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Abstract: The recent tendency to delay pregnancy has increased the incidence of age-related infertility,
as female reproductive competence decreases with aging. Along with aging, a lowered capacity of
antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage.
Therefore, advancements have been made in assisted reproduction to resolve infertility caused by
reproductive aging and oxidative stress, following an emphasis on their use. The application of
mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated
as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem
cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been
reported to be as effective as that of direct treatment of source cells. In this review, we summarized the
current understanding of female reproductive aging and oxidative stress and present MSC-CM, which
could be developed as a promising antioxidant intervention for assisted reproductive technology.

Keywords: antioxidant; assisted reproductive technologies; female reproduction; infertility;
mesenchymal stem cell; oxidative stress; reproductive aging; stem cell conditioned medium

1. Introduction

For the success of reproduction, normal functioning of the ovaries and uterus is
essential in both natural fertilization and in vitro fertilization (IVF). First, from a healthy
ovary, oocytes are matured and ovulated with the appropriate quantity and quality [1].
Then, the oocytes are inseminated with sperm, and the fertilized zygotes are developed in
fallopian tubes or under in vitro culture conditions. Both in vitro and in vivo developed
embryos should be implanted, which means attaching to uterine tissue, and, finally, the
pregnancy should be maintained with a receptive uterus [2]. However, aging leads to
various abnormal phenotypes and dysfunctions in the ovaries and uterus, which increases
age-related reproductive disorders [3]. Age-related infertility decreases the success rate
of assisted reproduction, especially IVF, resulting from reproductive disorders such as
polycystic ovarian syndrome [4], endometriosis [5], and other uterine diseases [6].

Reactive oxygen species (ROS) are essential regulators of various cellular processes,
and, in a normal state, the number of free radicals and antioxidants are in balance [7].
However, when excessive free radicals are produced, the antioxidant defense fails, and
healthy cells are damaged by oxidative stress [8]. Oxidative stress leads to mitochondrial
damage [9], protein oxidation [10], lipid peroxidation [11], and DNA damage and mu-
tation [12], all of which deteriorate biological functions and finally trigger the aging of
cells [13]. Interactively, the incidence of oxidative damage also increases with aging [14].
It is widely acknowledged that oxidative stress brings detrimental consequences to the
ovaries, uterus, oocytes, and embryos (Figure 1). In the ovaries, oxidative stress restricts
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follicle and oocyte maturation, which leads to a decreased number and competence of
oocytes and an abnormal increase of the follicle-stimulating hormone [15–17]. In the uterus,
implantation is prevented, and pregnancy complications arise, such as endometriosis [18],
pre-eclampsia [19], and placentation failure [20], finally leading to fetal growth restric-
tion and miscarriage [21]. Oxidative damage to the oocytes causes DNA fragmentation,
mitochondrial dysfunction, aneuploidy, and, accordingly, a decrease in the fertilization
rate [22–24]. Even after embryos are produced, oxidative stress can cause their apopto-
sis [25] and a decrease in the quantity and quality of blastocysts [26]. In general, oxidative
stress on embryos developed in vivo is caused by aging and other environmental fac-
tors [27]. There are an additional number of stressors for embryos in the case of in vitro
production, such as oxygen concentration, visible light, pH, temperature, and, especially,
suboptimal culture medium, which significantly impairs the developmental competence
of embryos [28–30]. Consequently, these challenging circumstances, associated with nu-
merous factors for oxidative stress to which embryos are exposed, are driving the need to
evolve the efficient application of antioxidants for the improvement of female reproductive
competence and embryo development.
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Figure 1. Detrimental effects of oxidative stress on female reproductive organs, oocytes, and embryos.

