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Abstract: Through the salification reaction of carboxylation, successful attachment of the long-chain
alkanoic acid to the two ends of 1,3-propanediamine was realized, which enabled the doubling of the
long-chain alkanoic acid carbon chain. Hydrous 1,3-propanediamine dihexadecanoate (abbreviated as
3C16) and 1,3-propanediamine diheptadecanoate (abbreviated as 3C17) were synthesized afterward,
and their crystal structures were characterized by the X-ray single crystal diffraction technique. By
analyzing their molecular and crystal structure, their composition, spatial structure, and coordination
mode were determined. Two water molecules played important roles in stabilizing the framework of
both compounds. Hirshfeld surface analysis revealed the intermolecular interactions between the two
molecules. The 3D energy framework map presented the intermolecular interactions more intuitively
and digitally, in which dispersion energy plays a dominant role. DFT calculations were performed to
analyze the frontier molecular orbitals (HOMO–LUMO). The energy difference between the HOMO–
LUMO is 0.2858 eV and 0.2855 eV for 3C16 and 3C17, respectively. DOS diagrams further confirmed
the distribution of the frontier molecular orbitals of 3C16 and 3C17. The charge distributions in
the compounds were visualized using a molecular electrostatic potential (ESP) surface. ESP maps
indicated that the electrophilic sites are localized around the oxygen atom. The crystallographic
data and parameters of quantum chemical calculation in this paper will provide data and theoretical
support for the development and application of such materials.

Keywords: 1,3-propanediamine dihexadecanoate; 1,3-propanediamine diheptadecanoate; dibasic
ammonium salts; crystal structure; Hirshfeld surface analysis; DFT

1. Introduction

Long-chain saturated fatty acids play various roles in the new metabolism of animals
and plants [1–4]. Due to their carboxyl group, long-chain saturated fatty acids can undergo
an esterification reaction [5,6], acylation reaction [7,8], salt formation reaction [9], oxidation-
reduction reactions [10], and decarboxylation reactions [11–13]. In recent years, in addition
to being widely studied in the field of biochemistry, long-chain saturated fatty acids have
also drawn much attention in the field of thermodynamics [14,15], especially in the area of
phase change energy storage [16–22], where they are becoming increasingly popular.

The popularity of long-chain saturated fatty acids is attributed to their desirable prop-
erties, such as good cycling stability, no supercooling, and no phase separation [23,24].
This type of phase change material and its composites are mainly applied in solar energy
generation [25–28], industrial waste heat recovery [29,30], automobile exhaust utiliza-
tion [31,32], and building heat storage [33,34]. Modifying long-chain fatty acids by physical
and chemical methods to increase their latent heat of phase transition is a very important
research field.
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As a nucleophilic reagent, 1, 3-propylene diamine is alkaline and can form hydro-
gen bonds. It is often used as an intermediate and solvent in organic synthesis [35,36].
In addition, 1,3-propanediamine plays an important role in photosynthesis and the cul-
tivation of biological strains [37,38]. Amines and their derivatives have been widely
reported [39,40]. The binary ammonium salt formed with ethylenediamine and lauric
acid as ligands was reported in the literature [41]. The results showed that this kind of
binary ammonium salt had good thermodynamic properties. However, the synthesis of
long-chain binary ammonium salts with 1,3-propanediamine and long-chain fatty acids as
ligands has not been reported. The study of binary ammonium salt by quantum chemical
calculation [42–45] has never been reported.

Taking the above into consideration, this paper successfully synthesizes two hydrous
long-chain dibasic ammonium salts CnH2n+8N2O6 (n = 35 and 37) with sebacic acid, azelaic
acid, and 1,3-propanediamine as the raw materials, realizing the doubling of the carbon
chain length of long-chain dibasic acid. The molecular structures of two compounds are
determined by an X-ray single crystal diffractometer. Their intermolecular interactions and
hot spots are revealed by Hirshfeld surface analysis. In addition, their frontier molecular
orbitals, chemical reaction parameters, electronic state densities, and molecular surface
electrostatic potentials are disclosed by DFT theory and the latest quantum chemistry tools.

2. Results and Discussions
2.1. Descriptions of Crystal Structure

The crystal size and data obtained by X-ray single crystal diffraction are shown in
Table 1. Table 1 shows that the crystal of the compound hydrous 1,3-propanediamine
dihexadecanoate (3C16) is triclinic; a space group is P-1 and Z = 2 with unit cell dimen-
sions a = 6.6497(8) Å, b = 8.4340(9) Å, c = 35.221(4) Å, α = 90.747(2)◦, β = 90.748(2)◦, and
γ = 96.969(3)◦. The crystal of the compound hydrous 1,3-propanediamine diheptadecanoate
(3C17) is triclinic; a space group is P-1 and Z = 2 with unit cell dimensions a = 6.6942(13) Å,
b = 8.4899(17) Å, c = 37.083(7) Å, α = 92.15(3)◦, β = 93.65(3)◦, and γ = 97.04(3)◦. It can be
seen that both crystal systems of the two lactate complexes are triclinic. The two crystal
structures have the same crystal system and space group as reported in the literature [41].
Unlike the compound reported in the literature, the number of molecules in a single crystal
cell and the lengths of the molecules are different.

