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Abstract: Ocular surface reconstruction is essential for treating corneal epithelial defects and vision
recovery. Stem cell-based therapy demonstrates promising results but requires further research to
elucidate stem cell survival, growth, and differentiation after transplantation in vivo. This study
examined the corneal reconstruction promoted by EGFP-labeled limbal mesenchymal stem cells (L-
MSCs-EGFP) and their fate after transplantation. EGFP labeling allowed us to evaluate the migration
and survival rates of the transferred cells. L-MSCs-EGFP seeded onto decellularized human amniotic
membrane (dHAM) were transplanted into rabbits with a modeled limbal stem cell deficiency. The
localization and viability of the transplanted cells in animal tissue were analyzed using histology,
immunohistochemistry, and confocal microscopy up to 3 months after transplantation. EGFP-labeled
cells remained viable for the first 14 days after transplantation. By the 90th day, epithelialization of
the rabbit corneas reached 90%, but the presence of viable labeled cells was not observed within the
newly formed epithelium. Although labeled cells demonstrated low survivability in host tissue, the
squamous corneal-like epithelium was partially restored by the 30th day after transplantation of the
tissue-engineered graft. Overall, this study paves the way for further optimization of transplantation
conditions and studying the mechanisms of corneal tissue restoration.

Keywords: GFP-labeled cells; ocular cell therapy; cornea regeneration; regenerative ophthalmology;
limbal mesenchymal stem cells

1. Introduction

The cornea is a transparent outer layer of the eye that performs protective functions
and is involved in refracting light. A pool of limbal epithelial stem cells (LESCs) provides
corneal regeneration and resides within the limbal region, a narrow ring of tissue between
the cornea and conjunctiva [1]. These cells are essential for corneal epithelial tissue repair
and physiological regeneration, and prevent the migration of the conjunctival epithelial
cells over the corneal surface [2,3]. Limbal mesenchymal stem cells (L-MSCs) are nor-
mally adjacent to the basal membrane within the limbal stroma. They are responsible for
generating and maintaining the LESC niche [4–6].

Severe damage to the limbus and corneal stem cells can lead to limbal stem cell
deficiency (LSCD) syndrome. Neovascularization of the ocular surface, corneal opacity,
conjunctivalization, chronic inflammation, pain, and visual loss are the most detrimental
outcomes of this condition [7–9]. It is not always possible to restore corneal functionality
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through therapeutic and surgical approaches. The major concern in LSCD treatment is the
repopulation of the damaged limbal stem cell niche [7]. Nowadays, tissue engineering and
stem cell-based therapy may become the most promising treatment for LSCD [10]. Devel-
oping limbal and corneal tissue-engineered grafts for restoring the cornea’s functionality
and transparency is an actual challenge in regenerative biomedicine. LESCs and L-MSCs
are considered the most promising cell types capable of addressing this issue.

Various approaches have been described for isolating and culturing LESCs in vitro and
designing various tissue-engineered grafts [11]. However, the shortage of donor materials
significantly restricts the broad clinical application of LESCs.

Mesenchymal stem cells (MSCs) have great potential for regenerative medicine due
to their high plasticity, self-renewal ability, effective proliferation in vitro, and genetic
stability [6,12]. MSCs can be isolated from many tissues, such as bone marrow, adipose
tissue, and corneal stroma [13]. Due to the limited number of cells (LESCs) for treating
LSCD, MSCs from various sources, including the limbal stroma, have been investigated for
corneal epithelial repair [5,11,14–17]. Holan et al. demonstrated that MSCs had a similar
therapeutic outcome to LESCs in a rabbit model of LSCD [18]. Tissue-specific MSCs have a
higher regenerative potential than MSCs of other origins. Therefore L-MSCs seem more
effective in corneal epithelial repair [6,19]. L-MSCs have been shown to express similar
stemness markers to LESCs, such as ABCG2, ABCB5, PAX6, and p63a [4,11,20–22]. The
plasticity of these cells and the possibility to differentiate into various directions have been
previously shown [23]. L-MSCs have a low immunogenic profile and immunosuppressive
properties. They can stimulate the proliferation of LESCs in vitro and can be considered a
cell component in the development of corneal substitutes [24].