Mesenchymal stem cells (MSCs) can be ethically obtained from various sources, and they
are safe, easy to harvest, and highly available [31,32]; therefore, they have been studied as
regenerative medicine, and their therapeutic effects are widely known [33]. In particular, the
potential of MSCs to alleviate oxidative damage caused by an array of diverse diseases has
recently received significant attention. Stem cell conditioned medium (CM) was developed
following the direct administration of stem cells. Comparing MSCs and MSC-CM, MSC-CM
is considered more advantageous in terms of safety and convenience [34]. The therapeutic
effect of CM is known to be comparable to stem cells themselves as paracrine factors, which
are growth factors and cytokines [35], are secreted into the culture medium by stem cells,
and these secretory factors are then present in the CM [36]. The purpose of this review is to
summarize the impact of aging and oxidative stress on female reproduction and to discuss
the recent findings of MSCs and MSC-CM, which are promising antioxidants.
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2. Reproductive Aging

Aging is defined as the age-related deterioration of the physiological functions re-
quired for the survival and fertility of all individuals of a species [37]. In particular, female
reproductive competence decreases with aging, which has distinct implications in light of
the contemporary trend to postpone childbearing following the development of contracep-
tive methods and the global flow of social and economic changes. Women of advanced
maternal age (AMA) who get pregnant at the age of 35 or over have a risk of adverse
obstetric outcomes such as miscarriage, low birth weight, pre- or post-term delivery, pre-
eclampsia, gestational hypertension, neonates that are small or large for gestational age, and
cesarean delivery [38–40]. Due to the general tendencies stated above, an increasing num-
ber of women attempting to conceive are experiencing female infertility and consequently
depend on assisted reproductive technology (ART). Considering the importance of oocyte
quality and embryo implantation in the process of unassisted reproduction, the condition
of the ovaries and uterus in aged females should be considered in order to increase the
success rate of ART [41].

2.1. Aging of the Ovaries

The ovaries are the most seriously affected by aging among the types of tissues in
the female body, which leads to a negative correlation between age and reproductive
capacity [42]. The general definition of physiologic ovarian aging is age-dependent declines
of the functional ovarian reserve within expected ranges, which determines the loss of
female fertility [43]. Primordial follicles are formed during fetal life and contain immature
oocytes until puberty starts and then reach maturity in adult females [44]. Follicular atresia
occurs until reproductive senescence, and this becomes progressively accelerated in the
late reproductive period before menopause [45]. The decrease in follicles with aging gives
rise to the elevation of follicular stimulation hormone (FSH), a stimulant currently used for
ovarian stimulation and follicular development in assisted reproduction [46]. Increased
levels of FSH results in the maturation of granulosa cells becoming unsynchronized with
premature oocytes, which causes follicular atresia and apoptosis [42]. In addition to FSH,
inhibin-B and anti-Mullerian hormone are recognized as sensitive markers of ovarian aging,
with respect to the follicle population, which can be used to predict the results of ART [47].

As aging progresses, the quality of oocytes—the main determinant of embryo devel-
opmental competence—deteriorates, along with a gradual decrease in the ovarian follicular
pool. Genetic defects in aged oocytes, which eventually affect female fertility, have been
revealed as follows: Deletion of mitochondrial DNA [48], decrease in antioxidant en-
zymes [49], and facilitation of apoptosis in oocytes [50], observed in studies of granulosa
cells from aged women. Compared to young oocytes, old oocytes exhibit mitochondrial
dysfunction that results in abnormal calcium oscillation signals [51], spindle formation [52],
and chromosomal alignment [53]. In particular, the high incidence of aneuploidy, which
is the leading cause of spontaneous abortion and fecundity decline, has been found in
oocytes and preimplantation embryos from aged women [54]. The activity of telomerase
also decreases with aging, which could damage the intact chromosomes in oocytes [55].
Regarding the microenvironment, the production of ROS increases during aging and affects
the outcomes of ovarian aging. The correlation between oxidative stress and ovarian aging
is associated with abnormal mitochondrial functions and mutations in oocytes whose
antioxidant defense weakens with aging [56–58]. In fact, mitochondrial antioxidant gene
expression is diminished in aged oocytes in mice [59]. This is not only true of mitochondria;
it is also known that oxidative stress in lipids, proteins, enzymes, and DNA in aged oocytes
causes the deterioration of the quality of the oocytes [22]. In summary, ovarian aging can
be characterized as a decrease in follicular recruitment, number of follicles, oocyte, and
embryo quality, and available numbers of oocytes and embryos for ART and pregnancy
rates with an increase in aneuploidy and poorly qualified oocytes [60].
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2.2. Aging of the Uterus

