interaction Partners

Our proximity labeling experiments confirmed several previously described HMGA2
interaction partners. For example, our previous IP studies had identified the early DNA
damage sensor PARP1 as an interaction partner of HMGA2 in human breast cancer cells [41].
PARP1 was among the top candidates in our BPL list of HMGA2 interaction partners (Ta-
ble 1; Figures 2c and 3d), which provided further validation for the new role of HMGA2 in
enhancing PARP1-mediated protein ADP-ribosylation of proteins. The non-homologous
end-joining (NHEJ) DNA repair factors XRCC6/Ku70 and XRCC5/Ku80 had also previ-
ously been demonstrated to interact with HMGA2 [29,48]. We focused on XRCC6/Ku70
and demonstrated co-precipitation of Ku70 with HMGA2 from MDA231 human breast
cancer cell nuclear extracts (Figure 4a). Three additional proteins, predicted by our BPL
analyses to be interaction partners of HMGA2, were validated by streptavidin pulldown
and Western blot detection using specific antibodies to NUMA, TOP2A, and histone H4
(Figures 3b and 4b). We demonstrated a significant increase in the amount of biotinylated
NUMA, TOPO2A, and H4 proteins captured in pulldowns from HEK293-HMGA2-BioID2
protein lysates compared to HEK293-BioID2 protein lysates (Figure 4b), which confirmed
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the quantitative MS data (Figure 2c). To demonstrate the specificity of the identified
HMGA2 interactors, we show a representative background contaminant protein (TP53)
that is biotinylated non-specifically by both HMGA2-BioID2 and BioID2 alone (Figure 4b).
Our repeated attempts to purify a stable HMGA2-TOP2A complex by IP were unsuccessful,
which suggests that their interaction is transient. An advantage of BPL over classical
antibody-based co-IP studies is the fact that, in addition to detecting stable protein interac-
tions, BPL can also identify biologically relevant transient (or lower affinity) protein-protein
interactions. Future studies will explore the functional relevance of the novel HMGA2
interactions that we have mapped.
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Figure 3. (a–d) Validation of miniTurbo stable cell lines for BioID with shorter labeling time.
(a) Western blot analysis of the apparent MW of Flag-tagged miniTurbo and V5-miniTurbo-tagged
HMGA2 stably expressed in HEK cells and detected using anti-Flag (Millipore Sigma, Burlington,
MA, USA) or anti-V5 (Thermo-Fisher, Waltham, MA, USA) antibodies, respectively. (b) Cells grown
on coverslips in the same dishes were fixed, permeabilized and stained with Streptavidin-AlexaFluor
568 (red; biotinylated proteins) and Hoechst 33342 (blue; DNA). Scale bars are 20 µm. (c) Western blot
analysis of the HEK parental cell line and HEK-miniT and HEK-HMGA2-miniT stable cell lines after
1 hr labeling with 50 µM biotin. Ponceau S staining of the membrane after transfer is shown on the
left, and Streptavidin-HRP detection of biotinylated proteins on the right. (d) Graph plotting the log2
Ratio H:L (HMGA2-miniT: miniT) vs. relative abundance for all proteins identified and quantified in
a SILAC miniTurbo BioID experiment. Proteins enriched >2-fold above the background are indicated
(white circles), as are the high-confidence interactors identified in both BioID2 experiments (gray
circles). Mitochondrial carboxylases that bind biotin directly are also shown (orange X).
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Figure 4. (a,b) Validation of candidate HMGA2 interaction partners. (a) Immunoprecipitation (IP)
analysis of HMGA2 interaction with XRCC6 in MDA-MB-231 cells. Nuclear extracts were used for
IP of HMGA2 with anti-HMGA2 antibodies. Rabbit IgG (rIgG) was used as a negative IP control.
Immunoblotting confirmed co-precipitation of XRCC6 with HMGA2. (b) BioID/Western blot of
analysis of proteins biotinylated by BioID2 alone (BD2) vs. BioID2-tagged HMGA2 (HMGA2-BD2)
in the HEK293 stable cell lines in the presence of excess biotin for 18 h. Biotinylated proteins were
captured on Streptavidin-agarose (Strep-Ag) beads (Thermo-Fisher, Waltham, MA, USA). Total
proteins were first detected by Ponceau S staining of the membrane, and then NUMA (New England
Biolabs, Ipswich, MA, USA), TOP2A (New England Biolabs, Ipswich, MA, USA), Histone H4 (Abcam,
Waltham, MA, USA), and TP53 (Santa Cruz Biotechnologies Inc, Dallas, TX, USA) detected using
antibodies raised against each protein. For each protein, the number of peptides detected (and log2
SILAC Ratio) in both BioID2 AP/MS experiments is indicated. TP53 was included as an example of a
background contaminant (SILAC ratio ≤ 1:1) that is non-specifically biotinylated by both HMGA2-
BioID2 and BioID2 alone.