Figure 1a,b show the molecular elliptical diagrams of 3C16 and 3C17, respectively,
indicating that they are typical amphiphilic molecules. The head hydrophilic polar groups,
carboxylate ions and ammonium ions, and the hydrophobic non-polar hydrocarbon chains
at the tail are folded. The unit cell diagrams of 3C16 and 3C17 are shown in Figure 2a,b,
respectively. It can be seen from the cell diagrams that their spatial arrangement is the
same. Hydrophilic groups of both compounds are located inside the cell [41]. This can
also be seen from the 2D space stacking diagrams in Figure 3 and the 3D space-filling
diagram in Figure 4. Strong hydrogen bonding plays an important role in the orderly
arrangement of the two molecules in space. Hydrogen bonds in Figure 2a, where amines
act as donors and carboxylates act as receptors, include N1-H1A...O3, N1-H1B...O1, N1-
H1C...O4, N2-H2C...O1, N2-H2D...O2, and N2-H2E...O2. Hydrogen bonds where H2O
acts as donors and carboxylates act as receptors include O5-H5C...O2, O5-H5D...O3, and
O6-H6D...O3, and the hydrogen bond where H2O acts as donors and acceptors are O6-
H6C...O5. In Figure 2b, hydrogen bonds in which amines serve as donors and carboxylates
serve as receptors include N1-H1A...O3, N1-H1B...O2, N1-H1C...O4, N2-H2C...O2, and
N2-H2D...O1. Hydrogen bonds in which H2O acts as donors and carboxylates act as
receptors include O5-H5C...O1, O5-H5D...O3, and O6-H6C...O3, and the hydrogen bond
in which H2O acts as both donor and acceptor are O6-H6D...O5. It can be seen that H2O
molecules play an important role in stabilizing the framework of the title compounds. The
bond lengths and angles of 3C16 and 3C17 are listed in Tables 2 and 3, respectively, and
the hydrogen bond data are listed in Tables 4 and 5. The 3D space-filling diagrams of
3C16 and 3C17 are shown in Figure 4a,b, respectively. Hydrogen bonding results in the
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formation of two-dimensional networks of both compounds, which have interpenetrating
layers of organic and inorganic components similar to the layered “sandwich” structure
found in perovskite.

Table 1. Crystal data and structure refinement for 3C16 and 3C17.

Empirical Formula C35H78N2O6 C37H82N2O6

Formula weight 622.99 651.04
Temperature/K 273.15 273(2)
Crystal system triclinic triclinic

Space group P-1 P-1
a/Å 6.6497(8) 6.6942(13)
b/Å 8.4340(9) 8.4899(17)
c/Å 35.221(4) 37.083(7)
α/◦ 90.747(2) 92.15(3)
β/◦ 90.748(2) 93.65(3)
γ/◦ 96.969(3) 97.04(3)

Volume/Å3 1960.4(4) 2085.2(7)
Z 2 2

ρcalc g/cm3 1.055 1.037
µ/mm−1 0.07 0.068

F(000) 700 732
Crystal size/mm3 0.44 × 0.18 × 0.07 0.12 × 0.11 × 0.1

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073)
2θ range for data collection/◦ 4.626 to 48.998 5.984 to 55.108

Index ranges −7 ≤ h ≤ 7, −9 ≤ k ≤ 9, −35 ≤ l ≤ 41 −8 ≤ h ≤ 8, −11 ≤ k ≤ 11, −48 ≤ l ≤ 48
Reflections collected 19,122 44,383

Independent reflections 6446 (Rint = 0.0382, Rsigma = 0.0711) 9598 (Rint = 0.1409, Rsigma = 0.1786)
Data/restraints/parameters 6446/0/392 9598/0/410

Goodness-of-fit on F2 1.12 0.991
Final R indexes [I ≤ 2σ (I)] R1 = 0.1128, wR2 = 0.2502 R1 = 0.0829, wR2 = 0.1593
Final R indexes (all data) R1 = 0.1765, wR2 = 0.2793 R1 = 0.2541, wR2 = 0.2113

∆ρmax/∆ρmin, e/Å3 0.21/−0.30 0.25/−0.19

Table 2. Bond lengths (Å) and angles (◦) for 3C16.

Atoms
Bond Lengths (Å)

Atoms
Bond Angles (◦)

SCXRD DFT SCXRD DFT

C1–C2 1.505(8) 1.5047 O1–C1–C2 116.2(5) 116.18
C1–O1 1.237(6) 1.2369 O1–C1–O2 124.5(5) 124.53
C1–O2 1.243(7) 1.2428 O2–C1–C2 119.3(5) 119.29
C2–C3 1.478(9) 1.4772 C3–C2–C1 117.3(6) 117.36
C3–C4 1.500(8) 1.5001 C2–C3–C4 115.4(6) 115.39
C4–C5 1.503(8) 1.503 C3–C4–C5 113.8(6) 113.77
C5–C6 1.494(8) 1.4941 C6–C5–C4 115.1(6) 115.06
C6–C7 1.496(9) 1.4965 C5–C6–C7 114.6(6) 114.58
C7–C8 1.495(8) 1.495 C8–C7–C6 114.9(6) 114.95
C8–C9 1.494(9) 1.4941 C9–C8–C7 115.2(6) 115.19

C9–C10 1.502(8) 1.5023 C8–C9–C10 115.4(6) 115.45
C10–C11 1.494(9) 1.4939 C11–C10–C9 114.2(6) 114.22
C11–C12 1.502(9) 1.5021 C10–C11–C12 115.0(6) 115.02
C12–C13 1.491(9) 1.4906 C13–C12–C11 114.5(6) 114.60
C13–C14 1.500(9) 1.4999 C12–C13–C14 115.4(7) 115.48
C14–C15 1.487(11) 1.4867 C15–C14–C13 113.8(7) 113.77
C15–C16 1.492(12) 1.4930 C14–C15–C16 114.9(9) 114.87
C17–C18 1.496(7) 1.4961 N2–C17–C18 113.5(4) 113.46
C17–N2 1.467(7) 1.4672 C17–C18–C19 109.6(4) 109.62



Int. J. Mol. Sci. 2023, 24, 5467 4 of 26

Table 2. Cont.

