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Abstract: Despite remarkable progress in cancer research and treatment over the past decades,
cancer ranks as a leading cause of death worldwide. In particular, metastasis is the major cause
of cancer deaths. After an extensive analysis of miRNAs and RNAs in tumor tissue samples, we
derived miRNA–RNA pairs with substantially different correlations from those in normal tissue
samples. Using the differential miRNA–RNA correlations, we constructed models for predicting
metastasis. A comparison of our model to other models with the same data sets of solid cancer
showed that our model is much better than the others in both lymph node metastasis and distant
metastasis. The miRNA–RNA correlations were also used in finding prognostic network biomarkers
in cancer patients. The results of our study showed that miRNA–RNA correlations and networks
consisting of miRNA–RNA pairs were more powerful in predicting prognosis as well as metastasis.
Our method and the biomarkers obtained using the method will be useful for predicting metastasis
and prognosis, which in turn will help select treatment options for cancer patients and targets of
anti-cancer drug discovery.

Keywords: miRNA–RNA interaction; patient-specific network; differential correlation; cancer; prog-
nosis; metastasis

1. Introduction

The past two decades have seen remarkable progress in cancer research and treatment.
However, despite significant progress, cancer still affects millions of people and ranks
as a leading cause of death in the world [1]. In particular, metastasis is the major cause
of cancer mortality, which accounts for about 90% of cancer deaths [2,3]. Cancer is a
complex and heterogeneous disease with many possible genetic and environmental causes.
Many treatments are effective only for patients with specific genetic or epigenetic alterations
that help tumor cells develop [4,5]. Therefore, finding genetic changes specific to individual
patients is essential to selecting effective treatments for cancer patients [6].

In our previous studies [7,8], we have developed a method for constructing microR-
NAs (miRNAs) mediated RNA interaction networks specific to individual cancer pa-
tients and for finding prognostic miRNA–RNA pairs or lncRNA–miRNA–mRNA triplets.
A miRNA is a small non-coding RNA molecule of ∼22 nucleotides, which often represses
the expression of a gene by binding to the gene [9]. Until recently, interactions between
miRNAs and their target genes have not received much attention from cancer research
scientists. The so-called competitive endogenous RNA (ceRNA) hypothesis proposed
by Salmena et al. [10] suggests that miRNAs mediate a regulatory relation between long
non-coding RNAs (lncRNAs) and mRNAs which share similar miRNA response elements
(MREs) to bind to the same miRNA. Results of several experimental studies have supported
the hypothesis and demonstrated that many miRNAs are key regulators in the initiation
and development of cancer [11–15]. The ceRNA hypothesis focused on competing rela-
tions between lncRNAs and mRNAs only, but competition for miRNA-binding occurs
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not only between lncRNAs and mRNAs but also between lncRNAs or between mRNAs.
Furthermore, many pseudogenes also act as ceRNAs, thereby regulating other genes.

Motivated by the increasing amount of miRNA expression data, several studies have
been conducted recently to construct ceRNA networks in cancer. Zhu et al. [16], for example,
constructed a network of lncRNA–miRNA–mRNA triplets from miRNA–lncRNA associ-
ations and miRNA–mRNA associations. Jiang et al. [17] constructed a ceRNA network
after calculating the correlation coefficients of miRNA-mRNA and miRNA–lncRNA pairs.
However, most ceRNA networks constructed so far are intended to represent a general
relation of RNAs present in multiple cancer samples rather than for a patient-specific
relation of RNAs. The biological functions of the regulatory miRNAs are very diverse
depending on the target molecules regulated by miRNAs. In particular, cancer is a very
heterogeneous disease, so RNA interactions mediated by miRNAs can vary in different
cancer patients.

As an extension of our previous studies [7,8], we have developed a new method of
finding biomarkers based on differential miRNA–RNA correlations to predict metastasis
and prognosis in cancer. Unlike conventional molecular biomarkers, network biomarkers
can capture the associations or regulations of molecules involved in complex diseases such
as cancer [18]. A network-based approach is one of the emerging promising strategies,
and the transition from molecular biomarkers to network biomarkers will help select
treatment options tailored to individual patients. The rest of this paper presents our
approach to deriving miRNA–RNA correlations specific to cancer patients and finding
biomarkers for predicting metastasis and prognosis.