2.4. Bioinformatics Signature of the HMGA2 Proximity Interactome

Our gene ontology methodology utilized Cytoscape (V3.8) with the ClueGO plug-in
(v2.5.7) to assess the involvement of 62 high confidence HMGA2 interaction partners identi-
fied by BPL (42 mapped by both BioID2 and miniTurbo and an additional 20 only detected
in the BioID2 experiments) in biological processes, cellular components, and molecular
functions [49,50]. Protein network associations in HEK293-HMGA2-BioID2 cells only con-
sidered protein members which networked with a minimum of three other proteins and 4%
of the proteins assigned to a biological pathway. Expectedly, chromatin- and nucleosomal-
associated processes constituted a prominent element of the HMGA2 protein interactome,
frequently linked to GO networks and Reactome pathway analysis, and included known
and new interaction partners (Figures 5a–c and 6a,b). The Reactome pathway analysis
provided further insight into the predicted HMGA2-nucelosomal interactions. All four
core histones (H2a/2b/3/4) were found biotinylated, as validated for histone 4 (Figure 4b),
suggesting interactions of HMGA2 with nucleosomes. This was reflected in the Reactome
pathway, which prominently featured nucleosomal and chromatin-associated processes,
contributing approx. 75% of all pathways. Post-translational protein SUMOylation (10%)
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and double stranded DNA repair (7%) related Reactome pathways were diversified in
HMGA2 interaction partners (Figure S1a–d). Notably, HMGA2 is a target of SUMOylation
itself [51,52].
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Figure 5. (a–c) Gene ontology analysis of the 62 top candidate proteins identified in the HMGA2-
BioID2 and -miniTurbo biotin proximity assays. Nuclear chromatin- and nucleosome associated
processes and functions constitute the main GO terms associated with the top 62 HMGA2 nuclear in-
teraction candidates identified by biotin proximity labeling in unchallenged HEK293 cells. Percentage
distribution of major (a) GO–Biological processes, (b) GO–Molecular functions, and (c) GO–Cellular
components, as determined by Cytoscape version 3.8 and ClueGo v2.5.9. Adjusted p-values consid-
ered statistically significant as denoted by ** p < 0.001.
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Figure 6. (a,b)REACTOME pathway analysis of the 62 top candidate proteins identified in the
HMGA2-BioID2 and -miniTurbo biotin proximity assay. (a) There were 7 REACTOME pathway
groups identified, with the two largest groups 5 and 6 mainly encompassing nucleosomal and
chromatin-associated processes, and contributing approx. 75% of all pathways due to the over-
representation of nucleosomal histone interaction partners of HMGA2 in both pathways. Pathways
with more diversified contributions by HMGA2 interaction partners included post-translational
protein SUMOylation related REACTOME pathways, accounting for 10%, and double stranded DNA
repair (7%). A detailed list of contributing HMGA2 interaction partners to the Reactome pathways
is presented in Suppl. Figure S1a–d. (b) Network map with identical color coding of key Reactome
pathways. Analysis was performed with Cytoscape version 3.8 and ClueGo v2.5.9. Adjusted p-values
considered statistically significant as denoted by ** p < 0.001.