Atoms
Bond Lengths (Å)

Atoms
Bond Angles (◦)

SCXRD DFT SCXRD DFT

C18–C19 1.499(7) 1.4999 N1–C19–C18 111.4(4) 111.43
C19–N1 1.474(6) 1.4747 O3–C20–C21 120.1(5) 120.10
C20–C21 1.506(8) 1.5061 O4–C20–C21 116.0(6) 115.97
C20–O3 1.240(7) 1.2394 O4–C20–O3 124.0(6) 123.94
C20–O4 1.232(7) 1.2319 C22–C21–C20 118.2(5) 118.18
C21–C22 1.495(8) 1.4952 C21–C22–C23 112.2(5) 112.22
C22–C23 1.514(8) 1.5136 C24–C23–C22 114.1(5) 114.14
C23–C24 1.503(9) 1.503 C23–C24–C25 113.1(5) 113.03
C24–C25 1.503(8) 1.5028 C26–C25–C24 114.9(6) 114.91
C25–C26 1.491(9) 1.4908 C25–C26–C27 114.3(6) 114.31
C26–C27 1.508(8) 1.5079 C28–C27–C26 115.4(6) 115.45
C27–C28 1.497(9) 1.4968 C27–C28–C29 114.2(6) 114.18
C28–C29 1.503(9) 1.5025 C28–C29–C30 113.7(6) 113.70
C29–C30 1.503(9) 1.503 C31–C30–C29 114.3(6) 114.26
C30–C31 1.502(9) 1.5023 C32–C31–C30 114.1(7) 114.12
C31–C32 1.490(10) 1.4903 C31–C32–C33 115.5(7) 115.59
C32–C33 1.499(10) 1.4975 C34–C33–C32 113.8(8) 113.81
C33–C34 1.496(12) 1.4963 C35–C34–C33 116.8(10) 116.64
C34–C35 1.438(14) 1.4375

Table 3. Bond lengths (Å) and angles (◦) for 3C17.

Atoms
Bond Lengths (Å)

Atoms
Bond Angles (◦)

SCXRD DFT SCXRD DFT

C1–C2 1.510(3) 1.5105 O1–C1–C2 118.7(2) 118.74
C1–O1 1.256(3) 1.2563 O2–C1–C2 117.3(2) 117.32
C1–O2 1.248(3) 1.2484 O2–C1–O1 123.9(2) 123.93
C2–C3 1.480(3) 1.4794 C3–C2–C1 118.3(2) 118.28
C3–C4 1.508(3) 1.5080 C2–C3–C4 116.2(2) 116.21
C4–C5 1.501(3) 1.5013 C5–C4–C3 114.4(2) 114.41
C5–C6 1.506(3) 1.5058 C4–C5–C6 115.4(2) 115.44
C6–C7 1.503(3) 1.5031 C7–C6–C5 115.1(2) 115.13
C7–C8 1.512(3) 1.5121 C6–C7–C8 115.1(2) 115.15
C8–C9 1.501(3) 1.5003 C9–C8–C7 115.2(2) 115.22

C9–C10 1.505(3) 1.5046 C8–C9–C10 115.4(2) 115.39
C10–C11 1.507(3) 1.5067 C9–C10–C11 115.3(2) 115.26
C11–C12 1.514(3) 1.5144 C10–C11–C12 115.2(2) 115.24
C12–C13 1.508(3) 1.5075 C13–C12–C11 115.0(2) 115.02
C13–C14 1.510(3) 1.5105 C12–C13–C14 114.4(2) 114.38
C14–C15 1.503(4) 1.5028 C15–C14–C13 115.1(2) 115.12
C15–C16 1.501(4) 1.5006 C16–C15–C14 114.9(3) 114.87
C16–C17 1.511(4) 1.5111 C15–C16–C17 115.1(3) 115.06
C18–C19 1.508(3) 1.5083 N2–C18–C19 113.12(18) 113.1170
C18–N2 1.481(3) 1.4818 C18–C19–C20 109.45(18) 109.4540
C19–C20 1.517(3) 1.5171 N1–C20–C19 111.81(17) 111.8120
C20–N1 1.477(3) 1.4770 O3–C21–C22 119.2(2) 119.14
C21–C22 1.511(3) 1.5111 O4–C21–C22 116.4(2) 116.40
C21–O3 1.256(3) 1.2557 O4–C21–O3 124.5(2) 124.47
C21–O4 1.235(3) 1.2342 C23–C22–C21 118.9(2) 118.93
C22–C23 1.505(3) 1.5056 C22–C23–C24 113.5(2) 113.53
C23–C24 1.515(3) 1.5149 C25–C24–C23 115.5(2) 115.53
C24–C25 1.500(3) 1.5001 C24–C25–C26 114.1(2) 114.08
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Table 3. Cont.