Since there is little information on the participation of transplanted MSCs in the
processes of corneal epithelium restoration in vivo, further research is needed to define the
mechanisms of their therapeutic properties and to understand their potential side effects.

The current work demonstrates the fate of transplanted EGFP-labeled limbal mes-
enchymal stem cells (L-MSCs-EGFP) in the rabbit model of LSCD. The localization and
viability of the transplanted cells in animal tissue were analyzed using histological evalua-
tion up to 3 months after transplantation. Schematic representation of the tissue-engineered
graft preparation and transplantation is presented in Figure 1.
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Figure 1. Schematic representation of the tissue-engineered graft preparation and transplantation. 

Before the transplantation, the fibrovascular pannus was removed from the corneal surface. Decel-

lularized human amniotic membrane (dHAM) with cultured L-MSCs-EGFP was placed on the de-

epithelialized corneal stroma with the cells facing up and sutured to the episclera. dHAM was 

folded across the whole limbus to provide an additional physical barrier and delay conjunctivaliza-

tion of the cornea after surgery. Created with BioRender.com. 

Figure 1. Schematic representation of the tissue-engineered graft preparation and transplantation.
Before the transplantation, the fibrovascular pannus was removed from the corneal surface. De-
cellularized human amniotic membrane (dHAM) with cultured L-MSCs-EGFP was placed on the
de-epithelialized corneal stroma with the cells facing up and sutured to the episclera. dHAM was
folded across the whole limbus to provide an additional physical barrier and delay conjunctivalization
of the cornea after surgery. Created with BioRender.com.

2. Results
2.1. Corneal Reconstruction with L-MSCs-EGFP in the Rabbit Model of Total LSCD

The transplantation of L-MSCs-EGFP seeded onto a decellularized human amniotic
membrane (dHAM) was performed in the rabbit model of total LSCD. The recovery process
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was monitored for three months after transplantation (Figure 2A); for more photos, see
Supplementary Figure S1. Neo-vascularization was detected in all experimental animals at
all stages. Partial lysis of the graft was observed on the 7th day after transplantation. The
dynamics of corneal re-epithelialization were analyzed with fluorescein staining. Partial
corneal re-epithelialization was shown on the 3rd day in all animals. Transparency was
restored and epithelialization was completed in some animals by day 90; in the other
animals, the central cornea remained non-epithelialized. One-third of the animals had an
intense inflammatory process during the experiment, transparency took longer to restore,
and epithelialization was less effective, especially in the central part of the cornea.
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Figure 2. The rabbit cornea after transplantation of L-MSCs-EGFP onto the decellularized amni-
otic membrane and epithelialization dynamics at different time points. (A) Representative lifetime
and sodium fluorescein staining images of rabbit corneas with limbal stem cell deficiency (LSCD)
and on the 3rd, 7th, 14th, 30th, and 90th days after transplantation of the tissue-engineered graft.
(B) Hematoxylin-eosin-alcian blue staining of central and peripheral corneal regions before debride-
ment (native cornea) and after TEG transplantation. Black arrows—goblet cells. Scale bars: 200 µm.
(C) The efficiency of corneal epithelialization at different time points after TEG transplantation (n = 3;
*** p < 0.0002, **** p < 0.0001).
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2.2. Epithelialization Process during Corneal Reconstruction

A combination of alcian blue and hematoxylin and eosin staining was used to elucidate
corneal structure after transplantation and reveal the presence of goblet cells specific to the
conjunctival epithelium and absent in native corneal epithelium (Figure 2B).

On the 14th day, after removing the fibrovascular pannus and transplantation of the
tissue-engineered graft (TEG), partial corneal re-epithelialization was observed. Conjuncti-
val epithelium-containing goblet cells migrated over the corneal surface. The epithelial-
ization rate on the 14th day after transplantation was around 30% of the total corneal area
(Figure 2C). On the 30th day, the epithelialization reached 70%. On the 90th day, there was
90% epithelialization on average and was even complete in one rabbit. On the 30th and
90th days after transplantation, goblet cells were present mainly in the peripheral part of
the epithelium. In the central cornea, the squamous epithelium was observed to contain
2–4 layers of cells.