3. Discussion

In the present study, we have for the first time used BPL in combination with SILAC
protein labeling and LC-MS/MS detection to identify protein interaction partners of
HMGA2. We employed two different biotin ligases, BioID2 and the more active miniTurbo,
linked to the C-terminus of HMGA2, and mapped the overlapping HMGA2 interactomes
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with both. We chose to use the BioID2 and miniTurbo ligases for their smaller size and
because they do not have a DNA binding domain, that allows them to readily enter the
nucleus by free diffusion [53]. An important caveat of the comparison of our hit list with
previously published BioID control datasets [47], is that the Lambert study utilized the
larger BirA* ligase and compared its non-specific biotinylation pattern when it was con-
centrated in the nucleus by fusion to a nuclear localization signal vs. concentrated in the
cytoplasm by fusion to GFP (~70 kDa fusion protein). By contrast, our smaller BioID2 and
miniTurbo ligases allowed us to compare the biotinylation patterns of these ligases when a
significant amount was freely diffusing in the nucleus vs. tethered to HMGA2. Biotinylated
proteins were largely confined to the nucleus in HEK293-HMGA2-BioID2/miniTurbo cells.

Traditional co-IP methods tend to favor the detection of high affinity protein interac-
tions and exclude transient and lower affinity interactions [42]. The covalent attachment of
a biotin label to lysine residues on nuclear proteins that are in close proximity (<10 nm) to
HMGA2 takes place in live cells, after which, stringent protein extraction and pulldown
workflows can be used to efficiently capture the biotinylated proteins. This increases assay
sensitivity, because the proteins do not need to remain associated after the labeling takes
place. The ability of BPL to capture biologically relevant transient interactors with HMGA2
addresses a critical void in our current view of the HMGA2 interactome. Among the
proteins not described as HMGA2 interaction partners in previous co-IP studies [29,48]
but repeatedly detected in our BPL assays, independent of the biotin ligase employed
(BioID2 or miniTurbo), was PARP1, which we had previously identified as a new HMGA2
interaction partner in human breast cancer cells [41]. HMGA2 enhances the activity of
PARP1 and this leads to increased PARylation of PARP1 and other proteins, including
HMGA2, which can alter protein interactions. BPL consistently captured HMGA2-PARP1
interactions in non-DNA damaged HEK293 cells, suggesting a role for this heterodimer
outside of DNA repair.