Atoms
Bond Lengths (Å)

Atoms
Bond Angles (◦)

SCXRD DFT SCXRD DFT

C25–C26 1.509(3) 1.5091 C27–C26–C25 115.8(2) 115.79
C26–C27 1.505(3) 1.5044 C26–C27–C28 115.1(2) 115.11
C27–C28 1.506(3) 1.5064 C27–C28–C29 115.7(2) 115.75
C28–C29 1.507(3) 1.507 C28–C29–C30 115.2(2) 115.18
C29–C30 1.508(3) 1.5083 C31–C30–C29 115.2(2) 115.15
C30–C31 1.503(3) 1.5033 C30–C31–C32 115.0(2) 114.99
C31–C32 1.512(3) 1.5115 C33–C32–C31 115.0(2) 115.04
C32–C33 1.507(3) 1.507 C34–C33–C32 114.9(2) 114.95
C33–C34 1.505(3) 1.5049 C33–C34–C35 115.7(3) 115.77
C34–C35 1.506(4) 1.5059 C36–C35–C34 115.2(3) 115.14
C35–C36 1.488(4) 1.4881 C37–C36–C35 116.8(3) 116.80
C36–C37 1.481(4) 1.4814

Table 4. Hydrogen Bonds for 3C16.

D-H...A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/◦

N1-H1A...O3 i 0.89 1.89 2.756(7) 162.8
N1-H1B...O1 ii 0.89 1.91 2.797(6) 175.4
N1-H1C...O4 iii 0.89 1.8 2.687(7) 172.2
N2-H2C...O1 iii 0.89 1.93 2.811(6) 172.8
N2-H2D...O2 iv 0.89 1.91 2.800(6) 174.2
N2-H2E...O2 i 0.89 2.13 2.976(6) 157.8
O5-H5C...O2 v 0.85 1.91 2.745(6) 168.1
O5-H5D...O3 v 0.85 1.99 2.798(5) 158.5
O6-H6C...O5 0.85 2.06 2.863 157.2

O6-H6D...O3 i 0.85 2.07 2.867(6) 156.4
i: −x, 1 − y, 1 − z; ii: −1 − x, −y, 1 − z; iii: −1 − x, 1 − y, 1 − z; iv: 1 + x, 1 + y, +z; v: 1 + x, +y, +z.

Table 5. Hydrogen bonds for 3C17.

D-H...A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/◦

N1-H1A...O3 i 0.89 1.91 2.773(3) 161.5
N1-H1B...O2 ii 0.89 1.92 2.806(2) 175.9
N1-H1C...O4 iii 0.89 1.82 2.705(3) 174.6
N2-H2C...O2 iii 0.89 1.94 2.824(3) 170.3
N2-H2D...O1 iv 0.89 1.93 2.813(2) 169.2
O5-H5C...O1 v 0.85 1.93 2.773(2) 172.4
O5-H5D...O3 v 0.85 1.99 2.823(2) 166.4
O6-H6C...O3 v 0.85 2.05 2.891(3) 168.5
O6-H6D...O5 vi 0.85 2.09 2.872(3) 152.6

i: −x, 1 − y, 1 − z; ii: −1 − x, −y, 1 − z; iii: −1 − x, 1 − y, 1 − z; iv: 1 + x, 1 + y, +z; v: 1 + x, +y, +z; vi: 1 − x, 1 − y,
1 − z.
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2.2. Hirshfeld Surface Analysis

Upon inputting the CIF files, CrystalExplorer 17.5 software was used to generate the
Hirshfeld surface and 2D fingerprint plot of the title complexes. de and di, indicated in
the 2D fingerprint plot, refer to the length between the Hirshfeld surface and outermost
distance of the closest atom, and the shortest distance between the surface and innermost
distance of the closest atom, respectively. dnorm is a normalized contact distance derived
from de and di.

Figures 5 and 6 illustrate how an analysis of the 2D fingerprint plots can be employed to
detect patterns corresponding to distinct interactions (H...H, H...O, etc.). Figure 5 suggests
that compound 3C16 possesses a close H...H interaction (79.4%), as well as H...O (8.8%) and
O...H (10.6%) interactions. Similarly, Figure 6 reveals that compound 3C17 is characterized
by a close H...H bond (80%), as well as H...O (8.5%) and O...H (10.3%) interactions. The
2D fingerprints of both molecules also point to the fact that the hydrogen bond donor
around the carboxyl group is situated beyond the Hirshfeld surface, whereas the hydrogen
bond receptor in the vicinity of the carboxyl group is located within the Hirshfeld surface.
As a result of the H...O and O...H interactions, both compounds are featured by distinct
red-spotted areas on the Hirshfeld surface of the title compounds, consistent with the data
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presented in Tables 4 and 5. Intermolecular interactions of the two molecules are mainly
impacted by the O-H...O and O-H...O hydrogen bonds.
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The mechanical strength of a single crystal is related to the spatial crystal packing.
Single crystals with large cavities show a limited capacity for withstanding external forces,
whereas those without large cavities exhibit a notable ability to bear considerable forces or
stresses [46,47]. We carried out the void analysis on 3C16 and 3C17 crystals, which is based
on adding up the atomic electron density by using the Hartree–Fock theory. It is assumed
that all the atoms are spherically symmetric while calculating voids. Refer to Table S1
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and Figure 7 for detailed void parameters. When the electron density isosurface value is
0.002 au, the void volumes of 3C16 and 3C17 are 214.46 Å3 and 248.87 Å3, respectively.
The volume of voids in 3C16 and 3C17 accounts for 10.94% and 11.93% of the total volume,
respectively. Since the space occupied by the voids in the two compounds is very small,
there is no large cavity in the crystal packing of 3C16 and 3C17. We can speculate that 3C16
and 3C17 have good mechanical properties.
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The ability of a pair of chemical species (X, Y) to form crystal packing interactions
is determined by computing the enrichment ratio. The enrichment ratio is calculated by
dividing the proportion of the actual contacts by the theoretical proportion of the random
contacts [48–50]. For a particular crystal, some contacts are more favorable to forming
crystal packing interactions than other contacts. The enrichment ratio for a contact provides
the tendency of it to form crystal packing interactions. The contacts with an enrichment
ratio greater than one have a higher tendency to form crystal packing interactions as
compared to other contacts. Tables S2 and S3 list the enrichment ratios of all possible
chemical pairs of 3C16 and C17. From Table S2, it can be seen that the enrichment ratios
of C-H contact, O-H contact, and H-H contact in the 3C16 molecule are 0.83, 1.19, and
0.97. From Table S3, it can be seen that the enrichment ratios of C-H contact, O-H contact,



