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Abstract: Thermodynamics of liquid water in terms of a non-standard approach—the ion–molecular
model—is considered. Water is represented as a dense gas of neutral H2O molecules and single
charged H3O+ and OH− ions. The molecules and ions perform thermal collisional motion and
interconvert due to ion exchange. The energy-rich process—vibrations of an ion in a hydration shell
of molecular dipoles—well known to spectroscopists with its dielectric response at 180 cm−1 (5 THz),
is suggested to be key for water dynamics. Taking into account this ion–molecular oscillator, we
compose an equation of state of liquid water to obtain analytical expressions for the isochores and
heat capacity.
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1. Introduction

The molecular structure of liquid water, despite decades of scientific effort, remains
debatable. The current view is contradictory. On the one hand, in educational problems,
water is considered on a par with other liquids as an ensemble of free molecules [1]; on
the other hand, in the specialized literature, its properties are associated with a special
property—the presence of a network of hydrogen bonds. According to the second view,
all the richness of water properties is due to the dynamic processes in the structure of
hydrogen bonds—directed intermolecular interactions, their constant breaks and forma-
tions [2–4]. The study of the hydrogen-bond (HB) network is considered to be of strategical
importance: “What is the structure and dynamics of the network of hydrogen bonds in
water, which is responsible for its unique properties? This issue has been discussed for over
100 years and has not yet been resolved” [5]. HB-based data interpretation constitutes the
research mainstream.

In a series of articles, we developed a non-standard approach—the ion–molecular (IM)
model of liquid water—in which the HB concept is not used [6–9]. Instead, we suggest
that the H2O molecules are connected by Coulomb fields of short-lived H3O+ and OH−

ions. The idea of the ion–molecular cohesion of water is outside the mainstream, but is
physically clear and permits reliable comparison with experimental data. So far, we have
tested it in terms of electrodynamic and transport properties of liquid water [9]. In this
work, we analyze the IM model in the thermodynamic aspect—we compose the equation
of state to obtain analytical expressions for the isochores of liquid water and heat capacity.

Despite the vastness of the accumulated experimental and theoretical material, water,
surprisingly, is not a model object. A myriad of particular water-related problems are
considered in reviews and textbooks, but the typical results are scattered [10], conclusions
are not far-reaching, and they do not provide a holistic view of the microscopic liquid
water design [11]. As a result, a vague idea of an extremely complex structure of liquid
water is accepted. The popular belief is that “liquid water is regarded as consisting of both
of bound ordered regions of a regular lattice and regions, in which the water molecules
exhibit a hydrogen-bonded-type random array, which is interwoven by monomeric water,
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random holes, lattice vacancies, and cages” [11]. Due to the ambiguity and randomness of
the above structure, its uniform and consistent analysis appears to be a daunting challenge:
“It is well known that it is not possible to fit the overall water properties with a single set
of parameters. Otherwise, there would be no explanation for the vast number of water
models proposed in the literature” [12].

Presently, there is another water-related picture, more unambiguous and regularized—
the electrodynamic response of water in the form of broadband dielectric spectra (frequency
dependencies of the dielectric constant and/or conductivity). An experimental method for
obtaining such data is dielectric spectroscopy (DS) [13–16]. This method reveals the energy
behavior of matter particles in an unprecedentedly wide frequency range—10−5–1015 Hz,
including audio and radio frequencies, microwaves, and IR range. Typically, frequency
panoramas are filled with many spectral features suitable for reliable modeling [17].

For water, DS data has been the basis for speculations for many years [18–26]. Grad-
ually, interpretations of dielectric spectra have become more general, but the underling
HB concept has not changed. On this basis, inconsistencies accumulate, and the spectral
pattern remains ”puzzling” [25]. In turn, we considered the DS data to provide a real
chance to start with a clean slate. Somewhat surprisingly, the picture we constructed in this
way turned out to be radically different from the accepted one.