HMGA2 protein interactions are anticipated to be cell type- and context-specific, and
involve HMGA2 structural changes upon binding to chromatin [54,55]. HMGA2-chromatin
interactions occur with distinct affinities to specific DNA conformations, and this may also
impact transient HMGA2-protein interactions. To avoid artificial transient protein interac-
tions triggered by high cellular expression levels of HMGA2-biotin ligase fusion protein in
our BPL studies, we selected HEK293 stable transfectants that expressed HMGA2-BioID2
and HMGA2-miniTurbo at low to medium levels, comparable to the HMGA2 protein levels
detected in cancer cells. Previous proteomic interactome studies have mainly utilized IP
of HMGA1, followed by SDS-PAGE protein separation and MS analysis, in HEK293 and
human cancer cells. Potential molecular interactors of HMGA1 included mRNA processing
factors, RNA helicases, DNA repair factors, and protein chaperons [29]. Employing a
phage display screening strategy with an ORF-enriched cDNA library identified several
HMGA1 interacting clones that encoded factors involved in transcriptional regulation and
chromatin remodeling dynamics [56]. Nuclear putative interaction partners of HMGA2
that were identified in this BPL study in HEK293 cells, cultured under normal conditions,
also included chromatin-associated proteins and DNA repair molecules. The latter in-
cluded the early DNA damage sensor PARP1. Upon treatment with the PARP inhibitor
Olaparib, HMGA2 reduced PARP1 trapping at genomic DNA, and this increased the re-
sistance to PARP1 inhibitors [41]. In agreement with data from the Biogrid database, both
XRCC5/Ku80 and XRCC6/Ku70 were detected and quantified as possible HMGA2 interac-
tion partners in our BPL assays (https://thebiogrid.org/interaction/869806, (accessed on
29 January 2023); Table 1). We confirmed the interaction of HMGA2 with XRCC6/ Ku70
by co-IP in human MDA231 breast cancer cells (Figure 4). As a single-stranded DNA-
dependent ATP-dependent helicase, the XRCC5/6 dimer forms the regulatory subunit
of the DNA-dependent protein kinase complex DNA-PK, that is critically important for
non-homologous end joining (NHEJ). XRCC6 recognizes broken DNA ends, while the
XRCC5/6 DNA helicase dimer blocks further DNA resection, joins loose broken DNA ends,
and significantly increases DNA binding and activity of the catalytic subunit PRKDC to aid
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ligation [57]. Both, the XRCC5/6 complex and HMGA2 display 5’-deoxyribose-5-phosphate
lyase (5’-dRP lyase) activity [27,58] and, like HMGA2 [40], XRCC5/6 preferentially binds to
forked DNA structures with increased affinity [59–61]. XRCC6 has also been identified as
an interaction partner of PARP1 in co-IP and BPL studies, and ADP-ribosylation by PARP1
decreases the affinity of Ku for double strand breaks [62–65]. This XRCC6-PARP1 complex
was shown to recruit additional factors involved in DNA maintenance and repair functions,
including Werner’s syndrome protein and C/EBP alpha, which may increase the cellular
readiness of DNA damage response [66,67]. As a member of the PARP1-XRCC5/6 interac-
tome, HMGA2 may affect complex stability and functionality through its ability to increase
PARP1 mediated ADP-ribosylation of proteins, which also may impact on multifactorial
PARP1-XRCC5/6 complexes [41]. Finally, stable protein interactions of XRCC6 with PARP1,
thyroid receptor-interacting protein 13 (TRIP13), and HMGA1 (a close structural relative
of HMGA2) formed in the absence of DNA, but DNA could enhance the protein-protein
interaction [68–70].

Our BPL analyses identified biotinylated TOPO-2 as a putative HMGA2 interaction
partner, but not TOPO-1, as shown by antibody-based co-IP [71,72]. Topoisomerases I and II
(TOPO-1/2) have both been implicated as HMGA2 interaction partners, and HMGA2 was
shown to antagonize the TOPO-1 antagonist irinotecan/ SN-38 and synergize with TOPO-2
to antagonize topoisomerase-2 inhibitors, such as etoposide or merbarone [72,73]. The
HMGA2-TOPO-2A interaction was likely transient (or lower affinity) since our attempts
failed to detect HMGA2-TOPO-2A complexes by co-IP. Although outside of the scope
of this BPL study, future work may use BPL to explore the possibility of a more stable
HMGA2-TOPO-2A complex in the presence of TOPO-2 poisons.