The uterus is a reproductive organ that acts as an essential site for the process of
pregnancy—from embryonic development, through implantation and placentation, to
fetal development. Nevertheless, the effect of uterine factors on age-related infertility is
uncertain in contrast to accumulating evidence showing the impact of ovarian aging on
female fertility [61]. The irrelevance of uterine aging to reproductive competence has been
assisted by a report that when embryos are transferred using oocytes from a young donor,
the rate of implantation is not affected by the age of the recipients, and the uterus of aged
recipients is capable of supporting an early pregnancy [62]. However, the results of studies
on young oocyte and old uterine recipients are controversial in that the implantation rates
are similar, regardless of the recipient’s age after in vitro fertilized embryos of equivalent
quality are transferred; however, the rate of pregnancy loss increases in older recipients [63].

The uterus is an aging organ required to support a developing fetus during pregnancy.
Aging of the uterus is associated with a decline in the sensitivity to hormones such as
progesterone and endometrial receptivity with compromised uterine blood flow, with an
increase in the occurrence of uterine fibroids and endometrial polyps [64]. In addition, aging
of the uterus downregulates the genes involved in cell proliferation in mice, indicating
impaired proliferation in aged uterine cells [65]. On the contrary, age-related upregulation
of the immune and inflammatory response pathway has been observed in rat uterine
horns [66], and inflammation and interferon-signaling pathways are activated in aged
bovine endometrial cells [67]. Furthermore, inadequate placentation, which occurs in aged
uteruses, is concerning, with complications in late pregnancy such as miscarriage and
fetal growth restriction [68]. Increasing reports indicate that the competence of the uterus
is influenced by aging, which could lead to infertility and reproductive complications,
especially when considering pregnancy.

3. Oxidative Stress in Female Reproduction

Biological ROS, including superoxide anions, hydroxyl radicals, peroxyl, alkoxyl,
and hydroperoxyl, are produced by incomplete reduction of oxygen in the process of
mitochondrial oxidative metabolism and cellular responses to exogenous sources [69]. ROS
are known as essential regulators that activate and modulate various signaling pathways,
including those involved in cell growth, differentiation, metabolism, and apoptosis [70].
Even though ROS plays a crucial role in human physiological and pathophysiological
processes as signaling molecules, cellular damage, and dysfunction can be induced by ROS
at immoderate concentrations [71].

Any substance that substantially inhibits the oxidation of the oxidizable substrate
can be defined as an antioxidant [72]. In general, endogenous antioxidants are classified
into enzymatic and non-enzymatic antioxidants. Superoxide dismutase (SOD), glutathione
peroxidase (GPx), and catalase (CAT), all of which are enzymatic antioxidants, collec-
tively function in the primary defense mechanism to neutralize free radicals and prevent
their additional formation [73]. In detail, SOD catalyzes superoxide anion dismutation
to produce hydrogen peroxide and oxygen, and then CAT removes excessive hydrogen
peroxide. Assisted by glutathione (GSH) as a co-substrate, GPx catalyzes the reduction of
hydrogen peroxide to water and oxygen [74]. Non-enzymatic antioxidants are involved
in the primary defense against ROS but also act as a secondary defense by scavenging
free radicals from the antioxidants, imparting from their electrons, resulting in harmless
radicals [73,75]. Glutathione is the most abundant non-enzymatic antioxidant synthesized
in cells, which preserves cells from oxidative damage and maintains redox homeostasis [76].
It is also engaged in the repair processes of protein molecules, nucleic acids, and lipids in
cells damaged in peroxidation processes [77].