2. Results and Discussion
2.1. miRNA–RNA Pairs

Table 1 shows the number of tumor samples of each type and normal samples in 10
cancer data sets. In most cancer data sets, there were many fewer tumor samples with
distant metastasis than tumor samples with lymph node metastasis.

Table 1. The number of tumor samples of each type and normal samples in 10 cancer data sets.

Cancer #nonM
samples

#LNM_only
samples

#DM_only
samples

#LNM&DM
samples

#normal
samples

#total
samples

BLCA 118 44 0 7 19 188
BRCA 450 449 1 18 113 1,031
COAD 228 105 9 55 41 438
ESCA 56 64 2 6 11 139
HNSC 81 98 0 1 44 224
LUAD 219 124 11 11 59 424
LUSC 258 149 3 3 49 462
PRAD 316 75 1 1 52 445
STAD 103 210 2 23 32 370
THCA 145 127 3 4 59 338

The RNAs of 4 biotypes (miRNAs, lncRNAs, mRNAs, and pseudogenes) obtained
after removing those with low-expressions are shown in Table 2. The number of miRNA–
RNA pairs left after each filtering process is shown in Table 3. The correlations of the
miRNA–RNA pairs were used in our study to predict metastasis and prognosis.



Int. J. Mol. Sci. 2023, 24, 5052 3 of 16

Table 2. The number of miRNAs, lncRNAs, mRNAs, and pseudogenes in ten types of cancer.

Cancer #miRNAs #lncRNAs #mRNAs #pseudogenes

BLCA 143 9612 18,038 4994
BRCA 150 10,070 18,035 5380
COAD 144 8477 17,515 5102
ESCA 418 12,588 18,658 8713
HNSC 88 8563 17,912 4493
LUAD 182 10,291 18,037 5845
LUSC 147 10,206 18,152 5507
PRAD 126 8764 17,731 4686
STAD 345 12,472 18,657 8700
THCA 140 8256 17,487 4610

Table 3. The number of features after each filtering process.

Cancer #miRNA–RNA Pairs
after PCC Filtering

#miRNA–RNA Pairs
after Wilcoxon Test #PCs after PCA

LNM

BLCA 169,439 9501 45
BRCA 170,673 3619 166
COAD 312,968 3970 162
ESCA 706,722 27,312 65
HNSC 82,959 2281 58
LUAD 320,323 13,891 137
LUSC 43,340 1296 83
PRAD 78,722 5036 150
STAD 230,038 8136 120
THCA 124,722 12,738 102

DM

BRCA 572,862 19,634 134
COAD 273,660 4968 112
LUAD 863,846 20,632 55
STAD 1,222,396 43,240 58

2.2. Prediction of Metastasis and Comparison with Other Methods

While our method uses ∆PCCs of miRNA–RNA pairs as features, most learning-
based methods for predicting metastasis use gene expressions as features. We compared
the performance of prediction using three different types of features: ∆PCCs of miRNA–
RNA pairs, expressions of genes involved in miRNA–RNA pairs, and expressions of
191 metastasis-predictive genes found by Zhou et al. [19].

For a fair comparison, three methods with different features were evaluated in the
same way. We partitioned the data sets randomly into training and test data sets with a
ratio of 7:3. We used the training data set to optimize the hyperparameters of each model
using a grid search with 5-fold cross-validation. We repeated the whole process of the data
partition, training, and testing 10 times for the evaluation of the methods.

Table 4 shows the average area under the curve (AUC) values of the three methods
with independent data sets, which were not used in training the methods. Our method,
which used ∆PCCs of miRNA–RNA pairs, outperformed the other methods in all 10 cancer
types. Figure 1 compares the average ROC curves of the three methods with indepen-
dent data sets of COAD. It is interesting to note that the 191 metastasis-predictive genes
were not predictive of prognosis in both distant metastasis and lymph node metasta-
sis. The results demonstrate that ∆PCCs of miRNA–RNA interactions are more power-
ful than gene expressions in predicting lymph node metastasis and distant metastasis.
Detailed results of 5-fold cross-validation and independent testing of the three methods are
available in Appendix A.
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Table 4. Comparison of three types of features in predicting lymph node metastasis (LNM) and
distant metastasis (DM) with respect of AUC in independent testing. All the values are the average
of 10 runs. Bold values indicate best values. -: no result.