2.3. Vascularization and Inflammation Processes during Corneal Reconstruction

The analysis of native corneas revealed only small venous vessels across the limbal re-
gion (Figure 3A), known to maintain the physiological functions of the residing LESCs [25].
After the TEG transplantation, venous vessels were replaced by capillaries in the limbal
area, and capillary vessels formed in the corneal stroma. No inflammation was observed
across native corneal tissues, while granulation tissue was formed beneath the TEG on the
14th day after transplantation. It should be noted that the presence of inflammatory cells
(histiocytes, lymphocytes, and, to a lesser extent, eosinophils) was found across the corneal
stroma at all time points. On the 90th day, mature connective tissue was formed under the
epithelium throughout the cornea, and the inflammation significantly decreased.
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Figure 3. Corneal regeneration dynamics after transplantation of L-MSCs-EGFP onto the decellu-
larized amniotic membrane. (A) Peripheral and central rabbit cornea at different time points after
L-MSCs-EGFP transplantation. Hematoxylin-eosin staining. Scale bars: 200 µm. (B,C) The changes
in the number of blood vessels in the peripheral and central stroma at different time points after
transplantation (n = 3; ** p < 0.001, *** p < 0.0002, **** p < 0.0001).
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A quantitative analysis of blood vessels in the limbal and corneal stroma was also
performed at different time points after transplantation of the TEG (Figure 3B). The average
amount of vessels in the limbal area of the native cornea was 9.5 ± 0.5 per 1 mm2, and there
were no blood vessels in the corneal stroma. On the 14th day after the TEG transplantation,
the number of vessels significantly decreased (5.8 ± 1.2 per 1 mm2) in the peripheral cornea
and increased in the corneal stroma (5.0 ± 0.6 per 1 mm2) compared to the group of intact
rabbits. On the 30th day, the number of vessels in the periphery of the cornea remained
lower than in native tissue (4.0 ± 0.6 per 1 mm2) and preserved in the whole corneal stroma
(3.5 ± 0.7 per 1 mm2). On the 90th day, the number of blood vessels within the peripheral
area was also substantially decreased compared to the intact tissues (4.5 ± 0.7 per 1 mm2).
In the corneal stroma, the vessels persisted, and their number was 4.8 ± 1.6 per 1 mm2.

2.4. L-MSCs-EGFP Localization in Corneal Tissue after Transplantation

The distribution and viability of green fluorescent protein-labeled cells in the corneal
tissue were evaluated at different time points after the transplantation to rabbits.

The fluorescence of EGFP was detected at all time points after transplantation
(Figure 4A). On the 14th day, the fluorescence was observed mainly in the peripheral
corneal region. On the 30th and 90th days, weaker fluorescence was observed. The signal
was present in both the peripheral and central corneal areas, though its localization varied
in different animals.
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Figure 4. Localization of EGFP signal in rabbit cornea (peripheral area presented) at different times
after transplantation of L-MSC-EGFP cells. (A) View from the top; corneal sectors with limbal stem
cell deficiency (LSCD) and on the 14th, 30th, and 90th days after transplantation. Magnification ×50.
(B) Localization of EGFP signal within rabbit corneal sections at different time points after L-MSCs-
EGFP transplantation. Laser scanning confocal microscopy. Green—GFP channel; blue—DAPI. Scale
bars: 100 µm and 50 µm.
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Corneal sections were analyzed by laser scanning confocal microscopy on the 14th,
30th, and 90th days after the TEG transplantation (Figure 4B). On the 14th day, EGFP-
labeled cells were presented in the corneal tissue and localized along the cornea’s periphery.
L-MSCs-EGFP retained viability inside the folds of dHAM that were formed during its
transplantation. The cornea was partially re-epithelialized by the conjunctival epithelium,
and there were no labeled cells in the newly formed epithelium. Small clusters of L-
MSCs-EGFP were detected in the central cornea. Fragments of destroyed cells or protein
complexes were present in the stromal extracellular matrix. On the 30th and 90th days,
particles with EGFP fluorescence were observed between the newly formed epithelium and
stroma. No viable L-MSCs-EGFP were detected in the corneal tissue on these terms. On
the 30th day, the squamous epithelium with 2–3 cell layers was formed over the particles
containing EGFP. On day 90, the epithelium consisted of 3–4 cell layers.

