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Abstract: We review the key steps leading to an improved analysis of thermal protein unfolding.
Thermal unfolding is a dynamic cooperative process with many short-lived intermediates. Protein
unfolding has been measured by various spectroscopic techniques that reveal structural changes, and
by differential scanning calorimetry (DSC) that provides the heat capacity change Cp(T). The corre-
sponding temperature profiles of enthalpy ∆H(T), entropy ∆S(T), and free energy ∆G(T) have thus
far been evaluated using a chemical equilibrium two-state model. Taking a different approach, we
demonstrated that the temperature profiles of enthalpy ∆H(T), entropy ∆S(T), and free energy ∆G(T)
can be obtained directly by a numerical integration of the heat capacity profile Cp(T). DSC thus offers
the unique possibility to assess these parameters without resorting to a model. These experimental
parameters now allow us to examine the predictions of different unfolding models. The standard
two-state model fits the experimental heat capacity peak quite well. However, neither the enthalpy
nor entropy profiles (predicted to be almost linear) are congruent with the measured sigmoidal
temperature profiles, nor is the parabolic free energy profile congruent with the experimentally
observed trapezoidal temperature profile. We introduce three new models, an empirical two-state
model, a statistical–mechanical two-state model and a cooperative statistical-mechanical multistate
model. The empirical model partially corrects for the deficits of the standard model. However, only
the two statistical–mechanical models are thermodynamically consistent. The two-state models yield
good fits for the enthalpy, entropy and free energy of unfolding of small proteins. The cooperative
statistical–mechanical multistate model yields perfect fits, even for the unfolding of large proteins
such as antibodies.

Keywords: protein unfolding; differential scanning calorimetry; Zimm–Bragg theory; cold denaturation;
free energy

1. Introduction

Many proteins are only marginally stable at room temperature and can be denatured
by heating or cooling. The analysis of protein stability is thus an important problem in
developing biological therapeutics. The protein folding–unfolding reaction is a dynamic
equilibrium between many different short-lived intermediates. This was recognized as
early as 1959 by B. Zimm and J.K. Bragg, who published a seminal theory on the helix-
coil phase transition of polypeptides [1]. The complex statistical–mechanical theory was
explained in simple terms in a textbook by N. Davidson in 1962 [2]. The Zimm–Bragg
theory is not limited to structural changes but was also essential in determining the kinetics
of the helix-coil transition in 1968 [3]. The Zimm–Bragg theory follows from the linear
Ising model of magnetism [4], and its physics is somewhat demanding. It is probably for
this reason that the multistate cooperative theory which takes into account that molecular
elements (e.g., amino acid residues) act dependently on each other was largely ignored
by experimentalists in protein unfolding. Instead, a much simpler two-state model for
protein unfolding became the popular and almost exclusive alternative. A two-state model
considers only two types of protein conformations in solution, the native protein (N) and
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the fully unfolded protein (U). No molecular interactions are specified in a two-state model,
which therefore must be classified as non-cooperative.

The chemical equilibrium two-state model was originally proposed by Brandts in
1964 [5,6] He measured the thermal unfolding of chymotrypsinogen with spectroscopic
techniques and defined an equilibrium constant as the ratio of unfolded-to-native protein
for each temperature. The van’t Hoff plot of the temperature-dependent equilibrium
constant provided the unfolding enthalpy ∆H0. In this early model, the unfolding enthalpy
was temperature-independent. A direct measurement of the unfolding enthalpy was made
possible by differential scanning calorimetry (DSC) (for details of differential scanning
calorimetry (DSC), see references [7–9]. DSC measures the heat capacity Cp(T) that is the
temperature derivative of the enthalpy change ∆H(T) at constant pressure p. The relevant
DSC literature is focused on the simulation of the heat capacity peak associated with protein
unfolding. The temperature-induced thermodynamic unfolding parameters ∆H(T), ∆S(T)
and ∆G(T) have thus far been derived in an exclusively model-guided manner (see [10]). A
historical perspective of the chemical equilibrium two-state model, used for this purpose,
can be found in [11,12].

We have recently demonstrated that DSC can achieve more. It directly provides the
thermodynamic unfolding parameters ∆H(T), ∆S(T) and ∆G(T) from the heat capacity
Cp(T) measurement, independent of any model [13,14]. Knowledge of these experimental
parameters now allows for the examination of different models.

In this review, we show how the thermodynamic functions enthalpy ∆H(T), entropy
∆S(T) and free energy ∆G(T) can be calculated by numerical integration of Cp(T) without
the application of a protein-unfolding model. As an example, we use the heat denaturation
of lysozyme (Section 2.1). In Section 2.2, we introduce the currently prevailing (or standard)
chemical equilibrium two-state model, and three new models [15], the ΘU(T)-weighted
chemical equilibrium two-state model, the statistical–mechanical two-state model and the
statistical–mechanical multistate model [13]. Whereas the first two are empirical models,
the latter two are based on rigorous thermodynamic partition functions. These models
allow the simulation of Cp(T) in terms of the enthalpy ∆H(T), entropy ∆S(T) and free energy
∆G(T). In Section 3, we emphasize again the experimental (model-independent) analysis of
the heat capacity Cp(T) in terms of the enthalpy ∆H(T), entropy ∆S(T) and free energy ∆G(T)
upon heat denaturation of lysozyme and heat and cold denaturation of β-lactoglobulin
and examine whether these data can be fitted with the different models. The standard
chemical equilibrium two-state model shows discrepancies with respect to entropy and free
energy and casts doubt on the physical reality of the postulated positive free energy of the
native protein. The ΘU(T)-weighted chemical equilibrium two-state model corrects most of
the insufficiencies of the standard model. The two new statistical–mechanical models are
based on rigorous thermodynamic partition functions and provide perfect simulations of
all measured thermodynamic properties.