Cancer
LNM DM

∆PCC 1 Exp 2 Exp191 3 ∆PCC 1 Exp 2 Exp191 3

BLCA 0.938 0.668 0.541 - - -
BRCA 0.732 0.626 0.550 0.907 0.605 0.500
COAD 0.936 0.713 0.637 0.889 0.580 0.512
ESCA 0.961 0.670 0.501 - - -
HNSC 0.924 0.727 0.520 - - -
LUAD 0.787 0.636 0.557 0.733 0.613 0.500
LUSC 0.840 0.598 0.498 - - -
PRAD 0.815 0.655 0.534 - - -
STAD 0.897 0.596 0.507 0.853 0.661 0.498
THCA 0.802 0.675 0.638 - - -

1 ∆PCC of miRNA–RNA pairs, 2 Expressions of genes involved in miRNA–RNA pairs, 3 Expressions of
191 metastasis-predictive genes [19].

Figure 1. ROC curves of three types of features in predicting metastasis of COAD in independent
testing. (A) Average ROC curves in predicting lymph node metastasis of COAD. (B) Average ROC
curves in predicting distant metastasis of COAD. ∆PCC: ∆PCC of miRNA–RNA pairs, Exp: Expres-
sions of genes involved in miRNA–RNA pairs, Exp191: Expressions of 191 metastasis-predictive
genes [19]. The curves are the average ROC curves of 10 runs. The gray part indicates the error range
of the ROC curves.

2.3. Predicting Prognosis and Potential Prognostic Biomarkers

We performed the univariate Cox regression analysis with respect to |∆PCC| values
of miRNA–RNA pairs to explore the overall survival of patients. Table 5 shows the top
miRNA–RNA pairs with the lowest p-value of the log–rank test in each type of cancer. As
shown in the table, several lncRNAs and pseudogenes are included in the top miRNA–
RNA pairs, which corroborates the assertion that miRNAs play an important role in cancer
through the interaction with lncRNAs and pseudogenes as well as with mRNAs [20,21].
If the higher |∆PCC| of a miRNA–RNA pair is associated with a longer survival time, its
hazard ratio (HR) < 1. In contrast, HR of a miRNA–RNA pair > 1 if the higher |∆PCC| of
the pair is associated with a shorter survival time.
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Table 5. The results of univariate Cox regression analysis with respect to miRNA–RNA pairs with
the lowest p-value in the log–rank test. HR: hazard ratio.

Cancer miRNA–RNA Pair Type of RNA HR p-Value C-Index

BLCA MIR6793_CST4 mRNA 0.164 1.53× 10−10 0.639
BRCA MIR186_AP1S1 mRNA 3.820 6.48× 10−9 0.642
COAD MIR4538_SLAMF1 mRNA 3.294 4.89× 10−8 0.630
ESCA MIR4755_CCDC18-AS1 lncRNA 5.298 5.63× 10−9 0.681
HNSC MIR4537_EMC3-AS1 pseudogene 0.256 1.42× 10−7 0.651
LUAD MIR3125_OR1F1 mRNA 3.868 4.13× 10−12 0.611
LUSC MIR6071_SFTA3 lncRNA 0.408 3.34× 10−6 0.579
PRAD MIR5087_EZR-AS1 lncRNA 0.022 4.86× 10−12 0.847
STAD MIR6757_AC104619.3 pseudogene 5.724 4.23× 10−9 0.537
THCA MIR4664_AL353138.1 lncRNA 0.014 6.19× 10−13 0.863

Figure 2 shows Kaplan–Meier plots and risk tables for the top miRNA–RNA pairs in
LUAD and PRAD. In the Kaplan–Meier plots, the red line represents a group of patients
with higher |∆PCCs| than the threshold value. In contrast, the blue line represents a
group of patients with lower |∆PCCs| than the threshold value. The risk table below the
Kaplan–Meier plot shows the number of patients at risk at a specific time point.

We examined how many of the miRNA–RNA pairs with an adjusted p-value < 0.01
in the log–rank test (available in Appendix B) are supported by existing experimental
results or previously predicted using computational methods. For this comparison, we
extracted miRNA–RNA interactions in humans from the RNAInter database [22], which
provides a comprehensive RNA interactome resource, including miRNA–target RNA
interactions. Among the 2322 miRNA–RNA pairs of Appendix B, 53 pairs were found as
experimentally validated miRNA–RNA pairs in RNAInter, and 90 pairs were found as
previously predicted pairs in RNAInter. Except the 143 pairs (53 experimentally validated
pairs and 90 predicted pairs), most miRNA–RNA pairs found in our study were not found
in RNAInter. This implies that our approach can be useful in finding previously unknown
miRNA–RNA interactions.