Cells in a normal state have a defense system against oxidative stress, sustained by an
appropriate balance between ROS and antioxidants; however, oxidative stress occurs when an
excessive amount of ROS are produced or antioxidants’ defense capacity is weakened, finally
resulting in their imbalance [78]. Oxidative stress impairs essential cell signaling cascades,
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and it accumulates with aging [79]. Reversely, the oxidative stress theory of aging has been
proposed, stating that the age-associated loss of biological functions is due to the accumulation
of oxidative damage to lipids, DNA, and proteins [80]. However, besides aging, a variety of
endogenous and exogenous factors together contribute to oxidative stress.

3.1. Oxidative Stress in the Ovaries and Uterus

Both positive and negative effects are brought about by ROS in mammalian ovaries.
ROS affects various physiological and pathological functions of the ovaries, such as ovarian
steroid genesis, follicular growth, oocyte maturation, ovulation, fertilization, implantation,
and luteal maintenance in pregnancy [74]. In the ovaries, ROS generated during an inflam-
matory reaction from macrophages, leukocytes, and cytokines in the follicular fluid induce
oocyte maturation and then follicle rupture, all required for ovulation [17,81]. Therefore,
ROS produced at an appropriate level by preovulatory follicles are critical inducers of ovu-
lation processes, which is supported by a report that the inhibition of ROS using enzymatic
antioxidants suppresses ovulation [82]. However, excessive ROS leading to oxidative stress
involves abnormalities in female reproduction, representing premature ovarian failure
(POF) and polycystic ovary syndrome (PCOS). The early cessation of menstruation before
the age of 40, known as POF, is associated with prematurely injured ovarian function due to
impaired development or abnormal depletion of follicles as a result of accelerated apoptosis
caused by high ROS levels [83]. One of the most prevalent reproductive disorders, PCOS, is
characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries [84]. In
contrast, a decline of total antioxidant levels and an elevation of oxidative stress in PCOS
patients affect the abnormal formation of cysts and ovarian extracellular remodeling, which
leads to anovulation and infertility [85].

After ovulation, ROS are generated in the corpus luteum, which plays a major role in
progesterone synthesis [86]. In the endometrium, progesterone is essential for the develop-
ment of the uterine environment in that it modulates growth factors, cytokines, proteins,
and other hormones—the critical regulators of conceptus implantation, survival, growth,
and, finally, the progression of pregnancy [87]. Nevertheless, when ROS are produced
excessively, oxidative damage to the corpus luteum impairs the generation of progesterone,
which can be detrimental to embryo development and pregnancy maintenance [88].

In the uterus, responsible for proper ROS function levels in angiogenesis, regeneration
of the endometrium during reproductive cycles, and continuance of pregnancy unless
imbalanced, oxidative stress influences the structure and functions of the uterus, including
endometrial shedding and prevention of implantation [89]. During pregnancy, oxidative
stress can lead to early pregnancy loss, as implantation of the embryo may be impeded,
and normal immune functioning may be altered in the uterus [74]. Oxidative stress from
damaged antioxidant systems interrupts the decidualization of the endometrium, which is
critical for successful implantation [90], and pre-eclampsia and endometriosis caused by
endothelial cell dysfunction can occur [91]. Pre-eclampsia, a hypertension disorder with
maternal and neonatal mortality if seriously progressed, is also connected to abnormal pla-
centation [92]. The environment of the pregnant uterus influences placental development,
and oxidative stress induced in the placenta is associated with intrauterine fetal growth
restriction and miscarriage [93].