2. Methods
2.1. Differential Scanning Calorimetry (DSC). Model-Independent Thermodynamic Analysis of
Protein Unfolding Experiments

Differential scanning calorimetry (DSC) is the method of choice to study the thermody-
namic properties of protein unfolding. DSC measures the heat capacity Cp(T) as a function
of temperature. Here, we show that the fundamental thermodynamic properties of protein
unfolding can be derived directly by numerical integration of the heat capacity [13,14],
as follows:

enthalpy ∆HDSC(Ti) =
i

∑
1

[
Cp(Ti) + Cp(Ti+1)

2

]
[Ti+1 − Ti] (1)

entropy ∆SDSC(Ti) =
i

∑
1

[
Cp(Ti+1) + Cp(Ti)

2Ti

]
[Ti+1 − Ti] (2)
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free energy ∆GDSC(Ti) = ∆H(Ti)− Ti∆S(Ti) (3)

Note that all thermodynamic properties can be evaluated without resorting to a
particular unfolding model.

Native proteins have a substantial heat capacity [16]. A typical DSC-thermogram is
shown in Figure 1A. The heat capacity Cp(T) starts out almost horizontally, reflecting the
basal value of the native protein. Unfolding then gives rise to a sharp heat capacity peak,
which is followed again by a region of rather constant heat capacity of the unfolded protein.
The heat capacity of the unfolded protein is distinctly higher than that of the native protein
(∆C0

p > 0). ∆C0
p scales with the size of the protein [17,18]. The increase ∆C0

p, is caused
essentially by the binding of additional water molecules [18].
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Figure 1. DSC of lysozyme. Model–independent thermodynamic analysis (50 µM, 20% glycine 
buffer, pH 2.5). (A) Heat capacity. DSC data (temperature resolution 0.17 °C) taken from reference 
[19,20]. (B) Enthalpy ΔHDSC(T) (Equation (1)). (C) Entropy ΔSDSC(T) (Equation (2)). (D) Gibbs free 
energy ΔGDSC(T) (Equation (3)). 

Figure 1. DSC of lysozyme. Model–independent thermodynamic analysis (50 µM, 20% glycine buffer,
pH 2.5). (A) Heat capacity. DSC data (temperature resolution 0.17 ◦C) taken from reference [19,20].
(B) Enthalpy ∆HDSC(T) (Equation (1)). (C) Entropy ∆SDSC(T) (Equation (2)). (D) Gibbs free energy
∆GDSC(T) (Equation (3)).

Unfolding models generally assume baseline corrected thermograms with zero heat
capacity for the native protein. Of note, equations, 1–3 are not limited to baseline corrected
thermograms. Evaluations which include the substantial heat capacity of the native protein
are given in a recent publication on cooperative protein unfolding [13].

The choice of the DSC-baseline is important and is handled quite differently in the
literature [8]. The subtraction of a sigmoidal baseline has become quite common such that
the heat capacity difference ∆C0

p between the native and denatured protein is lost [19]. If
the increase in the basic heat capacity ∆C0

p of the unfolded protein is ignored, the further
analysis is limited to the conformational change only. This approach has been criticized as
follows: “It is clear that in considering the energetic characteristics of protein unfolding
one has to take into account all energy which is accumulated upon heating and not only
the very substantial heat effect associated with gross conformational transitions, that is, all
the excess heat effects must be integrated” [7].
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The analysis of DSC experiments as performed in this review is shown in Figure 1 for
the thermal unfolding of lysozyme [20,21]. Lysozyme is a 129-residue protein composed of
~25% α-helix, ~40% β-structure and ~35% random coil in solution at room temperature [20].
Upon unfolding, the α-helix is almost completely lost and the random coil content increases
to ~60%. Thermal unfolding occurs in the range of 43 ◦C < T < 73 ◦C and is completely
reversible. Lysozyme is the classical example to demonstrate two-state unfolding [10,22,23].

Figure 1A displays the heat capacity Cp(T) [20,21]. The midpoint of unfolding is at
Tm = 62 ◦C. Panels 1B–1D show the summation of Cp(Ti) according to Equations (1)–(3).
Due to baseline correction, the basal heat capacity of the native lysozyme is removed and
the figure shows the heat capacity change of the unfolding transition proper. For the native
protein, the heat capacity change upon unfolding is zero (Cp(T) = 0 cal/molK). According
to basic thermodynamics it follows that the change in all thermodynamic properties must
also be zero for the native protein.

As shown in Figure 1A, the heat capacity Cp(Ti) is a non–linear function of temperature.

Consequently, enthalpy ∆H(T) =
r

Cp(T)dT, entropy ∆S(T) =
r Cp(T)

T dT and Gibbs free
energy ∆G(T) = H(T)− T∆S(T) are also non–linear with temperature T. Indeed, enthalpy
and entropy display sigmoidal temperature profiles (Figure 1B,C). The free energy change of
lysozyme is zero for the native protein, is slightly negative up to the midpoint temperature
Tm, and decreases rapidly beyond Tm (Figure 1D).

The typical heat capacity profiles of protein unfolding (Figure 1A) are well known.
However, the corresponding temperature profiles of enthalpy, entropy or free energy,
have to our knowledge not been reported in the relevant literature, even though these
thermodynamic functions are essential in a model-guided analysis.