Figure 2. Kaplan–Meier plots comparing the survival rates of two groups of cancer patients with
respect to a miRNA–RNA pair. (A) The survival rates of two groups of LUAD patients with respect
to MIR3125_OR1F1. The larger |∆PCC| values of the MIR3125_OR1F1 pair are associated with the
shorter survival rates of LUAD patients. (B) The survival rates of two groups of PRAD patients with
respect to MIR5087_EZR-AS1. The larger |∆PCC| values of the MIR5087_EZR-AS1 pair are associated
with the longer survival rates of PRAD patients. The risk tables below the Kaplan–Meier plots show
the numbers at risk of each group over five years.
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2.4. Subnetworks for the Cancer Prognosis

With the miRNA–RNA pairs, we constructed star-shaped networks centered on com-
mon miRNAs, and selected the networks with C-index > 0.6, and adjusted p-value < 0.01.
Two networks were found in BLCA, 14 in BRCA, 10 in COAD, 34 in ESCA, 1 in HNSC, 39 in
LUAD, 1 in LUSC, 19 in PRAD, 2 in STAD, and 31 in THCA. The networks were named
after their center nodes (e.g., network_MIR645 in LUAD, network_MIR4666A in PRAD).

Table 6 shows the top prognostic network biomarkers with the lowest p-value in the
log–rank test. MIR145, which is present in the potential prognostic network biomarker of
BLCA, is known as a potential biomarker of cancer migration and invasion [23]. MIR645 in
the potential prognostic network biomarker of LUAD, is known to promote the proliferation
of non-small cell lung cancer cells by targeting TP53I11 gene [24]. MIR760 in the prognostic
network biomarker of STAD has been reported to function as a tumor suppressor and
inhibit cell migration in gastric cancer in several studies [25,26]. MIR138 found for THCA
is known to act as a tumor suppressor by targeting several genes that are related to the
proliferation and invasion of cancer cells [27].

Table 6. The top subnetworks with the lowest p-value of the log-rank test for each type of cancer.

Cancer Network #edges HR p-Value C-Index

BLCA network_MIR145 15 7.476 3.26× 10−11 0.710
BRCA network_MIR378J 3 3.357 1.19× 10−8 0.638
COAD network_MIR4538 15 3.491 8.13× 10−9 0.689
ESCA network_MIR4644 15 6.312 3.21× 10−9 0.788
HNSC network_MIR8058 2 4.146 1.02× 10−6 0.650
LUAD network_MIR645 11 3.628 4.99× 10−13 0.704
LUSC network_MIR6071 15 2.400 1.34× 10−7 0.615
PRAD network_MIR4666A 7 2.775× 1010 1.37× 10−23 0.977
STAD network_MIR760 5 2.325 1.33× 10−6 0.640
THCA network_MIR138-1 2 46.806 1.72× 10−15 0.789

Figure 3 shows the network biomarkers for LUAD and PRAD and the results of a sur-
vival analysis with the network biomarkers. The network_MIR645 (Figure 3A) consisting
of 12 nodes (1 miRNA, 3 mRNAs, 6 lncRNAs, and 2 pseudogenes) revealed the lowest
p-value in the log–rank test in LUAD. The network_MIR4666A (Figure 3B) includes 8 nodes
(1 miRNA, 2 mRNAs, 2 lncRNAs, and 3 pseudogenes) showed the lowest p-value in the
log–rank test and the highest C-index in PRAD. Detailed results of survival analysis with
potential prognostic networks are available in Appendix C.

As an example of miRNA–RNA correlation networks, Figure 4 shows a network
composed of the miRNA–RNA pairs left after the Wilcoxon test in PRAD. The network
consists of 5036 edges between 4121 nodes (125 miRNAs, 2330 mRNAs, 1169 lncRNAs, and
479 pseudogenes), and each edge represents ∆PCC of a miRNA–RNA pair. In the network,
19 potential prognostic network biomarkers of PRAD are enclosed with rounded boxes.
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Figure 3. (A) Network_MIR645 for prognosis of LUAD, which consists of 3 mRNAs (white ellipse),
6 lncRNAs (grey ellipse), and 2 pseudogenes (pink ellipse) connected to 1 miRNA (shown as green
circle). (B) Network_MIR4666A for prognosis of PRAD. It consists of 2 mRNAs, 2 lncRNAs, and
3 pseudogenes connected with miRNA. The Kaplan–Meier plots compare the survival rates of two
groups of risk scores, which were defined using Equation (4).
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Figure 4. Network of miRNA–RNA correlations in PRAD, which consists of 5036 edges between
4121 nodes (125 miRNAs, 2330 mRNAs, 1169 lncRNAs, and 479 pseudogenes). Subnetworks enclosed
with rounded boxes are potential prognostic network biomarkers found in our study.