Int. J. Mol. Sci. 2023, 24, 5467 13 of 26

and H-H contact in the 3C17 molecule are 0.89, 1.18, and 0.97. It can be seen that the O-H
contact in the two molecules is beneficial.

2.3. Energy Frameworks

The construction of an energy framework provides three-dimensional visualization of
the supramolecular assembly within crystal molecules. The energy of molecular interactions
is typically represented by four distinct components: electrostatics, polarization, dispersion,
and exchange repulsion, expressed as Etot = keleEele + kpolEpol + kdisEdis + krepErep [51].
Using the CrystalExplorer 17.5 software, the energy framework was calculated using the
HF method with 3–21G basis set. The energy for molecular interactions was computed using
the intermolecular potential method. Three types of intermolecular interaction energies
were involved in the energy calculation: electrostatic energy, dispersion energy, and total
energy. An energy frame of 2 × 1 × 1 size clusters was generated to calculate the energy.
For compounds 3C16 and 3C17, the intermolecular interaction energy frame diagrams
along the a, b, and c directions are shown in Figures 8 and 9, respectively. The numerical
values of the intermolecular interaction energies involved in the energy calculation are
listed in Tables 5 and 6.
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Figure 8. The diagrams of the interaction energies: Coulomb energy, dispersion energy, and total
energy of 3C16 molecule along the a, b, and c axes.

The ratio factors of energy computed using the HF/3–21G basis set were found to be
kele = 1.019, kpol = 0.651, kdis = 0.901, and krep = 0.811 [52]. Calculations on the data from
Tables 5 and 6 yielded the intermolecular energies for the title compounds; 3C16 had electro-
static, polarization, dispersion, and exchange repulsion energies of 3.5 kJ/mol, −7.4 kJ/mol,
−195.5 kJ/mol, and 63.3 kJ/mol, respectively, and 3C17 had electrostatic, polarization,
dispersion, and exchange repulsion energies of 4.7 kJ/mol, −7.4 kJ/mol, −196 kJ/mol, and
57 kJ/mol, respectively. The total energies were −126.3 kJ/mol and −130.4 kJ/mol for
3C16 and 3C17, respectively. It can be seen that dispersion energy dominates electrostatic
energy in both compounds. The size of the small cylinders in Figures 10 and 11 revealed the
strength of intermolecular energy and its correlation to molecular stacking. Note that those
weak intermolecular interactions below a certain threshold are omitted to avoid congestion.
The absence of cylinders in the energy framework along a particular direction does not
necessarily imply the absence of any stabilizing intermolecular interactions.
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Table 6. Interaction energies of the 3C16 molecular pairs involved in energy calculation in kJ/mol.
R is the distance between molecular centroids in Å, and N is the number of molecular pairs involved.

N Symop R E_ele E_pol E_dis E_rep E_tot

1 x, y, z 8.43 1.5 −0.1 −1.6 0 0

1 −x, −y, −z 18.75 0 −0.3 0 0 −0.2

1 −x, −y, −z 19.01 0 −0.0 0 0 −0.0

2 x, y, z 6.65 −0.6 −1.1 −31.1 10.6 −20.8

1 −x, −y, −z 17.29 0 −0.0 0 0 −0.0

1 x, y, z 13.3 0 −0.0 0 0 −0.0

1 −x, −y, −z 18.03 0 −0.0 0 0 −0.0

1 - 6.83 0 0 0 0 0

1 - 10.66 −0.6 −1.1 −31.1 10.6 −20.8

1 - 10.45 0 −0.0 0 0 −0.0

1 - 20.71 0 0 0 0 0

1 - 7.64 −0.6 −1.1 −31.1 10.6 −20.8

1 - 18.77 0 −0.0 0 0 −0.0

1 - 5.99 1 −0.1 −1.9 0 −0.8

1 - 20.25 0 −0.0 0 0 −0.0

1 - 11.86 0 −0.0 0 0 −0.0

1 - 20.21 0 −0.0 0 0 −0.0

1 - 12.63 1.5 −0.1 −1.6 0 0

1 - 11.37 0 −0.0 0 0 −0.0

1 - 10.78 0 0 0 0 0

1 - 8.96 0 0 0 0 0

1 x, y, z 10.09 1 −0.1 −1.9 0 −0.8

1 −x, −y, −z 17.41 0 −0.0 0 0 −0.0

1 −x, −y, −z 20.96 0 −0.0 0 0 −0.0

1 - 8.53 0 −0.0 0 0 −0.0

1 - 12.56 0 −0.0 0 0 −0.0

1 - 9.32 −0.6 −1.1 −31.1 10.6 −20.8

1 - 19.08 0 −0.0 0 0 −0.0

1 - 4.41 1.5 −0.1 −1.6 0 0

1 - 22.25 0 −0.0 0 0 −0.0

1 - 11.36 0.6 −0.0 −0.3 0 0.3

1 - 11.9 0 −0.0 0 0 −0.0

1 - 7.35 −0.6 −1.1 −31.1 10.6 −20.8

1 - 10.73 0 −0.0 0 0 −0.0

1 - 10.02 −0.6 −1.1 −31.1 10.6 −20.8

1 - 8.56 0 −0.0 0 0 −0.0
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2.4. Quantum Chemical Calculations
2.4.1. Molecular Geometry Optimization

The molecular geometry optimization and frequency calculations of the title com-
pounds were achieved through density functional theory (DFT) [53,54]. DFT is a widely
used technique for studying electronic structures in materials science. It is a tool for investi-
gating properties such as geometry optimization, infrared spectra, molecular orbitals, and
molecular surface electrostatic potentials.