2.2. Models for Protein Unfolding
2.2.1. Chemical Equilibrium Two-State Models

Protein unfolding is a cooperative process. Nevertheless, in spite of many short-lived
intermediates, protein unfolding is almost exclusively described by a chemical equilibrium
between a single native protein conformation (N) and a single denatured molecule (U). The
temperature-dependent equilibrium constant is defined as

KNU(T) =
[U]

[N]
(4)

[U] and [N] denote the concentrations of unfolded and native protein, respectively.
The temperature dependence of equilibrium constant KNU(T) is handled differently in
different models.

(a) Van’t Hoff Enthalpy Model:

The early version of the two-state model is based on van’t Hoff’s law [5,9,17]. The
temperature dependence of the chemical equilibrium constant is given by

∂ ln KNU(T)
∂T

=
∆H0

RT2 (5)

∆H0 is the conformational enthalpy, R is the molar gas constant, and T the absolute
temperature. Integration of Equation (5) yields ln KNU(T) = (−∆H0/RT) + C

KNU(T) = e
−∆H0

R ( 1
T−

1
Tm ) (6)

The integration constant C was chosen such that the equilibrium constant is unity
at the midpoint temperature of unfolding Tm, that is, KNU(Tm) = 1. At Tm, native and
unfolded protein occur at equal concentrations.
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In the van’t Hoff model the enthalpy is temperature-independent and the unfolded
protein has the same basic heat capacity as the native protein [9,17,24]. To account for the
experimentally observed increase in the heat capacity of the unfolded protein, the van’t
Hoff model was replaced by a more general model with a temperature-dependent enthalpy.

(b) Free Energy Chemical Equilibrium Two-State Model (“Standard Model”):

This model is based on the free energy which is temperature dependent [25,26]. The
temperature dependence of the N � U equilibrium is calculated with the free energy
∆GNU(T). We follow the common nomenclature [7,26,27]

KNU(T) =
[U]

[N]
= e

−∆GNU(T)
RT (7)

The free energy ∆GNU(T) is composed of the enthalpy ∆HNU(T) and the entropy ∆SNU(T).

∆HNU(T) = ∆H0 + ∆C0
p(T− Tm) (8)

∆H0 is the conformational enthalpy proper and ∆C0
p is the increase in heat capacity

between the native and the unfolded protein. The entropy ∆SNU(T) is defined as

∆SNU(T) = ∆S0 + ∆C0
p ln

T
Tm

=
∆H0

Tm
+ ∆C0

p ln
T

Tm
(9)

The conformational entropy ∆S0 is evaluated by assuming a first-order phase transition
(e.g., melting of ice). In such a phase transition the total heat ∆H0 is absorbed at a constant
temperature Tm and the entropy change is ∆S0 = ∆H0/Tm. With this assumption the free
energy follows as

∆GNU(T) = −RT ln KNU(T) = ∆H0(1−
T

Tm
) + ∆C0

p(T− Tm)− T∆C0
p ln(

T
Tm

) (10)

It should be noted however, that in protein unfolding ∆H0 is absorbed not at a constant
temperature but over a temperature range of 20–50 ◦C.

The extent of unfolding ΘU(T) is

ΘU(T) =
KNU(T)

1 + KNU(T)
=

e
−∆GNU(T)

RT

1 + e
−∆GNU (T)

RT

(11)

The thermodynamic definition of the heat capacity is Cp(T) = (∂H(T)/∂T)p. The heat
capacity of the chemical equilibrium two-state model is

Cp(T) =
∂(ΘU(T)∆HNU(T))

∂T
= ∆HNU(T)

∂ΘU(T)
∂T

+ ΘU(T)∆C0
p (12)

It should be noted that the unfolding enthalpy ∆HNU(T) is multiplied with the extent
of unfolding ΘU(T) to account for the non–linear temperature profile of the heat capacity
Cp(T). Equation (12) is identical to Equation (14) in reference [26] and is the hallmark of the
standard chemical equilibrium two-state model.

The thermodynamic predictions of this model are shown in Figure 2. The enthalpy is
a linear function of temperature, the entropy is almost linear, and the free energy ∆G(T)
has the approximate shape of an inverted parabola. The native protein has a free energy
maximum of 7.51 kcal/mol at 290 K = 17 ◦C. However, as the heat capacity is zero at the
same temperature this reveals a thermodynamic inconsistency. As shown experimentally
in Figure 1, a zero heat capacity change leads to zero values for all thermodynamic func-
tions. The temperatures for heat and cold unfolding are Tm = 63 ◦C and Tcold = −24 ◦C,
respectively. At these temperatures, folded and unfolded protein are present at equal
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concentrations. Cold denaturation may not be feasible experimentally for many proteins,
but Tcold can be estimated as

Tcold ≈ Tm(2e
−∆H0

Tm∆C0
p − 1) (13)
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This was taken into account in the chemical equilibrium model (Equation (12)) by differ-
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stant heat capacity, Equation (8)). As Cp(T) is non–linear the other thermodynamic func-
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Figure 2. The thermodynamic functions of the standard chemical equilibrium two–state model
calculated with the parameters typical for lysozyme, ∆H0 = 110 kcal/mol and ∆C0

p = 2.2 kcal/molK.
Dashed vertical line: midpoint temperature Tm = 62 ◦C. (A) Enthalpy ∆HNU(T) (Equation (8)).
(B) Entropy ∆SNU(T) (Equation (9)). (C) Gibbs free energy ∆GNU(T) (Equation (10)). (D) Heat
capacity Cp(T) (Equation (12)).

The temperature difference between heat and cold denaturation is

∆T ≈ 2Tm(1− e
−∆H0

Tm∆C0
p ) (14)

∆T depends essentially on the ratio ∆H0/∆C0
p. The two parameters have opposite

effects. ∆H0 increases ∆T, ∆C0
p decreases it.