2.5. Comparing Potential Prognostic Biomarkers to Other Methods

We compared the prognostic power of the networks with that of miRNA–RNA pairs
and individual genes in the networks in terms of the p-value of the log–rank test and
C-index. Survival analysis with individual genes was based on the expression of the genes.
For a fair comparison, we carried out the log–rank test for individual genes with an optimal
threshold determined by the cutp function, as in the networks and miRNA–RNA pairs.
We then selected individual genes with an adjusted p-value of the log–rank test < 0.01.

Figure 5 shows the distribution of p-values of the log–rank test and C-index values of
networks of miRNA–RNA pairs, miRNA–RNA pairs, and individual genes. In most cancer
types, the best p-values, and C-indices were observed in network biomarkers, followed by
miRNA–RNA pairs. In particular, the superiority of network biomarkers was prominent
in C-index.



Int. J. Mol. Sci. 2023, 24, 5052 9 of 16

Figure 5. (A) Distribution of the p-values derived from the log–rank test with respect to subnetworks,
miRNA–RNA pairs, and individual genes. (B) Distribution of the C-index values with respect to
subnetworks, miRNA–RNA pairs, and individual genes.

For more comparison, we selected the best network biomarker, miRNA–RNA pair, and
gene and compared them in terms of the p-value of the log–rank test and C-index (Table 7).
In all cancer types except BRCA and HNSC, networks of miRNA–RNA pairs were better
than miRNA–RNA pairs and individual genes both in p-values and C-index. In BRCA and
HNSC, miRNA–RNA pairs were the best, followed by networks of miRNA–RNA pairs.
Overall, network biomarkers showed stronger prognostic power than miRNA–RNA pairs
or individual genes in most cancer types.
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Table 7. The number of features and the best p-value and C-index for each cancer type in subnetworks,
miRNA–RNA pairs, and individual genes. Bold values indicate best values.

Cancer Type of Feature Number of
Features p-Value C-Index

BLCA
networks 32 3.26 × 10−11 0.7264
miRNA–RNA pairs 514 1.53× 10−10 0.6656
individual genes 297 2.56× 10−7 0.6100

BRCA
networks 14 1.19× 10−8 0.6673
miRNA–RNA pairs 93 6.48 × 10−9 0.6701
individual genes 52 6.74× 10−7 0.6396

COAD
networks 10 8.13 × 10−9 0.6895
miRNA–RNA pairs 190 4.89× 10−8 0.6470
individual genes 100 2.96× 10−8 0.6192

ESCA
networks 34 3.21 × 10−9 0.7888
miRNA–RNA pairs 311 5.63× 10−9 0.7185
individual genes 98 1.28× 10−5 0.6384

HNSC
networks 1 1.02× 10−6 0.6502
miRNA–RNA pairs 3 1.42 × 10−7 0.6516
individual genes 4 0.04× 10−2 0.5562

LUAD
networks 39 4.99 × 10−13 0.7154
miRNA–RNA pairs 632 4.13× 10−12 0.6565
individual genes 342 2.44× 10−10 0.6242

LUSC
networks 1 1.34 × 10−7 0.6157
miRNA–RNA pairs 53 3.34× 10−6 0.5875
individual genes 42 3.85× 10−6 0.5943

PRAD
networks 19 1.37 × 10−23 0.9773
miRNA–RNA pairs 156 4.86× 10−12 0.9519
individual genes 66 1.06× 10−13 0.9210

STAD
networks 2 1.33 × 10−6 0.6406
miRNA–RNA pairs 77 4.23× 10−9 0.6196
individual genes 39 3.28× 10−6 0.6135

THCA
networks 31 1.72 × 10−15 0.9627
miRNA–RNA pairs 293 6.19× 10−13 0.8950
individual genes 78 1.76× 10−11 0.7854