Density functional theoretical (DFT) computations were performed with Gaussian 09
software [55] using the B3LYP/6–31G* basis set. Optimized geometries of the title com-
pounds were obtained and the comparison of the experimental structures to the molecular
optimized structures is shown in Figure 10, which demonstrates the good consistency be-
tween the bond lengths and bond angles for the title compounds. For 3C16, the correlation
coefficients are R2 = 0.99997 (bond length) and R2 = 0.99971 (bond angle), respectively.
For 3C17, the correlation coefficients are R2 = 0.99998 (bond length) and R2 = 0.99984
(bond angle), respectively. Tables 2 and 3 list the comparisons between the optimized
structural parameters, bond lengths, and bond angles for the experimental and calculated
results, respectively.

2.4.2. Frontier Molecular Orbitals

Frontier molecular orbitals (FMOs) play a crucial role in predicting the chemical reac-
tivity and stability of molecules [56–58]. FMOs refer to the collective term of a molecule’s
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO), the energy gap (i.e., the gap) between the HOMO and the LUMO reveals the
charge transfer of electrons. The gap defines the first excited state, reflecting the dynamical
stability and chemical reactivity of the molecule.
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Figure 11 shows the energy level diagram of the frontier molecular orbitals and
secondary orbitals for 3C16, where the HOMO and LUMO are both distributed in the
carboxyl and amido. The HOMO of the secondary orbitals is distributed in the carboxyl
group, indicating the nucleophilic region, and the LUMO is located in the amido group,
indicating the electrophilic region. Figure 12 shows the energy level diagrams of the frontier
molecular orbitals and secondary orbitals for 3C17, whose distribution of the HOMO and
the LUMO on the functional groups is the same as that of 3C16. The energy gap of the
front-line molecular orbitals for 3C16 is 0.2858 eV and the energy gap of the secondary
orbitals is 0.6803 eV. The energy gap of the front-line molecular orbitals for 3C17 is 0.2855 eV
and the energy gap of the secondary orbitals is 0.6966 eV.
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Through the analysis of frontier molecular orbitals, we can obtain various molecular
reactivity descriptors [51] to better understand the chemical properties of the title com-
pounds, where molecular electronegativity (χ) and chemical hardness (η) of the molecules
were calculated using the formula, χ = (I + A)/2, and η = (I − A)/2, where I is the ionization
energy, which is a measure of the electron giving the ability of the molecules, and A is the
electron affinity, which is a measure of the electron receiving ability of the molecules. In
numerical terms, I = −EHOMO, and A = −ELUMO. Chemical potential (µ) is opposite to
molecular electronegativity in numerical value, i.e., µ = −χ. The chemical flexibility (σ)
and electrophilicity index (ω) of the molecules were calculated using the formula, σ = 1/2η
and ω = χ2/2η. The calculated results of the reactivity descriptors of 3C16 and 3C17 are
listed in Tables 7 and 8.
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Table 7. Interaction energies of the 3C17 molecular pairs involved in energy calculation in kJ/mol.
R is the distance between molecular centroids in Å, and N is the number of molecular pairs involved.