The basic structure of the nucleosome consists of an octameric histone core with
two copies each of histones H2A, H2B, H3, and H4 isoforms [74]. These four replication-
sensitive core histones were the top four quantified biotinylated proteins in HEK293-
HMGA2-BioID2 and HMGA2-miniTurbo cells, with over 60-fold enrichment for some
histones versus background. By contrast, the SILAC ratios were much lower for linker
histone H1, which is considered to be a known competitor of HMGA2 at chromatin [75].
Surprisingly little is known regarding the direct binding of HMGA proteins to DNA pack-
aged in chromatin fibers. Several HMGA2 molecules can stably interact with a single
nucleosome core [26], and a recent BioID2 BPL core histone interactome mapping provided
the first evidence of an HMGA2 interaction, with H3A used as bait [47,76]. The emerging
relationship between histones and HMGA2 is complex and suggests that HMGA2 interac-
tions with histones and/or histone modifying proteins may affect accessibility to chromatin.
Downregulated or deleted HMGA2 causes developmental delays in embryonic stem cells
and coincides with increased chromatin condensation, with a repressive trimethylation of
K27 of histone H3 (H3K27me3) signature and increased polycomb repressive complex 2
(PRC2) catalytic activity [77]. Human pancreatic adenocarcinoma cells grown in a collagen
matrix showed enhanced acetylation of H3 histones, H3K9ac and H3K27ac, which was
catalyzed by specific promoter interactions of HMGA2 causing transcriptional activation
of the histone acetyltransferase (HAT) family members GCN5, p300, and PCAF [78]. In
hepatocellular carcinoma, an oncogenic EGF-EGFR-PI3K/Akt pathway was shown to in-
crease p300 HAT-mediated H3K9 acetylation of the HMGA2 promoter, resulting in higher
HMGA2 gene expression and a poor prognosis [79]. In glioma, a HMGA2/GCN5 protein
complex promoted histone acetylation in nucleosomes at AT-rich DNA sites, to cause gene
activation of matrix metalloproteinase 2 (MMP2), a mediator of invasiveness in glioma, and
conferring a poor prognosis [80]. Overexpression of HMGA2 coincided with elevated levels
of H2A, H2B, H3, and H4 core histones in a subpopulation of dedifferentiated liposarcoma,
again conferring a poor prognosis [81]. An even more intricate HMGA2-histone relation-
ship is suggested by recent evidence that demonstrates the requirement for HMGA2 to
induce DNA nicks to facilitate the incorporation of phosphorylated H2A.XS139 isoform
(γ-H2AX) into nucleosomes to earmark DNA sites for repair-mediated DNA demethyla-
tion and transcription activation [33]. In addition, histones may also facilitate HMGA2
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interactions with specific chromosomal regions. An earlier report had identified HMGA2
at centromeres and telomeres [82]. We had previously identified the shelterin protein TRF2
as a telomeric binding partner of HMGA2 [39], and epigenetic centromeric marker histone
3 variant CENP-A may direct HMGA2 to centromeres [83]. A possible reason why we did
not detect TRF2, despite demonstrating the direct interaction of this shelterin protein with
HMGA2 previously [39], may be the fact that biotinylation relies not only on proximity to
the cloud of activated biotin generated by the ligase but also on the availability of exposed
lysine residues to which biotin can covalently attach. This highlights the importance of
complementary approaches for interactome mapping, and follow-up analyses of our BioID
high-confidence hits will include a range of different techniques.

The nucleolus is an organelle considered a driver of cancer progression [84]. One study
in maize identified Hmga2-GFP localized preferentially to nucleoli as the site of ribosomal
biogenesis [85]. We have demonstrated an interaction of HMGA2 with the nuclear mitotic
apparatus protein, NUMA. This multifunctional chromatin organization factor [86,87] is
essential for organizing the nuclear matrix at spindle poles, and serves as a co-activator
of p53 dependent pathways [88,89], DNA repair [90,91] and apoptosis [92]. Because we
detected NUMA biotinylation with both HMGA2-BioID2 and, the much shorter, HMGA2-
miniTurbo labeling, we may have labeled nucleolar NUMA. NUMA regulates rRNA levels
through complex interactions with ribosomal proteins and RNA to preserve ribonuclear
protein network integrity [86,87,93]. Intriguingly, NUMA is emerging as an activator of
p53 independent nucleolar stress pathways, and the observed biotinylated NUMA in our
BPL analysis of HEK293-HMGA2-BioID2/miniTurbo cells may suggest novel nucleolar
roles of HMGA2 [94].

In conclusion, we have demonstrated the feasibility of BPL to unveil nuclear HMGA2
interactomes, which confirmed existing, and revealed new, HMGA2 interaction candidates.
Our HMGA2 BPL study firmly ascertained the role of HMGA2 as a chromatin binding
protein but also revealed new relationships with nucleosomes and the nucleolus. Their
functional relevance for normal and neoplastic cell functions, and/or therapeutic targeting
quality for the treatment of HMGA2+ cancers, continues to be the topic of ongoing studies.