(c) ΘU(T)-Weighted Chemical Equilibrium Two-State Model [15]:

The heat capacity of lysozyme in Figure 1A shows a non–linear temperature profile.
This was taken into account in the chemical equilibrium model (Equation (12)) by differen-
tiating the product ∆HNU(T)ΘU(T), not just ∆HNU(T) (which would result in a constant
heat capacity, Equation (8)). As Cp(T) is non–linear the other thermodynamic functions
must also be non–linear. We therefore applied the empirical approach of Equation (12) not
only to enthalpy, but for consistence also to entropy and free energy and defined a new set
of ΘU(T)-weighted thermodynamic functions.

∆HΘ(T) = ΘU(T)∆HNU(T) (15)
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∆SΘ(T) = ∆SNU(T)ΘU(T) (16)

∆GΘ(T) = ∆GNU(T)ΘU(T) (17)

The Equation (12) for the heat capacity is not repeated here. The resulting temperature
profiles are shown in Figure 3.
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Figure 3. ΘU(T)-weighted chemical equilibrium two-state model. (A) Enthalpy (Equation (15)). (B). 
Heat capacity (Equation (12)). (C) Entropy (Equation (16)). (D) Free energy (Equation (17)). Fit 
parameters:   ΔH0 = 107 kcal/mol, 0
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Figure 3. ΘU(T)-weighted chemical equilibrium two-state model. (A) Enthalpy (Equation (15)).
(B) Heat capacity (Equation (12)). (C) Entropy (Equation (16)). (D) Free energy (Equation (17)). Fit
parameters: ∆H0 = 107 kcal/mol, ∆C0

p = 2.27 kcal/molK.

The weighting factor ΘU(T) generates sigmoidal temperature profiles for enthalpy
and entropy and a trapezoidal profile for the free energy. The free energy change ∆GΘ(T)
of the native protein is zero, which is now consistent with the zero heat capacity. Of note,
the ΘU(T) is an empirical weighting factor, not based on solid thermodynamic reasoning. A
closer inspection of Equation (17) reveals residual small positive free energies in the vicinity
of the midpoint temperatures Tm and Tcold (Figure 3D, for details see below, enlargement in
view of the free energy). These small positive free energies are not observed experimentally.

2.2.2. Statistical-Mechanical Models

(a) Partition Function Z(T) and Thermodynamic Properties:

Statistical-mechanics provides a rigorous thermodynamic approach to protein un-
folding. The heat capacity Cp(T) is intimately related to the partition function Z(T) (for
definition see Section 2.2.2). Knowledge of the partition function Z(T) then leads to the
following thermodynamic relations [28,29]

Helmholtz free energy : F(T) = −RT ln Z(T) (18)

Inner energy : E(T) = RT2 ∂ ln Z(T)
∂T

(19)
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Entropy : Sv(T) =
E(T)− F(T)

T
(20)

Heat capacity : CV(T) =
(

∂E(T)
∂T

)
V
=

< E(T)2 > − < E(T) >2

RT2 (21)

DSC experiments are made at constant pressure. As the volume changes in protein un-
folding are very small (<5%), the following relations are applicable without loss of accuracy:
heat capacity Cp(T) ∼= Cv(T), enthalpy H(T) ∼= inner energy E(T), entropy Sp(T) ∼= Sv(T),
Gibbs free energy G(T) ∼= Helmholz free energy H(T) [13].

(b) Statistical-Mechanical 2-State Unfolding Model [15]:

The problem is to find the partition function of a one-component two-state system.
Based on the statistics of the linear Ising model as described in reference [2], the following
continuous canonical partition function can be defined

Z(T) =
(

1 + e
−[∆E0+Cv(T−Tm)]

R [ 1
T−

1
Tm ]

)
(22)

∆E0 is the conformational energy of the unfolded protein. It is temperature-dependent
with the heat capacity Cv. For convenience the partition function is simplified by introducing

Q(T) = e
−[∆E0+Cv(T−Tm)]

R ( 1
T−

1
Tm ) (23)

leading to
Z(T) = (1 + Q(T)) (24)

The fraction of unfolded protein ΘS(T) is

ΘS(T) =
∂ ln Z(T)

∂ ln Q
=

Q(T)
1 + Q(T)

(25)

ΘS(T) is included for completeness only. It is not needed to calculate thermodynamic
functions. The partition function Z(T) suffices to predict all thermodynamic properties.

The statistical mechanical two-state model is a continuous canonical partition function
with only two states. It can be described as the non-cooperative limit of the multistate
cooperative unfolding model (discussed below, Equation (29)) with a cooperativity param-
eter σ = 1 and only a single species of participating particles, N = 1. Figure 4 displays the
predictions of Equations (18)–(22).

The native protein is the reference state with all thermodynamic functions being zero.
In particular, the free energy change ∆F(T) is zero at 20 ◦C and becomes slightly negative,
but never positive, between Tm and Tcold. ∆F(T) decreases rapidly for temperatures T > Tm
and T < Tcold according to

∆F(T) ' (E0 + Cv(T− Tm)

(
1− T

Tm

)
(26)

The free energy ∆F(T) of the statistical mechanical two-state model again displays a
trapezoidal temperature profile. Cold denaturation takes place at

Tcold = Tm −
∆E0
Cv

(27)

∆E0 and Cv have opposite effects on Tcold. Increasing ∆E0 lowers Tcold, increasing Cv
leads to an upward shift.
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Figure 4. Statistical–mechanical two-state model. Red lines calculated with ∆E0 = 110 kcal/mol
and Cv = 1.05 kcal/molK. (A) Inner energy ∆E(T). (B) Entropy ∆Sv(T). (C) Helmholtz energy ∆F(T).
(D) Heat capacity Cp(T). Blue lines are calculated with the standard chemical equilibrium two-state
model, using, ∆H0 = 107 kcal/mol, ∆C0

p = 2.27 kcal/molK. Dashed vertical lines: midpoint tempera-
ture Tm = 62 ◦C.