We further compared the predictive power of our network biomarkers with the prog-
nostic genes in the Human Protein Atlas (HPA) [28], which provides the results of the
log–rank test with TCGA data sets, the same data sets used in our study. Since HPA does
not provide C-index values of prognostic genes, we computed them with TCGA data sets.
Table 8 compares 10 network biomarkers with the prognostic genes of HPA in terms of
the p-values of the log–rank test and C-indices. Both the network biomarkers and the
prognostic genes of HPA are the ones with the highest C-index in each type of cancer. A
comparison of prognostic markers in ESCA was not made because HPA does not provide
prognostic genes in ESCA. As shown in the table, the network biomarkers found in our
study were better than prognostic genes of HPA not only in p-values but also in C-indices,
with the exception of the p-value in BRCA.
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Table 8. Comparison of the proposed prognostic networks centered on miRNAs and the prognostic
genes of HPA. Both prognostic networks found in our study and the prognostic genes of HPA are the
ones with the highest C-index. Bold values indicate best values.

Cancer
Prognostic Networks Found in Our Study Prognostic Genes in HPA

Center miRNA p-Value C-Index Gene p-Value C-Index

BLCA MIR4539 6.89 × 10−7 0.7264 GARS1 3.04× 10−5 0.6226
BRCA MIR4489 3.09× 10−7 0.6673 PGK1 7.05 × 10−8 0.6580
COAD MIR4538 8.13 × 10−9 0.6895 PRKAR2A 4.27× 10−5 0.6411
ESCA MIR4644 3.21× 10−9 0.7888 - - -
HNSC MIR8058 1.02 × 10−6 0.6502 IGHV3-13 6.67× 10−6 0.6133
LUAD MIR624 1.05 × 10−11 0.7154 DKK1 7.80× 10−6 0.6480
LUSC MIR6071 1.34 × 10−7 0.6157 NT5E 0.06× 10−2 0.5987
PRAD MIR466A 1.37 × 10−23 0.9773 SESN1 0.02× 10−2 0.9029
STAD MIR760 1.33 × 10−6 0.6406 ZBTB7A 0.02× 10−2 0.6135
THCA MIR4442 1.77 × 10−8 0.9627 SNAI1 8.82× 10−7 0.8500

3. Materials and Methods
3.1. Data Collection and Preparation

In the Cancer Genome Atlas (TCGA), we selected the data sets which have at least
50 tumor samples with lymph node metastasis (LNM) and 10 normal samples. Distant
metastasis (DM) was not included in the selection criteria due to the small number of
samples with distant metastasis. Among the 33 cancer data sets of TCGA, 10 cancer data
sets satisfied the selection criteria: urothelial bladder carcinoma (BLCA), breast invasive
carcinoma (BRCA), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), head-
neck squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), prostate adenocarcinoma (PRAD), stomach adenocarcinoma (STAD),
and thyroid carcinoma (THCA).

The tumor samples in the selected cancer data sets were classified into four types
based on the Tumor, Node, Metastasis (TNM) stage index in the clinical supplement data
of TCGA.

• Samples with no metastasis (nonM): T stage of 1–4, N stage of 0, and M stage of 0
• Samples with lymph node metastasis only (LNM_only): T stage of 1–4, N stage of 1–3,

and M stage of 0
• Samples with distant metastasis only (DM_only): T stage of 1–4, N stage of 0, and M

stage of 1
• Samples with both lymph node metastasis and distant metastasis (LNM&DM): T stage

of 1–4, N stage of 1–3, and M stage of 1

We obtained RNA-seq gene expression data from the Genomic Data Commons (GDC)
data portal [29]. After filtering out the genes with the average raw read counts < 1, a total
of 42,692 genes were left. Using the annotation file obtained from the Ensembl project [30],
we classified the remaining genes into 4 biotypes: miRNAs, lncRNAs, mRNAs, and pseu-
dogenes. There were 42,692 genes used (477 miRNAs, 13,731 lncRNAs, 18,937 mRNAs,
and 9547 pseudogenes) across 10 types of cancer. We then normalized raw read counts
of the genes into counts per million (CPM) values using the trimmed mean of M values
(TMM) method [31] in the R package edgeR [32].