Staining the native cornea with cytokeratin 15 (CK15) antibodies demonstrated the dif-
ferent patterns of CK15 in conjunctival, limbal, and corneal epithelia. CK15 was expressed
in the basal and suprabasal layers of the conjunctival epithelium, the basal layer of limbal
epithelium, and the superficial layer of the corneal epithelium (Figure 5). On the 14th day
after transplantation of L-MSCs-EGFP, a weak CK15 signal was detected in all layers of the
newly formed epithelium over the folds of dHAM containing the L-MSCs-EGFP. On the
30th and 90th days after the TEG transplantation, the CK15-positive cells were observed in
the superficial layer of the squamous epithelium, like in the control sample.
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Figure 5. Immunohistochemical staining of rabbit corneas at different time points after transplanta-
tion of L-MSCs-EGFP. Red—staining with antibodies against cytokeratin 15; green—GFP channel;
blue—DAPI. (A) Native tissue in the area of the limbus, cornea, and conjunctiva. (B) Corneal tissue
on the 14th, 30th, and 90th days after transplantation of L-MSCs-EGFP. Laser scanning confocal
microscopy. Scale bars: 50 µm.

3. Discussion

Recently, we demonstrated that rabbit L-MSCs had a high proliferative potential
in vitro, expressed epithelial markers, and could differentiate into epithelial-like cells [22].
The ability of MSCs of various origins to differentiate in diverse directions has been widely
discussed in the literature [14,17,18,26–29]. Several studies have shown the efficiency of
MSCs for corneal epithelial repair in vivo [17,18,26,28,29] and during clinical trials [30].
The authors have considered the possibility of differentiation of MSCs into epithelial cells
and the positive effect of paracrine factors produced by transplanted MSCs on corneal
epithelial repair [29,30].
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For reliable analysis of stem cell survival, growth, differentiation, and migration
after transplantation, it is critical to track them in the host tissue [31]. Sánchez-Abarca
et al. demonstrated that after subconjunctival transplantation of green fluorescent protein-
labeled human MSCs to mice, the labeled cells were localized in the stroma and the
corneal epithelium [28]. A study by Arnhold et al. demonstrated that green fluorescent
protein-labeled MSCs could integrate into the retinal pigment epithelium and become
hexagonal-shaped, which is typical for cells of this epithelium [32].

This study aimed to assess the fate of L-MSCs-EGFP [22] after transplantation onto
a damaged cornea in the LSCD model in rabbits. Cells were transferred as part of a
tissue-engineered graft based on dHAM. The amniotic membrane is the most widely used
substrate for ocular surface reconstruction. It has highly biocompatible non-inflammatory
qualities, may maintain corneal transparency, and promote cell adhesion, proliferation, and
differentiation [33–35].

Herein, we demonstrated the following restoration processes in the corneal tissue after
TEG transplantation: reduction of limbal vascularization, neoangiogenesis in the cornea, its
epithelialization, and inflammatory infiltration. Similar results of corneal restoration using
dHAM and stem cells have been previously reported [36]. We observed the migration of
the conjunctival epithelium containing goblet cells over the corneal surface and assume
its partial replacement by a corneal-like epithelium. By the 90th day, epithelialization of
the rabbit cornea reached 90% on average, but no labeled cells were found in the newly
formed epithelium.

Despite the attempt to create a physical barrier during the transplantation by forming
dHAM folds, on the 14th day, cells that had migrated from the conjunctival epithelium
were observed in the limbal area, and no labeled cells were found in the epithelium. A
more effective physical barrier is needed to prevent re-epithelialization by the conjunctival
epithelium. Nevertheless, the squamous epithelium with 2–4 cell layers and without labeled
cells was observed on the 30th and 90th days after TEG transplantation. Even though
CK15 is considered a limbal stem cell marker and is absent in differentiated human and
mouse corneal cells [37,38], CK15 staining was observed in the superficial layer of newly
formed squamous epithelium on the 30th and 90th days after TEG transplantation and
showed a pattern similar to the control samples of native rabbit corneal epithelium. This
means that the microenvironment of the corneal stroma may promote the differentiation
of conjunctival cells and the formation of a squamous corneal-like epithelium [39]. Some
biologically active factors and/or proteins secreted by transplanted cells could also have a
positive therapeutic effect even after death.