Figure 4D compares the heat capacities predicted by the statistical-mechanical two-state
model and the chemical equilibrium two-state model. The high-temperature peaks of
the two models overlap precisely, but cold denaturation occurs at different temperatures.
A discussion of other differences will follow in connection with the protein examples
discussed below.

In summary, the statistical mechanical two-state model makes no assumption about
the entropy. Additionally, as mentioned before, no weighting function ΘU(T) is needed to
correctly calculate, the thermodynamic properties.

(c) Multistate Cooperative Unfolding Model [13]:

The energy of a system with N particles is characterized by its partition function

Z(T) = ∑
i

gie
−εi
kBT (28)

The partition function is the sum of exponential terms (Boltzmann factor) over all
energy levels εi, multiplied with their degeneracies gi, where kB is the Boltzmann con-
stant. The partition function determines the thermodynamic properties of the system
(Equations (18)–(21) [28,29]. Here we use the partition function of the multistate coopera-
tive Zimm–Bragg theory, originally developed for the α-helix-to-coil transition of polypep-
tides [1,30,31]. Its application to protein unfolding has been discussed recently [13]. The
Zimm–Bragg theory has been applied successfully to the unfolding of helical and globular
proteins of different structure and size [13,14,20,21,32–36]. Here, we use the equations
given in [13].

Z(T) =
(
1 0

)(1 σq(T)
1 q(T)

)N(
1
1

)
(29)
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q(T) = e
−h(T)

R ( 1
T−

1
T0

) (30)

h(T) = h0 + cv(T− Tm) (31)

h0 is the enthalpy change of the native→ unfolded transition of a single amino acid
residue. h0 is temperature-dependent with the heat capacity cv. N is the number of
amino acids participating in the transition. The cooperativity parameter σ determines the
sharpness of the transition. The σ parameter is typically in the range of 10−3–10−7. T0 is a
fit parameter to shift the position of the heat capacity peak. T0 is usually close to Tm. The
temperature difference between heat and cold denaturation is ∆T ≈ h0

cv
.

Figure 5 shows the thermodynamic temperature profiles predicted by Equation (29)
in combination with Equations (18)–(21). Sigmoidal shapes are predicted for inner energy
and entropy, and a trapezoidal shape for the free energy. Figure 5 is very similar to Figure 4
of the statistical-mechanical two-state model but is calculated with molecular parameters
only. In particular, the free energy is again zero or negative, but never positive.
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Figure 5. Multistate cooperative model. Green lines calculated with: N = 129 amino acid residues.
h0 = 900 cal/mol. cv = 7 cal/molK. Cooperativity parameter σ = 5 × 10−7. Black data points: thermal
unfolding of lysozyme measured with DSC. Same data as in Figure 1.

Figure 5 includes the DSC data of lysozyme heat denaturation (Figure 1). An excellent
agreement between theory and experiment is obtained.

The multistate cooperative model describes protein unfolding with molecular parame-
ters of well-defined physical meaning. In contrast, two-state models provide macroscopic
parameters. Equation (29) can be applied to proteins of any size, including large antibodies
with ~1200 amino acid residues and unfolding enthalpies of ~1000 kcal/mol [13].

3. DSC Experiments Compared to the Three New Protein Unfolding Models
3.1. Lysozyme Heat Unfolding

Figure 6 compares the experimental date of lysozyme unfolding with two un-
folding models. The heat capacity Cp(T) maximum is at Tm = 62 ◦C and the heat ca-
pacity increase is ∆C0

p = 2.27 kcal/molK, in agreement with literature data of
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∆C0
p = 1.54–2.27 kcal/mol [10,18,20,22,23,37,38]. The red lines in Figure 6 represent the

statistical-mechanical two-state model and were calculated with ∆E0 = 110 kcal/mol and
Cv = 1.05 kcal/molK. A perfect fit of the experimental data is achieved.
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Figure 6. Analysis of lysozyme heat unfolding with 2-state models. Black data points: DSC
data of Figure 1. Red lines: statistical-mechanical two-state model (∆E0 = 110 kcal/mol
and Cv = 1.05 kcal/molK). Magenta dotted line: ΘU(T)-weighted chemical two-state model
(∆H0 = 107 kcal/mol, ∆C0

p = 2.27 kcal/molK).(A) Heat capacity. (B) Enthalpy. (C) Entropy.
(D) Free energy.

The magenta dotted lines represent the weighted chemical equilibrium two-state
model. The agreement with the experimental data is also very good. However, a small
difference to the experimental data is observed near the midpoint of unfolding. Figure 7 dis-
plays an enlarged View of this region. DSC reports a zero free energy change for the native
lysozyme. The free energy change becomes immediately negative upon unfolding. This
result is correctly reproduced by the statistical-mechanical two-state model. In contrast, the
ΘU(T)-weighted chemical equilibrium two-state model (Equation (17)) predicts little spikes
of positive free energy at temperatures just before the midpoints of unfolding. The spikes
are not observed experimentally. Although they are small and of no practical importance,
they signify a thermodynamic discrepancy. The difference between experiment and model
would be much larger if the parabolic free energy profile (Equation (10), Figure 2C) would
be included. The multi-state cooperative model as described in Figure 5 also yields a perfect
fit of the lysozyme DSC experiment [13].
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Figure 7. Enlarged view of the free energy. Black data points: DSC results for lysozyme heat unfolding.
Red line: statistical mechanical two-state model (∆E0 = 110 kcal/mol, Cv = 1.05 kcal/mol). Magenta
line: ΘU(T)-weighted chemical equilibrium two-state model (Equation (17), ∆H0 = 1107 kcal/mol,
∆C0

p = 2.27 kcal/molK).