4. Materials and Methods
4.1. Creation of Stable HEK293 Cell Lines Expressing BioID2 and Miniturbo Fusion Proteins

Using random integration, we generated stable HEK293 cell clones overexpressing
low levels of either, the biotin ligases alone (myc-BioID2 or Flag-miniTurbo), or the ligases
fused to the C-terminus of HMGA2 (HMGA2-Flag-BioID2 or HMGA2-V5-miniTurbo). All
expression plasmids used to generate the stable lines were sequenced to confirm their
identity, and protein expression was confirmed by Western blot analysis (Figures 1 and 3).

4.2. Metabolic Labeling and Liquid Chromatography Mass Spectrometry (LC-MS/MS) Analysis

To eliminate the variability between individual control and experimental mass spec-
trometry (MS) runs, and to improve our ability to distinguish specific but low abundance
interactors from the larger number of non-specifically biotinylated and abundant sticky
proteins, we used stable isotope labeling by amino acids in culture (SILAC)-based metabolic
labeling. This approach allowed us to combine the proteins captured from separate control
and HMGA2 experiments prior to elution from the affinity matrix and subsequent MS
analysis (Figure 2a,b). The amount of protein captured in the experimental vs control
condition was thus determined in a single MS run. Briefly, cells were differentially labeled
with media containing either, environmental forms of the essential amino acids Arginine
and Lysine (Arg0Lys0, Light media), or isotopic forms (Arg6Lys4, Medium; Arg10Lys8,
Heavy) (Cambridge isotope Laboratories, Tewksbury, MA, USA; Athena ES, Baltimore,
MD, USA). Biotin (Sigma-Aldrich, St. Louis, MO, USA) was added in excess to the media
(50 µM) and the cells were harvested 18 h later by scraping them into an ice-cold high-salt
RIPA buffer (50 mM Tris pH 7.5, 500 mM NaCl, 1% NP-40, 0.5% deoxycholate, protease
inhibitors), sonicating, and clearing by centrifuging at 21,000× g for 10 min at 4 ◦C. Total
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protein concentrations were measured using the Pierce BCA Protein Assay Kit (Thermo-
Fisher, Waltham, MA, USA). The salt concentration in the whole cell extracts was then
reduced to 250 mM by adding an equal volume of “no salt” (0 mM NaCl) RIPA buffer,
and equivalent amounts of total protein extract for each condition were incubated with
Streptavidin-agarose beads (Thermo-Fisher, Waltham, MA, USA) at 4 ◦C for 4 h. Following
an initial wash with RIPA buffer, beads from the control and experimental pulldowns were
combined for additional washes and bound proteins eluted with 2% SDS/30 mM biotin.
The eluted proteins were reduced and alkylated by treatment with DTT and iodoacetamide,
respectively. Sample buffer was then added and the proteins resolved by electrophoresis
on a NuPAGE 10% BisTris gel (Thermo-Fisher, Waltham, MA, USA). The gel was stained
using SimplyBlue Safestain (Thermo-Fisher, Waltham, MA, USA) and the entire lane was
cut into five slices. Each slice was cut into 2 × 2 mm fragments, destained, and digested
overnight at 30 ◦C with Trypsin Gold (Thermo-Fisher, Waltham, MA, USA).

An aliquot of each tryptic digest was analyzed by LC-MS/MS on an Orbitrap Fusion
Lumos system (Thermo-Fisher, Waltham, MA, USA) coupled to a Dionex UltiMate 3000
RSLC nano HPL. The raw files were searched against the Human UniProt Database using
MaxQuant software v1.5.5.1 (http:/www.maxquant.org accessed on 29 January 2023) [95]
and the following criteria: peptide tolerance = 10 ppm, trypsin as the enzyme (two missed
cleavages allowed), and carboxyamidomethylation of cysteine as a fixed modification.
Variable modifications are, oxidation of methionine and N-terminal acetylation. Heavy
SILAC labels were Arg10 (R10) and Lys8 (K8). Quantitation of SILAC ratios was based on
razor and unique peptides, and the minimum ratio count was 2. The peptide and protein
FDR was 0.01. These ratios reflected the relative amount of protein that was captured in
experimental (biotin ligase-tagged HMGA2) vs. control (biotin ligase alone) experiments.