On the 14th day, the labeled cells remained viable only at the periphery, where they
were covered with dHAM folds and protected from mechanical damage. Insufficient
mechanical protection and nutrient supply could cause the death of all other transplanted
cells at early stages since the TEG was placed with the cells facing up. Zhurenkov K. and
coauthors compared two approaches for the transplantation of TEG with labial mucosa
stem cells seeded onto dHAM onto the rabbit cornea [36], with the cells facing up and
down relative to the corneal stroma. The graft with stem cells-up was chosen according
to the demonstrated efficacy of corneal restoration and epithelialization. In other studies,
MSCs on scaffolds were transplanted onto the cornea with cells facing up and protected by
tarsorrhaphy [40] or covered with a blank amniotic membrane [16]. Native amnion could
provide mechanical protection and possibly secrete bioactive proteins that may promote
more effective healing or stem cell differentiation [41]. Hence, such protection is essential,
especially after the early stages of transplantation.

This study showed that no viable EGFP-labeled cells remained even in dHAM folds
late after transplantation (on the 30th and 90th days). Therefore, other factors may lead
to the death of transplanted cells. Although the cornea is generally considered an im-
munologically privileged organ because of its avascular structure, severe inflammation
and neovascularization, specific to limbal stem cell deficiency, may result in an immune
response to the transferred cells [42]. The authors also noted the low immunogenicity of
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MSCs of different origins, including L-MSCs [24]. Nevertheless, immunosuppressants are
considered to preserve transplanted cells until complete regeneration and restoration of
normal corneal barrier function [42].

Accompanying therapeutic agents, such as anesthetics, antibiotics, and anti-inflammatory
drugs used during surgical manipulations and in the postoperative period, may also con-
tribute negatively to the survivability of transplanted cells. The toxic effect of ophthalmic
medications has been shown in vitro [43,44]. Assessing the toxic impact in vivo is still
challenging. The selection of the optimal concentration and frequency of application for
each therapeutic agent could positively influence the survival rate of transplanted cells and
corneal epithelialization in general. In addition, an initial induction of epithelial differentia-
tion in vitro also should increase cell survival and accelerate the epithelialization [40].

4. Materials and Methods
4.1. Cell Cultures

Rabbit L-MSCs with overexpression of green fluorescent protein (L-MSCs-EGFP) were
derived, as previously described by Khorolskaya et al. [22]. Rabbit L-MSCs at 3rd passage
were transduced with the lentivirus LV-CMV-EGFP Hygro (656-4) in Opti-MEM medium
(Gibco, Waltham, MA, USA). During transduction, polybrene (Sigma-Aldrich, St. Louis,
MO, USA) was used at a concentration of 8 µg/mL. Lentivirus LV-CMV-EGFP Hygro
(656-4) was added at 5 MOI to rabbit L-MSCs and incubated for 20 h. Cells expressing
EGFP were sorted by FACS using an S3e cell sorter (BioRad, Laboratories, Hercules, CA,
USA) 72 h after transduction.

All cultures were maintained in DMEM/F12 medium (Gibco, Waltham, MA, USA) sup-
plemented with 10% FBS (Gibco, Waltham, MA, USA), 1000 U/mL Penicillin/Streptomycin
(BioloT, St. Petersburg, Russia) in 5% CO2 in a humidified incubator at 37 ◦C.

4.2. Animals

The work was performed on ten mature male Chinchilla rabbits (20 eyes were used
in this study). All procedures were performed according to the rules of the treatment
of laboratory animals confirmed by the certificate of OLAWNIH (Identification number
F18-00380 of the Institute of Cytology of the Russian Academy of Sciences).

4.3. Corneal Graft Preparation

The human amniotic membrane (HAM) was used as a scaffold to make tissue-
engineered grafts. HAMs were obtained during planned Caesarean deliveries from healthy
patients (n = 5). All procedures were performed following informed consent of use for
research purposes.