In summary, three different models provide a good to excellent description of lysozyme
DSC unfolding. At the midpoint temperature Tm all three models predict the extent of
unfolding exactly as ΘU = 1

2 . Native and unfolded protein occur at equal concentrations.
The free energy change is not zero, but DSC reports ∆GDSC(Tm) = −0.756 kcal/mol. Indeed,
a negative free energy is intuitively plausible as the protein is partially denatured at Tm.
This result is supported by two theoretical models. The statistical-mechanical two-state
model yields ∆F(Tm) = −0.462 kcal/mol, the multistate cooperative model yields ∆F(Tm)
= −0.855 kcal/mol. In contrast, the ΘU(T)-weighted chemical equilibrium two-state model
predicts ∆GΘ(Tm) = 0 kcal/mol.

3.2. β-Lactoglobulin Cold and Heat Denaturation

Bovine β-lactoglobulin (MW 18.4 kDa, 162 aa) folds up into an 8-stranded, antiparallel
β-barrel with a 3-turn α-helix on the outer surface. β-Lactoglobulin in buffer without urea
displays only heat denaturation (black squares in Figure 8A, data taken from Figure 1 of
reference [39]). Unfolding takes place in the range of 55 ◦C < T < 96 ◦C with the Cp(T)
maximum at 78 ◦C. The unfolding enthalpy is ∆HDSC = 74.5 kcal/mol (cf. ref. [39], Table
1, 0 M urea), the entropy ∆SDSC = 0.213 kcal/molK, and ∆HDSC/∆SDSC = 349 K = 76 ◦C,
consistent with the Cp(T) maximum.

The ΘU(T)-weighted chemical equilibrium model, the statistical-mechanical two-state
model, and the multistate cooperative model overlap completely as far as the heat capacity
is concerned. On the other hand, some small differences are observed for enthalpy, entropy
and free energy. The most conspicuous difference is seen for the free energy. The ΘU(T)-
weighted chemical equilibrium model predicts a small peak of positive free energy for the
native protein, which is not confirmed by the DSC experiment.



Int. J. Mol. Sci. 2023, 24, 5457 13 of 17

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 17 
 

 

1, 0 M urea), the entropy ΔSDSC = 0.213 kcal/molK, and ΔHDSC/ΔSDSC = 349 K = 76 °C, con-
sistent with the Cp(T) maximum. 

285 300 315 330 345 360 375 390 405
0

1

2

3

4

he
at

 c
ap

ac
ity

 C
p,

v (
kc

al
/m

ol
K)

A

285 300 315 330 345 360 375 390 405
0

20

40

60

80

100

he
at

 o
f u

nf
ol

di
ng

 (k
ca

l/m
ol

)

B

285 300 315 330 345 360 375 390 405

0.0

0.1

0.2

0.3

0.4

0.5

en
tro

py
 (k

ca
l/m

ol
K)

temperature (K)

C

285 300 315 330 345 360 375 390 405

-6

-3

0

fre
e 

en
er

gy
 F

, G
 (k

ca
l/m

ol
)

D
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thalpy, entropy and free energy. The most conspicuous difference is seen for the free en-
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free energy for the native protein, which is not confirmed by the DSC experiment. 
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tein with 162 amino acid residues. Likewise, the molecular enthalpy parameter h0 = 380 
cal/mol is also small compared to the typical 900–1300 cal/mol of globular proteins [20]. 
The molecular origin of the small unfolding enthalpy of β-lactoglobulin can be traced back 
to its extensive β-structure content. The enthalpy h0β for the reaction β-structure → dis-
ordered amino acid was measured as h0β = 230 cal/mol in a membrane environment [40]. 

A protein can also be unfolded by cooling. Cold denaturation usually occurs at sub-
zero temperatures but can be shifted to above 0 °C by high concentrations of chemical 
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Figure 8. DSC of β-lactoglobulin in 0.1 M KCl/HCl, pH 2.0 buffer. Black data points in panel A are
taken from reference [39] (Figure 1). Magenta lines: ΘU(T)-weighted chemical equilibrium two-state
model (∆H0 = 50 kcal/mol, ∆C0

p = 1.3 kcal/molK). Red lines: statistical-mechanical two-state model
(∆E0 = 55 kcal/mol, Cv = 0.6 kcal/molK) Green lines: multistate cooperative model (h0 = 380 cal/mol,
cv = 3 cal/molK, σ = 7 × 10−5, N = 160). (A) Heat capacity. (B) Unfolding enthalpy. (C) Unfolding
entropy). (D) Free energy of unfolding.

The conformational enthalpy is ∆H0 ∼= ∆E0 = 50–55 kcal/mol, which is small for
a protein with 162 amino acid residues. Likewise, the molecular enthalpy parameter
h0 = 380 cal/mol is also small compared to the typical 900–1300 cal/mol of globular
proteins [20]. The molecular origin of the small unfolding enthalpy of β-lactoglobulin
can be traced back to its extensive β-structure content. The enthalpy h0β for the reaction
β-structure→ disordered amino acid was measured as h0β = 230 cal/mol in a membrane
environment [40].