3.2. Oxidative Stress in the In Vitro Production of Embryos

An embryo is a rapidly developing organism with an energy demand, which is sup-
plied by ATP produced through mitochondrial oxidative phosphorylation and glycolysis,
leading to the continuous modulation of a redox state. In particular, in the developmental
processes of an embryo, the generation of ROS surges at points of embryonic genome
activation, embryonic compaction, and hatching [28]. The balance of ROS and antioxidants
is maintained at physiologically normal levels in in vivo female reproductive systems. On
the contrary, protection is lost when fertilization is attempted outside the reproductive
system in in vitro circumstances, resulting in an increase in exposure to oxidative risk [94].
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During ART, numerous external factors generating oxidative stress are present from the
technique of ART to environmental sources, such as oxygen concentration, temperature,
visible light, pollutants, media, and supplements [28]. Excessive levels of ROS have a
deleterious impact on embryo quality and subsequently block or delay early embryonic
development [95]. In fact, an increase in ROS in embryos cultured under in vitro conditions
can be connected to negative outcomes of ART, including embryo development and, lastly,
pregnancies compared to in vivo [96].

To reduce oxidative stress during the in vitro production of embryos, the temperature
of gametes and embryo incubation is recommended to be controlled as close to that of
the in vivo state as possible, as an improper temperature could cause heat stress-induced
oxidative damage [97]. The oxygen concentration provided for embryo incubation is more
appropriate at a reduced level (5%) than at an atmospheric level (20%) to prevent the
generation of ROS and consequent oxidative stress [98]. Among others, the application
of antioxidants in procedures using ART can be an effective intervention to counteract
oxidative damage to gametes and embryos, considering that the composition of culture
media can directly affect the quality of in vitro-produced embryos and the success rate
of ART [99]. For this reason, a number of publications have demonstrated their findings
with respect to the beneficial effects of antioxidant supplementation on the embryo culture
medium (Table 1). In addition to the antioxidant compounds above, cytokines and growth
factors can also be treated in the embryo culture medium [100–103].

Table 1. Studies regarding the supplementation of antioxidant compounds to the embryo culture medium.

Antioxidants Target Effects of Treatment Reference

α-tocopherol Ovine embryos

↑ Cleavage rate
↑ Embryo developmental rate

↑ Blastocyst formation
↑ Total cell number of blastocyst

[104]

L-Carnitine Mouse embryo ↑ Blastocyst development rate
↓ DNA damage [105]

L-ergothioneine Bovine embryos
↑ Blastocyst hatching rate
↑ ICM: total cells ratio

↓ Apoptotic cells
[106]

N-(2-mercaptopropionyl)-
glycine Porcine embryo

↑ Blastocyst formation
↓ Intracellular reactive oxygen
↓ Oxidative stress-related gene

expression

[107]

Melatonin & Taurine Buffalo embryo ↑ meiotic maturation rate
↑ Transferable embryo yield [108]

SOD & Taurine Feline embryo
↑ Oocyte maturation
↓ Oocyte degeneration

↑ Blastocyst number and quality
[109]

Vitamin C &E Mouse embryo ↓ Embryo toxicity
↑ Blastocyst development rate [110]

4. Mesenchymal Stem Cells

Stem cells are defined as cells with the ability to self-renew and can differentiate into
specialized cells with multilineages in a controlled manner [111]. Stem cells are generally
categorized into embryonic, adult, and induced pluripotent stem cells. Even though the
biological and clinical importance of stem cells has been recognized for decades, limitations
exist with respect to the ethical issues of embryonic stem cells and the risk of teratoma
formation of induced pluripotent stem cells [112]. Accordingly, adult MSCs, first named
by their ability to differentiate into lineages of cells developed from mesoderm, have re-
ceived attention in that MSCs are multipotent, highly accessible, and available in in vitro
cultures with genomic stability, and are safe from ethical issues, all of which emphasize the
importance of MSCs as a regenerative medicine [113]. The International Society for Cellular
Therapy clarified the standard for the characterization of MSCs as follows: (1) Plastic
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adherence and morphology resembling fibroblasts, (2) multipotential and multilineage
differentiation ability, and (3) expression of specific phenotypic markers, including a cluster
of differentiation (CD) 73, CD90, and CD 105 but not lineage-specific markers such as CD14,
CD34, and CD45 [114]. The treatment of MSCs is known to be effective on autoimmune, in-
flammatory, and degenerative diseases, with its therapeutic mechanisms including homing
efficiency to the damaged target site, differentiation ability, availability of tissue-engineered
manipulation, immunomodulation, and abundant production of paracrine signaling fac-
tors [112]. Over the past few decades, research on MSCs has been actively developed,
resulting in more than half a million publications, and their medical potential has been
explored in approximately a thousand clinical trials registered with the United States Food
and Drug Administration [115].