The L-MSCs-EGFP were seeded on the decellularized human amniotic membrane
(dHAM) to make a TEG. For these purposes, HAMs were mechanically separated from the
chorion, washed in Ringer’s solution containing ceftriaxone (10 mg/mL; Sintez, Moscow,
Russia), fixed onto 3 cm Ø Petri dishes without bottoms with the epithelial side up under
sterile conditions. Then, HAMs were cryopreserved at −80 ◦C in a mixture of DMEM/F12
medium (Gibco, Waltham, MA, USA) and dimethyl sulfoxide (1:1) (DMSO; BioloT, St.
Petersburg, Russia). Before further use, dHAMs were thawed at 37 ◦C, washed 3 times
with PBS, and decellularized at 37 ◦C for 45 min using 0.25% Trypsin-EDTA (BioloT, St.
Petersburg, Russia).

Rabbit L-MSCs-EGFP were seeded onto the epithelial side of dHAM at a concentration
of 1 × 104 cells/cm2. TEGs were cultured for 3 days before transplantation to animals
in DMEM/F12 medium (Gibco, Waltham, MA, USA) with 10% FBS (Gibco, Waltham,
MA, USA), 1000 U/mL Penicillin/Streptomycin (BioloT, St. Petersburg, Russia), and 1%
GlutaMAX (Gibco, Waltham, MA, USA) in a CO2 incubator under humidified conditions
at 37 ◦C and 5% CO2.
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4.4. Rabbit Limbal Stem Cell Deficiency Model and Graft Transplantation

All surgical procedures were performed under local anesthesia: local instillations of
0.5% Alcaine (Alcon, Geneva, Switzerland) followed by retrobulbar injection of 2% lido-
caine solution (Renewal, Novosibirsk, Russia). Total LSCD was performed as previously
reported [36] by removing limbal and adjacent corneal and conjunctival tissues (2 mm out-
side limbus, 4 mm in width, and 0.2 mm in depth). The remaining epithelium was scraped
off the corneal surface. Moxiflox eye drops (moxifloxacin 5 mg/mL C.O. Rompharm
Company S.R.L., Otopeni, Romania) and dexamethasone (1 mg/mL Belmedpreparaty,
Minsk, Belarus) were applied after surgery and were then administered 6 times a day for
4 weeks after surgery.

The fibrovascular pannus developed on the rabbit eye 30 days after surgery and was
separated and removed from the corneal stroma. The tissue-engineered graft (TEG) was
placed on the prepared corneal surface. The TEG was sutured to the episclera with the
cells facing up so that its folds formed a roller on the periphery of the cornea to perform a
barrier function between the conjunctival epithelium and the corneal graft.

4.5. Cornea Regeneration Assessment/Graft Transplantation Assessment

The graft’s opacity, neovascularization, and epithelialization were assessed qualita-
tively using a surgical microscope (LOMO, Saint-Petersburg, Russia) on the 3rd, 7th, 14th,
30th, and 90th days after transplantation. To evaluate the dynamics of corneal epithelial-
ization, rabbit eyes were stained with 1% fluorescein sodium solution (Novartis, Basel,
Switzerland) and photographed under blue light.

4.6. Histological Analysis

The dynamics of corneal regeneration were assessed via histological evaluation of
corneal epithelization, inflammation, and vascularization. The degree of inflammation was
assessed qualitatively via the analysis of the presence of inflammatory cells in the corneal
stroma. The degree of corneal epithelization was estimated by measuring epithelialized and
non-epithelialized regions of the corneal sections using the ImageJ v.2.1 software. Corneal
vascularization was estimated quantitatively via the analysis of the number of blood vessels
per mm2 across the limbal region and corneal stroma.

Enucleated right rabbit eyes on the 14th, 30th, and 90th days after transplantation of
TEGs were fixed in a 4% paraformaldehyde solution (PFA; Sigma-Aldrich, St. Louis, MO,
USA) for 3 days. Afterward, the cornea and adjacent sclera were mechanically dissected,
dehydrated, embedded in paraffin, and cut into 4 µm thick tissue sections. Tissue sections
were stained with hematoxylin-eosin (Biovitrum, Saint-Petersburg, Russia) and alcian
blue (Panreac, Barcelona, Spain). Sections were examined using Leica DMLS light-optical
microscope (Leica Microsystems, Wetzlar, Germany).