A protein can also be unfolded by cooling. Cold denaturation usually occurs at subzero
temperatures but can be shifted to above 0 ◦C by high concentrations of chemical denaturant
or extreme pH values. All models discussed above, predict cold denaturation, provided the
heat capacities ∆C0

p or Cv are non-zero. In fact, the temperature difference between heat and
cold denaturation depends strictly on the ratio of conformational enthalpy/heat capacity.

Only a few DSC experiments showing at least partial cold denaturation are available.
One of the best examples is DSC-unfolding of β-lactoglobulin in 2.0 M urea solution [39].

The DSC data are taken from Figure 2 of reference [39]. The simulation of Cp(T) is
shown in Figure 9A for the ΘU(T)-weighted chemical equilibrium model and in Figure 9B
for the two statistical models. The DSC experiment begins at −9 ◦C where the protein is
in a disordered state. Heating induces a disorder→ order transition with a heat capacity
maximum at 4 ◦C, a folding enthalpy ∆HDSC = 78.3 kcal/mol and an entropy change of
∆SDSC = 0.282 kcal/molK. The ratio ∆HDSC/∆SDSC is 277K = 4 ◦C, consistent with the heat
capacity maximum.
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Figure 9. Thermal folding and unfolding of β-lactoglobulin in 2.0 M urea solution. Magenta lines: 
ΘU(T)-weighted chemical equilibrium model. ΔH0 = 56 kcal/mol; 0Δ pC  = 2.4 kcal/moKl. Red lines: 

statistical-mechanical two-state model. ΔΕ0 = 55 kcal/mol; Cv = 1.2 kcal/molK; Green line: multistate 
cooperative model. h0 = 0.58 kcal/mol, cv = 13 cal/molK, σ = 6 × 10−5, N = 80. (A) DSC heat capacity 
data taken from reference [39]. Simulation with the ΘU(T)-weighted chemical equilibrium model. 
(B) Same DSC data as in panel A. Simulations with the statistical models (C) Enthalpy ΔHDSC(T). 
Integration of the Cp(T) data according to equation 1 generates the blue data points. The data are 
then shifted by −78.3 kcal/mol, the enthalpy released upon cold denaturation, resulting in the black 
data points. This scale-shift assigns a zero enthalpy to the native protein. (D) Free energy. Evalua-
tion of Cp(T) according to equations 1–3 leads to the blue data points. A related scale-shift for the 
entropy as for the enthalpy (not shown) and recalculation of the free energy results in the black data 
points. The free energy change of the native protein is now zero. Cold and heat denaturation gen-
erate negative free energies (for more details see reference [15]). 

The DSC data are taken from Figure 2 of reference [39]. The simulation of Cp(T) is 
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for the two statistical models. The DSC experiment begins at −9 °C where the protein is in 
a disordered state. Heating induces a disorder → order transition with a heat capacity 
maximum at 4 °C, a folding enthalpy ΔHDSC = 78.3 kcal/mol and an entropy change of 
ΔSDSC = 0.282 kcal/molK. The ratio ΔHDSC/ΔSDSC is 277K = 4 °C, consistent with the heat 
capacity maximum. 

At ~18–30 °C the protein is in the native-like conformation. Cooling reverses the be-
fore mentioned process and the protein returns to a disordered conformation with a sim-
ultaneous release −78 kcal/mol (cf. Figure 9C). The heat capacity peak at 4 °C is hence the 
mirror image of cold denaturation (see Figure 2 in [39]. Heating β-lactoglobulin above 30 
°C destroys the native structure. The order → disorder transition has a heat capacity max-
imum at 57 °C, ΔHDSC = 104 kcal/mol and ΔSDSC = 0.312 kcal/molK. The ratio ΔHDSC/ΔSDSC 
of heat denaturation is 333 K = 60 °C. 

β-Lactoglobulin is less stable in urea solution as the midpoint temperature Tm is 
shifted from 78 °C to 57 °C. Such a decrease in temperature is common in chemical dena-
turants. However, it is usually associated with a decrease in enthalpy, not an increase 
[35,36,41]. In the present case the enthalpy increases by ~40%, the entropy by ~50%, result-
ing, in turn, in a 20 °C downshift of Tm. 

The DSC data of β-lactoglobulin were analyzed with the ΘU(T)-weighted chemical 
equilibrium model and the two statistical models. The conformational enthalpy ΔH0 is 
equal to the inner energy ΔE0 with ΔH0 ≈ ΔE0 = 56 kcal/mol. These parameters are also 

Figure 9. Thermal folding and unfolding of β-lactoglobulin in 2.0 M urea solution. Magenta lines:
ΘU(T)-weighted chemical equilibrium model. ∆H0 = 56 kcal/mol; ∆C0

p = 2.4 kcal/moKl. Red lines:
statistical-mechanical two-state model. ∆E0 = 55 kcal/mol; Cv = 1.2 kcal/molK; Green line: multistate
cooperative model. h0 = 0.58 kcal/mol, cv = 13 cal/molK, σ = 6× 10−5, N = 80. (A) DSC heat capacity
data taken from reference [39]. Simulation with the ΘU(T)-weighted chemical equilibrium model.
(B) Same DSC data as in panel A. Simulations with the statistical models (C) Enthalpy ∆HDSC(T).
Integration of the Cp(T) data according to equation 1 generates the blue data points. The data are then
shifted by −78.3 kcal/mol, the enthalpy released upon cold denaturation, resulting in the black data
points. This scale-shift assigns a zero enthalpy to the native protein. (D) Free energy. Evaluation of
Cp(T) according to equations 1–3 leads to the blue data points. A related scale-shift for the entropy as
for the enthalpy (not shown) and recalculation of the free energy results in the black data points. The
free energy change of the native protein is now zero. Cold and heat denaturation generate negative
free energies (for more details see reference [15]).