4.3. Western Blot Validation by Co-Immunoprecipitation (IP) or BioID

For co-immunoprecipitation (co-IP) of HMGA2 and XRCC6/Ku70, we used nuclear
extracts from MDA-MB-231 breast cancer cells. The cytoplasmic fraction was first separated
using the NE-PER kit (Thermo Fisher, Waltham, MA, USA), according to the manufacturer’s
instructions. The nuclear pellet was lysed using the lysis buffer containing 50 mM Tris-HCl
(pH 7.5), 150 mM NaCl, 25 mM NaF, 0.1 mM Na3VO4, 0.2% Triton X-100, 0.3% NP-40 and
protease inhibitors. The mixture was incubated on ice for 40 min with intermittent vortexing
every 10 min, followed by centrifugation at 16,000× g for 10 min at 4 ◦C. Supernatant
containing the nuclear fraction was used for IP. Nuclear extracts (100 µg) were incubated
with 0.6 µg HMGA2 antibody (Cell Signaling Technology, Whitby, ON, Canada) overnight
at 4 ◦C, and then incubated with 100 µL of protein A/G magnetic beads (Thermo Fisher,
Waltham, MA, USA) for 4 h with shaking, at 4 ◦C. The reaction complex was washed three
times with lysis buffer and bound proteins eluted in 3x Laemmli buffer. The samples were
boiled at 95 ◦C for 5 min prior to SDS-PAGE (Bio-Rad, Mississauga, ON, Canada) and
proteins were transferred to a nitrocellulose membrane. For immunodetection, nonspecific
protein binding sites were blocked with 5% non-fat milk in TBS/T (0.1% Tween 20 in
Tris-buffered saline). Primary antibodies (1:1000 dilutions of anti-HMGA2 or anti-Ku70
[both Cell Signaling Technologies, Whitby, ON, Canada]) were incubated at 4 ◦C overnight.
Membranes were washed three times in TBS/T for 5 min each at RT before incubating with
HRP-conjugated goat anti-rabbit IgG secondary antibody (Cell Signaling Technologies,
Whitby, ON, Canada) for 1 h at RT. Immunoreactive bands were visualized with ECL
Clarity (Bio-Rad, Mississauga, ON, Canada) using Bio-Rad Chemi-Doc MP Imagers. For
the BioID/Western blot validation experiments, the samples were prepared as described
for the MS workflow up to the SDS-PAGE gel separation step, after which the proteins were
transferred from the gel to nitrocellulose for Western blot analysis. This was carried out
as described above, with the exception that the membranes were incubated with primary
antibodies (all 1:1000 dilutions) for 1 h at room temperature.

http:/www.maxquant.org
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4.4. Bioinformatics Analysis

UniProt IDs and Entrez GeneIDs were used for the network and pathway analyses.
Cytoscape (version 3.8) with the ClueGO V2.5.9 plug-in was used for Gene Ontology (GO)
enrichment analyses and identification of Reactome pathways in the list of high confidence
HMGA2 interactors. The ClueGO V2.5.9 plug-in generates functionally grouped GO
annotation networks from a large cluster of genes. GO categories included biological
process, cellular component, and molecular function terms. Our criteria for creating
networks were a minimum of three genes and at least 4% of the genes being assigned to a
biological pathway. p-values were calculated using the hypergeometric test and adjusted
for multiple testing with the Benjamini–Hochberg method. Adjusted p-values < 0.05 were
considered statistically significant as denoted by ** p < 0.001, * p < 0.01, without star p < 0.05.

5. Conclusions

We have demonstrated the feasibility of BPL to unveil nuclear HMGA2 interactomes,
which confirmed existing, and revealed new, HMGA2 interaction candidates. Our HMGA2
BPL study firmly ascertained the role of HMGA2 as a chromatin binding protein, but also
revealed new relationships with nucleosomes and the nucleolus. Their functional relevance
for normal and neoplastic cell functions, or therapeutic targeting quality, is the topic of
ongoing studies.
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