N Symop R E_ele E_pol E_dis E_rep E_tot

1 x, y, z 8.49 1.5 −0.1 −1.7 0 −0.1

1 −x, −y, −z 20.08 0 −0.3 0 0 −0.2

1 −x, −y, −z 20.18 0 −0.0 0 0 −0.0

2 x, y, z 6.69 −0.4 −1.1 −31.1 9.5 −21.4

1 −x, −y, −z 18.24 0 −0.0 0 0 −0.0

1 x, y, z 13.39 0 −0.0 0 0 −0.0

1 −x, −y, −z 18.66 0 −0.0 0 0 −0.0

1 - 7.38 0 0 0 0 0

1 - 11.08 −0.4 −1.1 −31.1 9.5 −21.4

1 - 11.1 0 −0.0 0 0 −0.0

1 - 22.01 0 −0.0 0 0 −0.0

1 - 7.7 −0.4 −1.1 −31.1 9.5 −21.4

1 - 19.89 0 −0.0 0 0 −0.0

1 - 5.99 1 −0.1 −2.0 0 −0.9

1 - 21.16 0 −0.0 0 0 −0.0

1 - 13.39 0 −0.0 0 0 −0.0

1 - 19.91 0 −0.0 0 0 −0.0

1 - 11.91 0 −0.0 0 0 −0.0

1 - 20.85 0 −0.0 0 0 −0.0

1 - 13.34 1.5 −0.1 −1.7 0 −0.1

1 - 11.62 0 −0.0 0 0 −0.0

1 - 11.33 0 −0.0 0 0 −0.0

1 - 11.2 0 0 0 0 0

1 x, y, z 10.15 1 −0.1 −2.0 0 −0.9

1 −x, −y, −z 18.52 0 −0.0 0 0 −0.0

1 −x, −y, −z 21.28 0 −0.0 0 0 −0.0

1 - 8.69 0 −0.0 0 0 −0.0

1 - 12.73 0 −0.0 0 0 −0.0

1 - 9.4 −0.4 −1.1 −31.1 9.5 −21.4

1 - 4.42 1.5 −0.1 −1.7 0 −0.1

1 - 22.06 0 −0.0 0 0 −0.0

1 - 22.61 0 −0.0 0 0 −0.0

1 - 11.9 0.6 −0.0 −0.3 0 0.3

1 - 11.92 0 −0.0 0 0 −0.0

1 - 7.71 −0.4 −1.1 −31.1 9.5 −21.4

1 - 11.02 0 −0.0 0 0 −0.0

1 - 8.76 −0.4 −1.1 −31.1 9.5 −21.4

1 - 10.42 0 −0.0 0 0 −0.0
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Table 8. Calculation results of reactivity descriptors [51] of 3C16 and 3C17 molecules.

Descriptors 3C16, Values (eV) 3C17, Values (eV)

ELUMO −2.6476 −2.7088
EHOMO −2.9334 −2.9943

Energy gap (∆E) 0.2858 0.2855
Ionization energy (I) 2.9334 2.9943
Electron affinity (A) 2.6476 2.7088
Electronegativity (χ) 2.7905 2.8516

Chemical potential (µ) −2.7905 −2.8516
Global hardness (η) 0.1429 0.1428
Global softness (σ) 3.4990 3.5014

Electrophilicity index (ω) 27.2459 28.4821

2.4.3. Density of States

The density of states (DOS) is essentially the number of different states of molec-
ular orbitals under a certain energy level [59–61], and the corresponding DOS graph is
an important analytical tool. TDOS describes the entire system orbits, or with the help of
partial density of states (PDOS), contributes to each molecular orbital in the whole system.
The overlap population density of states (OPDOS) is useful in examining the interaction
between fragments, and its numerical value is positive for covalent bond orbitals and
negative for antibonding orbitals.

The DOS analysis of the two molecules was performed using the B3LYP density
functional method with 6–31G* basis set, and the plots were drawn by the Multiwfn program
package. Figure 13a,c depict the DOS of 3C16 and 3C17 drawn by the Hirshfeld method
and by different functional groups, respectively. Figure 13a shows that the functional
group contributing the most to the HOMO (−2.9334 eV) of 3C16 is carboxyl, followed by
amine. Figure 13c reveals that the functional group contributing the most to the HOMO
(−2.9943 eV) of 3C17 is carboxyl, followed by amine, which is consistent with the results of
Section 2.4.2. Figure 13b,d shows the DOS of 3C16 and 3C17 plotted according to different
angular momenta. Figure 13b,d indicate that the orbitals contributing the most to the
HOMO of 3C16 and 3C17 are p orbitals, followed by s orbitals. The analysis of OPDOS
results shows that the antibonding orbitals of the two compounds appear in approximately
the same position.

2.4.4. Molecular Electrostatic Potential

The molecular electrostatic potential (ESP) is a crucial concept in wavefunction analy-
sis [62–65], playing a key role in discussions of electrostatic interactions. ESP analysis helps
to identify reactive sites in molecules, which are determined by their electrostatic potential
values computed for uniformly distributed regions on a van der Waals surface. The molec-
ular electrostatic potential V(r) at each point r in the surrounding space is generated by the
electron and atomic nucleus of the molecule, V(r) = ZA/(RA − r) −

∫
ρ(r’)d r’/|(r − r’)|,

where ZA is the charge at radius RA on the atomic nucleus A, and ρ(r) is the electron density
of the molecule. The ESP map was drawn with a combination of Gaussian 09, Multiwfn
package, and VMD software [66], based on the B3LYP density functional method and
6–31G* basis set.

Figure 14a,b show the molecular surface electrostatic potentials of 3C16 and 3C17,
respectively. The red (positive) coloration area on the ESP map indicates the hydro-positive
sites, while the blue (negative) coloration area indicates the electro-positive sites. The
negative electro-positive sites of 3C16 mainly focus on carboxylic, with a minimum elec-
trostatic potential of −113.50 kcal/mol. The positive electro-positive sites of 3C16 are
dispersed around amine, with a maximum electrostatic potential of 110.44 kcal/mol. The
distribution of positive and negative electro-positive sites of 3C17 is the same as 3C16,
with a minimum electrostatic potential of −112.54 kcal/mol and a maximum electrostatic
potential of 110.82 kcal/mol. The detailed data of the electrostatic potential distribution
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of 3C16 and 3C17 are listed in Figure S1, and Tables S4 and S5. The large difference in
electrostatic potential between the two molecules can be used to predict that their active
sites can interact strongly with adjacent molecules. Figure 14c,d show the quantitative
distribution of the molecular surface electrostatic potential of 3C16 and 3C17. It can be seen
from the chart that the molecular surface electrostatic potential of these two molecules is
mainly focused between −20~20 kcal/mol. Most of them are near 0 kcal/mol, which is
powerful evidence of weak intermolecular and intramolecular interactions.
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(d) calculated total DOS and PDOS of different angular momentum of 3C17.
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3. Materials Methods
3.1. Sample Synthesis and Instruments