3.2. Deriving miRNA–RNA Interactions

Our approach to predicting metastasis and prognosis is based on correlations of
miRNAs and their target RNAs, which include mRNAs, lncRNAs, and pseudogenes. The
correlations of miRNAs and their target RNAs were computed separately in each type of
cancer. For every pair of miRNA and their target RNA in n normal samples, we computed
the Pearson correlation coefficient (PCC) using Equation (1). In the equation, Xi is the CPM
value of miRNA X in sample i, and X̄ is the mean CPM value of miRNA X in n samples.
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Likewise, Yi represents the CPM value of RNA Y in sample i, and Ȳ is the mean CPM value
of RNA Y in n samples.

PCC(X, Y) = ∑n
i=1 (Xi − X̄)(Yi − Ȳ)√

∑n
i=1 (xi − X̄)2 ∑n

i=1 (Yi − Ȳ)2
(1)

Our method for predicting metastasis is composed of two prediction models: one
model for predicting lymph node metastasis (MLNM) and another model for predicting dis-
tant metastasis (MDM). In MLNM, LNM_only ∪ LNM&DM samples are positive, and nonM
samples are negative. In MDM, DM_only ∪ LNM&DM samples are positive, and nonM ∪
LNM_only samples are negative.

In each of the positive and negative sets, miRNA–RNA pairs with |PCC(X, Y)| < 0.4
were removed because their correlations are not strong enough to be used in predicting
metastasis. Those miRNA–RNA pairs common to the positive and negative data sets were
also removed. After adding a single tumor sample to the n normal samples, we recomputed
PCCn+1(X, Y) and obtained ∆PCC(X, Y) by subtracting PCCn(X, Y) from PCCn+1(X, Y).
∆PCC(X, Y) reflects the difference in miRNA–RNA correlations between the n normal
samples and the single tumor sample.

∆PCC(X, Y) = PCCn+1(X, Y)− PCCn(X, Y) (2)

Using the ∆PCC values, we performed the Wilcoxon test [33] between positive and
negative data sets, and selected the miRNA–RNA pairs with the p-value < 0.01 in the
Wilcoxon test. The miRNA–RNA pairs left after the Wilcoxon test represent those miRNA–
RNA pairs with significantly different correlations (i.e., ∆PCC of a miRNA–RNA pair) in
cancer patients.

3.3. Construction of Models for Predicting Metastasis

Gene expressions observed in lymph node metastasis are often different from those in
distant metastasis, so predicting both types of metastasis with a single model is difficult [34].
Thus, our method is composed of two prediction models: one model for predicting lymph
node metastasis (MLNM) and another model for predicting distant metastasis (MDM).

Both models use ∆PCC values of miRNA–RNA pairs as features, but the dimension
of feature vectors was reduced by performing the principal component analysis (PCA).
The models are ensemble learners with two base learners: support vector machine (SVM)
with the radial basis function (RBF) as a kernel and logistic regression (LR). Using LR as
a secondary learner, we combined the base learners by stacking to improve predictive
accuracy [35,36].

The data sets were randomly partitioned into training and test data sets with a ratio
of 7:3. The training data set and the test data set are disjoint. The test data set was used
in independent testing. Due to the randomness of the data partition and the small and
imbalanced data sets, the whole process of the data partition, training, and testing was
repeated 10 times when evaluating the models. The hyperparameters of SVMs and LRs
were optimized with a grid search with 5-fold cross-validation of training data sets.

The models take a patient sample as input. If both models classify the sample as
negative, no metastasis is predicted for the patient. If the sample is classified as positive
by MLNM but negative by MDM, only lymph node metastasis is predicted for the patient.
Similarly, if the sample is classified as negative by MLNM but positive by MDM, only distant
metastasis is predicted for the patient. If both models classify the sample as positive,
both lymph node metastasis and distant metastasis are predicted for the patient (refer to
Figure 6).
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Figure 6. The overall framework of our method. (A) Deriving miRNA–RNA pairs based on ∆PCC
from RNA−seq and clinical data. (B) Constructing prediction two models for predicting metastasis
(LNM and DM) based on differential correlations between miRNAs and their target RNAs and
predicting metastasis using the models. (C) Identifying prognostic network biomarkers from miRNA–
RNA pairs.

The overall workflow of constructing the prediction models and running them is illus-
trated in Figure 6. Constructing the models involves data collection, classifying samples,
deriving miRNA–RNA pairs, computing differential correlations of miRNA–RNA pairs,
and training the models.