Present in most of the tissues in the body, MSCs have been isolated from multiple
tissues such as bone marrow [116], skeletal muscle [117], umbilical blood [118], dental
pulp [119], peripheral blood [120], synovium [121], adipose tissue [122], amniotic fluid [123],
articular cartilage [124], placenta [125], lung [126], umbilical cord [127], and amniotic
membrane [128]. Among these, MSCs derived from bone marrow (BMSCs), and adipose
tissue (ASCs) are the most representative and verified with their regenerative ability [129].
Both BMSCs and ASCs possess the strong potential of in vitro differentiation into osteocytes,
chondrocytes, adipocytes, hepatocytes, cardiomyocytes, pancreatic cells, and neuronal
cells, but the differential differentiation capacities between them have only recently been
found [130]. Compared to BMSCs isolated by an invasive surgical procedure with a certain
level of pain and danger, ASCs are isolated from subcutaneous liposuction with greater ease
and less pain, and 100–500-fold more stem cells can be harvested from adipose tissue than
bone marrow [131]. It is widely considered that ASCs are effective regenerative medicine
for the treatment of numerous symptoms, including pathological wound healing, refractory
acute graft-versus-host disease, and hematologic and immunological disorders [132]. Most
of all, the prominent property of ASCs is their antioxidative effect on various diseases
and species [133–136]. Meanwhile, MSCs derived from the amniotic membrane (AMSCs)
have emerged prospectively in the field of regenerative medicine due to their simple and
abundant acquisition, reduced damage of donor, multipotency, low immune response,
and the minimal ethical issue associated with their use [137]. The amniotic membrane is a
component of the placenta that protects the fetus during pregnancy, with its structure of
thick collagen layers and function of nutrient supplementation, but it is generally discarded
post-partum and infrequently utilized compared to other types of MSCs [138]. To date, the
amniotic membrane is a relatively new source of MSCs and has been identified as having
anti-inflammatory, antiangiogenic, and anti-immunogenic properties [137,138]. In addition,
AMSCs have the capability of differentiating all three germ layers, including ectodermal
lineage cells, mesodermal lineage cells, and endodermal lineage cells [139], reiterating their
value as a recommendable candidate for novel regenerative medicine.