4.7. Analysis of Localization of EGFP-Labeled Cells within Rabbit Cornea

The viability and distribution of EGFP-labeled cells in the corneal tissue were evalu-
ated on enucleated left rabbit eyes on the 14th, 30th, and 90th days after transplantation of
TEGs. Eyes were fixed in 1% PFA for 3 days. The cornea and adjacent sclera were separated
from the rest of the eye tissues. The surface was analyzed by fluorescence microscopy in the
GFP channel using a Leica DM6000B fluorescent microscope (Leica Microsystems, Wetzlar,
Germany). Then, the corneas were incubated in 20% sucrose solution with 1% PFA for at
least 24 h. After that, the samples were embedded in Tissue-Tek O.C.T. Compound (Sacra
Finetek, Torrance, CA, USA) and frozen for 2 h at −23 ◦C. Cornea cryosections that were
12 µm thick were obtained using a Leica CM-3050S cryostat (Leica Biosystems, Deer Park,
IL, USA). Cell nuclei were stained with DAPI (1 µg/mL; Thermo Fisher Scientific, Waltham,
MA, USA). Visualization was performed using single scans made using an OLYMPUS
FV3000 confocal microscope (Olympus, Center Valley, PA, USA). Autofluorescence was
filtered out during image acquisition and normalized according to the level of autofluo-
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rescence on the slides with native cornea. ImageJ (v.2.1 software) was used to process and
analyze the obtained images.

4.8. Immunohistochemistry

The corneal cryosections were permeabilized with 0.1% Triton X-100 (Sigma Aldrich,
St. Louis, MO, USA) for 15 min and blocked in PBS supplemented with 10% FBS (Gibco,
Waltham, MA, USA) and 1% bovine serum albumin (BSA; Thermo Scientific, Waltham,
MA, USA) at 37 ◦C for 1 h. Hybridization with primary antibodies against Cytokeratin
15 diluted to 1:500 (MA5-15567; Thermo Fisher Scientific, Waltham, MA, USA) was per-
formed overnight at +4 ◦C. After several washes, the Anti-Mouse IgG H&L antibodies
conjugated with goat anti-mouse Alexa Fluor 555 diluted to 1:500 (ab150114; Abcam,
Cambridge, UK) were added for 60 min at room temperature. The nuclei were counter-
stained with DAPI (1 µg/mL; Thermo Fisher Scientific, Waltham, MA, USA). Sections
were observed using single scans made using an OLYMPUS FV3000 confocal microscope
(Olympus, Center Valley, PA, USA). ImageJ (v.2.1 software) was used to process and analyze
the obtained images.

4.9. Statistical Analysis

All statistical calculations and graph plotting were performed using Prism 9.0 (Graph-
Pad Software, San Diego, CA, USA). In all experiments, at least three independent measure-
ments were performed. Error bars represent the mean’s standard deviation (S.D.), analyzed
a priori for homogeneity of variance. Differences between groups were determined using
a one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison
post hoc test. Significance between groups was established for p < 0.001, p < 0.0002, and
p < 0.0001 with a 95% confidence interval.

5. Conclusions

Labeled stem cells are a valuable tool to evaluate their role in restoring host tissue and
clarifying the underlying mechanisms of the impact of transplanted stem cells on regenera-
tion. They allow us to evaluate the migration and survival rates of the transferred cells and
therefore are necessary for selecting optimal conditions for stem cell transplantation.

This study demonstrated the low survivability of L-MSCs-EGFP transplanted as a
part of TEGs. Presumably, under the given transplantation conditions, without additional
mechanical protection, in acute inflammation and under the influence of adjuvant thera-
peutic agents (local anesthetics, antibiotics, and anti-inflammatory agents), the transplanted
L-MSCs-EGFP insufficiently survived to restore the damaged limbal niche. However, the
fragments of destroyed cells or protein complexes containing EGFP were preserved in
the corneal tissue even on the 90th day. It is possible that paracrine secretion of trans-
planted cells may have a positive therapeutic effect, but this assumption still needs to
be clarified. The selection of optimal conditions and therapeutic medications, including
immunosuppressive drugs, is one of the aspects we need to improve for further studies of
the regenerative potential of L-MSCs-EGFP or any other stem cell types.

This study provides a better understanding of the processes occurring during the
transplantation of TEGs onto the corneal surface. It paves the way for further analyses of
their participation in corneal regeneration.
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