The reagents and solvents needed for synthesis were purchased from commercial
suppliers in China. The mixture of anhydrous ethanol and long-chain n-alkanoic acid
was placed in a magnetic stirrer. The mixture was stirred at room temperature until the
long-chain n-alkanoic acid was completely dissolved. It was necessary to ensure that the
mixed liquid in the dripping process was clear. Then the mixture was placed in the rotary
evaporator for rotary heating, and heating stopped when the mixture dropped to a certain
scale. It was stood at room temperature and then the crystal precipitation was awaited.
The collected products were recrystallized, and the crystals were collected for standby
after 3 times of recrystallization. The scheme of the synthesized compounds is shown in
Figure 15. Agilent GC 6890N was used for gas chromatography, Vario EL III was used for
element analysis, and XD-2700 was used for XRD.
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3.2. Basic Experimental Data

Hydrous 1,3-propanediamine dihexadecanoate (abbreviated as 3C16) and 1,3-
propanediamine diheptadecanoate (abbreviated as 3C17) were successfully synthe-
sized. Translucent colorless solid, yield: 3C16: 82% (214 mg); 3C17: 75% (192 mg). XRD
(Cu-Kα1 radiation, λ = 0.15406 nm): 3C16: (0 0 3), (1 0 4), (0 1 6), (1 0 7), (1 2 0), (1 2 2); 3C17:
(0 0 3), (1 0 4), (1 0 5), (1 0 6), (1 2 1), (1 2 2). The XRD diagrams are shown in Figure 16.
Elemental analysis calcd (%) for 3C16 (622.99): C, 67.19; N, 4.42; H, 12.75; O, 15.64; found:
C, 67.48; N, 4.50; H, 12.62; O, 15.40. Elemental analysis calcd (%) for 3C17 (651.04): C, 68.02;
N, 4.23; H, 12.84; O, 14.91; found: C, 68.26; N, 4.30; H, 12.70; O, 14.74. The oxygen atoms’
content was measured by indirect method.
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3.3. X-ray Crystallography

The crystals were glued to the fine glass fibers and then mounted on the Bruker Smart-
1000 CCD diffractometer with Mo-Kα radiation, λ = 0.71073 Å. The intensity data were
collected in the ϕ–ω scan mode at T = 273 K. The size of 3C16 is 0.44 × 0.18 × 0.07 mm3.
The size of 3C17 is 0.12 × 0.11 × 0.1 mm3. The structures of title compounds were solved by
the direct method and the differential Fourier synthesis, and all non-hydrogen atoms were
refined anisotropically on F2 by the full-matrix least-squares method. All calculations were
performed with the program package SHELXTL [67]. The program used in the building
structure was Diamond 3.2 software (Copyright© 1997–2009 by CRYSTAL IMPACT Dr. K.
Brandenburg & Dr. H. Putz GbR). We only needed to import the refined CIF into the
software for processing. The relevant atomic theories were hydrogenated and refined. The
hydrogen atoms were added theoretically, riding on the concerned atoms, and not refined.

The crystal data and structure refinement for the title compounds are summarized in
Table 1. We applied two compounds of 3C16 and 3C17 to the Cambridge crystal data center
(CCDC) with numbers 2238301 and 2238306.

3.4. CrystalExplorer

In Section 2.3, the CIF format files of title compounds were obtained by the program
package SHELXTL. By inputting the CIF files into relevant quantitative calculation software,
the weak interaction between complex molecules can be obtained. The graphics software
selected for quantum chemical calculation in this experiment was CrystalExplorer 17.5 [68].
CrystalExplorer 17.5 provides a new way of visualizing molecular crystals using the full
suite of Hirshfeld surface tools [69]. Hirshfeld surface is the isosurface with a weight
coefficient w(r) equal to 0.5. The average charge density of molecules inside the isosurface
should exceed the average charge density of all surrounding molecules (w(r) ≤ 0.5 within
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the isosurface, w(r) ≥ 0.5 outside the isosurface). This ratio is also approximately the ratio
of the charge density of real molecules to that of real crystals. Hirshfeld surface [69] is a new
definition of molecular surface. Hirshfeld surface analysis can achieve real and continuous
3D visualization, and 2D fingerprint is the two-dimensional representation of Hirshfeld
surface analysis.

3.5. Multiwfn

Multiwfn, fully known as multifunctional wave function analyzer, is a very powerful
wave function analysis program written by Chinese scientist Lu Tian [70], which can realize
almost all the most important wave function analysis methods in the field of quantum
chemistry. Multiwfn has the advantages of being easy to learn and use, efficient, flexible,
open source, and free. This program has users all over the world and has been used by
more than 1000 academic papers or books.

4. Conclusions

3C16 and 3C17 belong to the triclinic system with a space group P-1. It was discovered
that H2O plays a vital role in securing the molecular framework of the two molecules.
Hirshfeld surface analysis verified the presence of N-H...O intermolecular interaction with
the amine donor and O-H...O intermolecular interaction with the H2O donor in both of the
molecules. The 2D fingerprint indicated that the major contributions come from H...H (3C16
79.4%, and 3C17 80%) bonds. The void analysis showed that the mechanical properties of
the two molecules are strong. The enrichment analysis indicated that these two kinds of
intramolecular O-H contacts are powerful. A 3D energy framework construction revealed
that dispersion energy was predominant in the two molecules. DFT calculations indicated
that the experimental structural parameters are consistent with their theoretical counter-
parts. FMO analysis was used to determine the reactivity descriptors of the two molecules,
and the charge distributions on the ESP diagrams demonstrate the chemical reaction sites
of the two molecules.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24065467/s1. CCDC 2238301 and CCDC 2238306 contain the
supplementary crystallographic data for the title compounds. The data can be obtained free of charge
via http://www.ccdc.cam.ac.uk/deposit or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
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