At ~18–30 ◦C the protein is in the native-like conformation. Cooling reverses the
before mentioned process and the protein returns to a disordered conformation with a
simultaneous release −78 kcal/mol (cf. Figure 9C). The heat capacity peak at 4 ◦C is
hence the mirror image of cold denaturation (see Figure 2 in [39]. Heating β-lactoglobulin
above 30 ◦C destroys the native structure. The order → disorder transition has a heat
capacity maximum at 57 ◦C, ∆HDSC = 104 kcal/mol and ∆SDSC = 0.312 kcal/molK. The
ratio ∆HDSC/∆SDSC of heat denaturation is 333 K = 60 ◦C.

β-Lactoglobulin is less stable in urea solution as the midpoint temperature Tm is shifted
from 78 ◦C to 57 ◦C. Such a decrease in temperature is common in chemical denaturants.
However, it is usually associated with a decrease in enthalpy, not an increase [35,36,41]. In
the present case the enthalpy increases by ~40%, the entropy by ~50%, resulting, in turn, in
a 20 ◦C downshift of Tm.

The DSC data of β-lactoglobulin were analyzed with the ΘU(T)-weighted chemical
equilibrium model and the two statistical models. The conformational enthalpy ∆H0 is
equal to the inner energy ∆E0 with ∆H0 ≈ ∆E0 = 56 kcal/mol. These parameters are also
identical to those obtained for β-lactoglobulin in buffer. In contrast, the heat capacities
∆C0

p, Cv and cv are 2–3 times as large, most likely due to the binding of urea molecules.
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The three models discussed above provide a good simulation of all the experimental
data. In particular, they reproduce the trapezoidal temperature profile of the free energy
(black squares in Figure 9D). The native protein has a zero heat capacity change and, in
turn, a zero free energy change. Unfolding leads to negative free energies, both for heat
and cold denaturation. The two statistical models perfectly fit these experimental data. The
ΘU(T)-weighted chemical equilibrium two-state model displays small positive peaks in the
vicinity of Tm and Tcold, which are not supported by DSC.

4. Conclusions

Under equilibrium conditions protein stability is determined by (i) the midpoint of
heat denaturation, (ii) the temperature difference between heat and cold denaturation,
and (iii) the width and cooperativity of the unfolding transitions. These parameters are
intimately connected to the thermodynamic properties of the system. The thermodynamics
of protein unfolding is completely characterized by the temperature profiles of enthalpy,
entropy and free energy. The building stone of these thermodynamic properties is the heat
capacity Cp(T), which can be measured precisely by differential scanning calorimetry. In
this review we have emphasized the almost completely ignored concept of the experimental
and model-independent evaluation of the heat capacity in terms of the thermodynamic
functions ∆H(T), ∆S(T) and ∆G(T). The evaluation is straightforward and simple. It is
hence quite surprising that this approach has not been considered in the relevant literature.

Thermodynamic unfolding models should predict not only the heat capacity Cp(T), but
also the complete set of thermodynamic functions. The DSC experiment reveals a sigmoidal
temperature profiles for enthalpy and entropy and a trapezoidal profile for the free energy.
Focusing on the unfolding transition proper, the heat capacity change of the native protein
is zero and all the changes of the thermodynamic functions are equally zero. No positive
free energy is measured for the native protein, which is in contrast to the prediction of the
prevailing chemical equilibrium two-state model. Experimental temperature profiles were
shown for the heat-induced unfolding of the globular protein lysozyme and for the heat
and cold denaturation of the β-barrel protein β-lactoglobulin. The experimental results are
compared to the predictions of four different models, that is, two chemical equilibrium
two-state models and two statistical mechanical models. All four models described the heat
capacity equally well. The currently prevailing chemical equilibrium two-state model fails
however in simulating the thermodynamic temperature profiles. This model was therefore
modified by multiplying all thermodynamic functions with the extent of unfolding, yielding
the ΘU(T)-weighted chemical equilibrium model. This is an empirical approach which fits
all of the thermodynamic data quite well but displays a small discrepancy with respect
to the experimental results in the vicinity of the unfolding transition. The two statistical-
mechanical models have a rigorous thermodynamic foundation and avoid this difficulty.
They provide the best simulations of the experimental data.

Two-state models are non-cooperative approximations to a cooperative multistate
protein folding � unfolding equilibrium. They describe protein unfolding in terms of two
macroscopic parameters, the conformational enthalpy ∆H0 ' ∆E0 and the heat capacity
∆C0

p~2 Cv. In contrast, the multistate cooperative unfolding model uses molecular parame-
ters, that is, the enthalpy h0 per amino acid residue, the heat capacity cv, the cooperativity
parameter σ, and N, the number of participating amino acid residues. The multistate coop-
erative model can be applied to proteins of any length, e.g., antibodies with 1200 amino
acid residues and unfolding enthalpies of 1000 kcal/mol [13,36]. In contrast, two-state
unfolding models are best suited for unfolding enthalpies of 50–200 kcal/mol, typically
found for small proteins only.

Protein unfolding is characterized by large enthalpies and entropies, but small free
energies (enthalpy-entropy compensation), as discussed in detail by comparing lysozyme
and β-lactoglobulin. The free energy is not a good criterion to judge protein stability. Better
parameters are defined above. The ΘU(T)-weighted chemical equilibrium two-state model,
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the statistical-mechanical two-state model, and the multistate cooperative model provide
quantitative thermodynamic interpretations of these parameters.
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