It has been demonstrated that the transplantation of MSCs attenuates oxidative stress
in in vitro models by upregulating the expression of the antioxidant enzymes SOD, CAT,
GPx, and GSH [140]. In detail, MSCs efficiently manage oxidative stress-induced injury
in vitro in neurons [141], renal cells [142], immune cells [143], islet cells [144], etc. Antioxi-
dant effects have not only been reported in in vitro models; in MSC therapy, these effects
have been reported through decreased oxidative stress markers and functional recovery
in numerous disease models as follows: (1) Diabetic injury on the kidneys, retina, sensory
neurons, brain, and bone formation; (2) chemotherapy- or radiation-induced injury on
the lungs, gonads, aorta, and brain; (3) ischemic injury on the brain, heart, kidneys, and
liver; (4) traumatic injury on the spine and testes, cognitive disorders, gastrointestinal
inflammation, and septic injuries [145]. In particular, the transplantation of MSCs functions
effectively in oxidative stress related to aging and female reproduction. Mouse BMSCs
reduce lipid peroxidation and ameliorate oxidative stress in mitochondria in aged mice
as a part of the antiaging mechanisms [146]. Mouse AMSCs decrease oxidative stress by
reducing ROS levels and activating antioxidants, consequently inhibiting DNA damage in
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a premature aging mouse model [147]. In an aging-induced mouse model, mouse ASCs
showed an antioxidative effect by regulating senescence-associated markers [148]. Mouse
fetal liver-derived MSCs protected the POF mouse model from oxidative damage, contribut-
ing to the restoration of ovarian function and follicular development [149]. In the POF rat
model, human umbilical cord-derived mesenchymal stem cells (UMSCs) restored ovarian
function, connected with decreased autophagy-induced apoptosis and oxidative stress in
theca-interstitial cells [150]. Not only in chemically-induced POF models but ovarian func-
tion was recovered by placenta-derived MSCs in an ovariectomized rat model due to the
reduction of oxidative stress-induced apoptosis [151]. Most previous research has explored
the effect of MSCs using direct transplantation, but the antioxidative effects of MSCs are
also exerted in the paracrine method and, accordingly, the treatment of MSC-conditioned
medium (CM) in recent years has resulted in the reduction of oxidative stress, suggesting
the therapeutic effect of paracrine factors as an antioxidant defense mechanism [145].

5. Mesenchymal Stem Cell Conditioned Medium

A wide range of paracrine factors are secreted by MSCs, which are composed of an
extracellular matrix, proteins involved in the adhesion process, enzymes and their activators
and inhibitors, growth factors and binding proteins, cytokines, and chemokines [152]. These
MSC-derived secreted factors are referred to as secretomes, microvesicles, or exosomes and
are contained in the medium in which the cells are cultured, which is called the conditioned
medium [153]. The presence of growth factors and other cytokines with regenerative effects
in MSC-CM has been identified by protein detection analysis in various studies and are
summarized by as follows: Vascular endothelial-derived growth factor, platelet-derived
growth factor, epidermal growth factor, insulin like growth factor I and II, hepatocyte
growth factor, fibroblast growth factor 2/basic fibroblast growth factor, keratinocyte growth
factor/fibroblast growth factor 7, platelet-derived endothelial cell growth factor, heparin-
binding epidermal growth factor, placenta growth factor, neural growth factor, and brain-
derived neurotrophic factor; as inflammation-regulatory factors, TGFβ1, interleukin (IL)-10,
IL-27, IL-17E, IL-13, IL-12p70, and IL-1 receptor antagonists, IL-8/CXCL-8, IL-9, and
IL-1b; lastly, as other cytokines, leptin, angiogenin, granulocyte colony-stimulating factor
(CSF), granulocyte macrophage CSF, macrophage CSF, fractalkine, monocyte chemotactic
protein, serpin E-1, endostatin/collagen XVIII, UPA, thrombospondins 1 and 2, tissue
inhibitor of metalloproteinase-1, IGF-binding protein stem cell-derived factor 1/CXCL-12,
adrenomedullin, Dickkopf-1, and a few receptors [36].

Comparable therapeutic effects of its original cells on various diseases have been
shown by MSC-CM, including myocardial infarction [154], stroke [155], spinal cord in-
jury [156], brain injury [157], acute and chronic wounds [158], liver injury [159], kidney
injury [160], periodontal injury [161,162], bone defects [163], musculoskeletal damage [164]
skin disease [165] and male infertility [166]. Furthermore, clinical improvements from
MSC-CM treatment have recently been reported in hair regeneration [167], inflammatory
arthritis [168], and multiple sclerosis [169]. Above all therapeutic properties, accumulating
studies have demonstrated the antioxidative effect of MSC-CM on in vitro and in vivo
disease models [145]. Antioxidative ability has been displayed in MSC-CM from various
types of MSCs, regardless of intra- or inter-specific treatment [145].