3.4. Finding Biomarkers for Predicting Prognosis

We used the miRNA–RNA pairs derived for predicting metastasis in finding prognos-
tic biomarkers. The workflow of finding prognostic biomarkers is illustrated in Figure 6.
We derived two types of prognostic biomarkers: miRNA–RNA pair and subnetwork cen-
tered at a common miRNA of miRNA–RNA pairs. We carried out the univariate Cox
regression analysis [37] with |∆PCC| values of miRNA–RNA pairs and computed the
concordance index (C-index) of every miRNA–RNA pair. The C-index for every pair in
patient samples i and j is defined using Equation (3), where Ti is an observed survival time
of i and ηi is a predicted score of i. ηi could be predicted survival times, or hazards, etc.
In this study, partial hazard values predicted with the Cox regression model were used as
ηi [38].

C-index =
∑i 6=j δ(Ti > Tj) · δ(ηi < ηj) · dj

∑i 6=j δ(Ti > Tj) · dj
(3)

where dj = 1 if j is uncensored, and 0 otherwise. δ(Ti > Tj) = 1 if Ti > Tj, and 0 otherwise.
The C-index ranges between 0 and 1, 1 being the best value. We also performed the log–
rank test for each miRNA–RNA pair. When dividing patient samples into two groups
(high |∆PCC| group and low |∆PCC| group), we used the cutp function in the R package
survMisc [39]. The cutp function determines an optimal cut point for a continuous variable
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based on the statistical results of the Cox regression analysis. We adjusted the p-values of the
log–rank test using the Benjamini–Hochberg procedure [40], and selected the miRNA–RNA
pairs with an adjusted p-value < 0.01 as potential prognostic miRNA–RNA pairs.

The miRNA–RNA pairs with an adjusted p-value < 0.01 were sorted in increasing order
of p-values. Starting with the miRNA–RNA pair with the smallest p-value, we combined
up to 15 miRNA–RNA pairs with common miRNAs. The combined miRNA–RNA pairs
form star-shaped networks centered at common miRNAs.

For every patient sample i, we computed the risk score of the star-shaped networks
using Equation (4). In Equation (4), j denotes a miRNA–RNA pair in a network. |∆PCC|ij
represents the |∆PCC| values of miRNA–RNA pair j in sample i. β j is the regression
coefficient from the Cox regression analysis of miRNA–RNA pair j.

Risk score(i) = ∑
j
|∆PCC|ijβ j (4)

The risk score was used in classifying patient samples into two groups, the high-
risk group and the low-risk group. Again, the cutp function was used to determine an
optimal threshold for classification. Finally, the networks with a C-index > 0.6 and adjusted
p-value < 0.01 were selected as potential prognostic biomarkers.

4. Conclusions

So far, many computational methods for predicting prognosis in cancer have focused
on survival rates without considering metastasis. There are a few methods developed for
predicting lymph node metastasis, but few attempts have been made to predict distant
metastasis mainly due to the difficulty of the problem and the small number of publicly
available samples with distant metastasis. We developed a new method for predicting both
lymph node metastasis and distant metastasis using differential correlations of miRNAs
and their target RNAs in cancer, which were derived from a large amount of RNA-seq
data and clinical data. Testing our method on several types of cancer demonstrated that
differential correlations of miRNAs and their target RNAs are much more powerful than
gene expressions in predicting distant metastasis as well as lymph node metastasis. With the
differential correlations of miRNAs and their target RNAs, we found network biomarkers
for predicting the prognosis of cancer patients. The network biomarkers derived from
metastasis analysis were more predictive of survival rates than correlations of individual
miRNA–RNA pairs or gene expressions of individual genes. The results of our study
showed that network biomarkers based on correlations of genes could be more powerful
than typical molecular biomarkers of individual genes in predicting prognosis as well as
metastasis. The method developed in this study, and its results will be useful in selecting
treatment options for cancer patients and a target of anti-cancer drug discovery.
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TCGA The cancer genome atlas
BLCA Urothelial bladder carcinoma
BRCA Breast invasive carcinoma
COAD Colon adenocarcinoma
ESCA Esophageal carcinoma
HNSC Head-neck squamous cell carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
PRAD Prostate adenocarcinoma
STAD Stomach adenocarcinoma
THCA Thyroid carcinoma
TNM Tumor, node, metastasis
GDC Genomic data commons
CPM Counts per million
TMM Trimmed mean of M values
PCC Pearson correlation coefficient
PCA Principal component analysis
PC Principal component
SVM Support vector machine
RBF Radial basis function
LR Logistic regression
HR Hazard ratio
AUC Area under the curve
HPA Human protein atlas
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