Especially in studies on reproduction, MSC-CM improves reproductive outcomes and
exerts its antioxidative effects as follows: Human ASC-CM administered intravenously
also improves mouse embryo development and implantation by increasing expression
levels of antioxidant genes in reproductive organs against age-related infertility [170]. Not
only can it be used as an in vivo treatment, but human ASC-CM can be employed as a
supplement during in vitro culture, promoting mouse embryo developmental competence
and reducing oxidative stress in developed embryos [171]. Along with ASC-CM, mouse
preimplantation embryo development is enhanced, and intracellular oxidative stress is
inhibited as the culture conditions improve after supplementation with human AMSC-
CM as an antioxidant intervention [172]. The CM of human UCMSCs treated in in vitro
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maturation media increases the maturation and development of human oocytes, which
shows promoted antioxidant gene expression as well [173]. Furthermore, intraperitoneal
injection of human UCMSC-CM can alleviate follicle depletion against ovarian injury
and upregulate gene expression, which suppresses oxidative stress-induced cell apoptosis
in granulosa cells in mice [174]. Human UCMSC-CM injected peritoneally into a POF
mouse model also protected injured ovaries and restored ovarian reserve by attenuating
oxidative stress-induced apoptosis [174]. In addition to ovarian damage, mouse BMSC-
CM supplemented during in vitro maturation (IVM) of oocytes from an endometriosis
mouse model has been shown to enhance oocyte maturation and oxidative defense from
nitric oxide, consequently improving fertilized embryo development [175]. The effect of
MSC-CM is not restricted to humans and mice in that the treatment of equine amniotic
fluid MSC-CM in porcine oocyte IVM media upregulates antioxidant enzymes in a culture
environment and supports embryo development [176].

Promising potential has been shown by MSC-CM without the original cell from which
it is derived, with reliability and reproducibility as a cell-free therapeutic, in that it can
be easily manufactured, freeze-dried, packaged, and transported and does not need to
match the donor and the recipient to avoid immune rejection [36] (Figure 2). In addition,
compared to stem cells, MSC-CM possesses distinctive advantages with a lower production
time and cost, a higher shelf life, controlled environmental conditions for application, and a
sensitive storage method not being required [34]. Of note is that MSC-CM can be harvested
from various types of cells and different culture conditions, which may regulate the level
and function of secretory factors. Evaluation of MSC-CM from different sources has been
conducted, demonstrating differences in the composition and subsequent effects [177–183].
For example, comparing CM from human ASCs and placental stem cells, the antiaging
index improved more significantly after ASC-CM treatment [184]. In the field of assisted
reproduction, human AMSC-CM is more effective than ASC-CM in supporting antioxida-
tive conditions for mouse embryo development [172]. Interestingly, one study indicated
that although human ASC-CM and BMSC-CM showed similar protective effects in rat
hypoxia-induced injury, their action mechanisms were significantly different [185]. Even in
the same type of cells, the level of growth factors can vary depending on culture conditions,
number of cells, and concentration process used in the making of the MSC-CM [186–188].
Basal culture media could be one of the representative variables for the culture conditions
of MSC-CM. It has been demonstrated that human ASC-CM based on Dulbecco′s modified
Eagle′s medium is more antioxidative and antiapoptotic for mouse preimplantation embryo
development than keratinocyte serum-free medium [171], which indicates that the basal
medium used for MSC-CM collection can be a critical determinant of the capability of
MSC-CM. As well as the production of MSC-CM, the treatment method of MSC-CM should
be effectively considered to optimize its effectiveness. One study evaluated the efficacy of
mouse ASC-CM in diabetic mice injected intravenously or intraperitoneally, which was
more beneficial than systemic administration [189]. In addition, regarding the frequency of
treatment, a higher frequency of human ASC-CM injections for aged female mice is more
effective for embryo development and antioxidation [170]. Comprehensively, variables,
including cell sources and protocols for production and application, need to be validated
for the optimal effect of MSC-CM according to the purpose of its treatment.
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