2. Results and Discussion
2.1. The IM Model of Liquid Water

The outline of our reasoning for the IM model is as follows. Figure 1 shows the
dielectric response of water in terms of conductivity. In Ref. [27], we described it analytically
by a set of strongly damped oscillators, arranged in a pyramid and interconnected. We
interpreted the IR active pyramid as a fingerprint of the oscillatory motion of nested charged
molecular structures.
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Figure 1. The model spectral pyramid of the dielectric response of liquid water (see also Figure 10
in Ref. [27]) superimposed on reference data obtained from Ref. [28]. Numbers 1–4 notate separate
spectral components. Letters are the common notations of the spectral bands (R1 is famous Debye
relaxation).
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In the application to the liquid water structure (Figure 2), the motion is a domino-like
chain of molecular processes—the oscillation of oxygen (O) inside the hydration shell (L1),
the deformation oscillation of the hydration shell (R2) and the deformation oscillation
of the ion cloud (R1). The left slopes of the oscillators in Figure 1 add up to the solid
absorption spectrum of water, and the right slopes demonstrate the motion chain genesis—
the intermolecular collisions in the region of 18 THz. The O–O collisions are accompanied
by the supramolecular O–O proton transfer, which is the initial, triggering mechanism of the
general coherent molecules motion. Peak L2 reflects the fastest reaction of the environment
to the O–O transfer—concerted librations of molecular dipoles.
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Figure 2. The 5-THz molecular oscillator in liquid water. 1—the vibrating H3O+ ion (see also Figure
12 in Ref. [27]); 2—the hydration shell; 3—the ion cloud; 4—librating H2O dipoles (black/grey
arrows); shown are the ion vibrations (green rattling) and arrows swinging (green double arrow).
Shadowed circles are H2O molecules; open circles are ions OH−; red and blue signs “+” and “− “
show the ion charges.

From the dynamics point of view, the L1 movement is the main energy container
while R2 and R1 are the space-time waves diverging from it. The two latter energies are
of a smaller order of magnitude and we will not take them into consideration further. We
consider the final IM model of liquid water to be a medium consisting of neutral dipole H2O
molecules plus singly charged H3O+ and OH− ions. The ions perform oscillatory collisional
motion inside the cage of center-symmetrically arranged polarized H2O molecules. The
molecular swarms thus formed make bipolar Brownian motion. Due to the fast proton
exchange, the molecular pattern changes rapidly but strictly systematically to permit
characterization of a system by averaged well-defined parameters.

2.2. The Basic Postulate

Our task is to evaluate the thermal energetics of the molecular structure shown in
Figure 2. We postulate the dense packing condition

Nl3 =
√

2, (1)

where N is the concentration (number density) of H2O molecules and l is the intermolecular
O–O distance. Thermodynamic parameters—energy E, pressure P and heat capacity C—are
expressed through N, l, and volume V by the interconnected relations:

NV =
M
m

, V =
M√
2m

l3, n =
Ni
N

, (2)
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where Ni is the concentration of ions H3O+ and OH−; M and m are masses of a sample
and of a single water molecule. The quantities M = 103 kg (N = 3.3·1028 m−3 for V = 1 m3),
m = 3.1·10−26 kg, q = 1.6·10−19 C—the elementary charge, p = 6.14·10−30 C·m—the dipole
moment of the H2O molecule, and ε0 = 8.85·10−12 F·m−1—the dielectric constant of vacuum
were used in calculations. Note that our working M = 103 kg is equivalent to 55.5 kmol
of particles.

To build the vibration energy of the molecular structure shown in Figure 2, we first
refer to our important finding reported in Ref. [9]. We discovered that the cohesion energy
of molecules in liquid water can be expressed by a simple formula for the electrostatic
ion–dipole interaction [29]:

Eqp =
qp

4πε0l2 . (3)

The energy in the form of Equation (3) multiplied by the concentration N taking into
account Equation (2) becomes

EVAP =
B

24/3 N5/3 =
B

24/3
M5/3

m5/3V5/3 = 2.42 · 109V−5/3, (4)

where B = qp/(2πε0) for compactness. EVAP is the energy of decomposition of water
into separate molecules, the energy of evaporation. Equation (4) is retained over a wide
temperature range, 273–630 K. What is important and convenient for us, due to the incom-
pressibility of water, is the fact that volume V practically does not depend on pressure
(see Figure 3a). This makes it possible to use a simple fitting temperature dependence
V(T) = 73 · (700− T)−1 + 0.82 m3 (hereafter, temperature expressed in Kelvin).
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Figure 3. (a) Water specific volume V (1 m3 at 300 K) and (b) evaporation energy EVAP vs. temperature.
Black points are reference data obtained from Ref. [30]. Solid lines are the fitted dependence V(T) in
(a) panel and the same V(T) recalculated into the dependence EVAP(T) in (b) panel by the electrostatic
formula (4).

The fitting work of the formula and calculations on Equation (4) are illustrated in
Figure 3. Notably, Figure 3a,b are converted into each other according to the school formula
without a single fitting intervention. It seems that we have the first, if not the only, non-
trivial, quantitative expression for the internal energy of a molecular system, notably such
important as water. We use simplified fitting formulas and the tactics of minimal fitting
intervention throughout our present work.

An exhaustive analytical and physically clear description of the energy EVAP makes it
possible to confidently rely on the virial theorem. This theorem states that for a system of
interacting particles in a state of dynamic equilibrium, in the case when all forces acting on
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the particles are internal with respect to the system and are inversely proportional to the
square of the distance (just our Equation (3)), the average kinetic energy of the particles is
equal to half the average value of the potential energy of the system of interacting particles,
taken with the opposite sign [31].

Based on the virial theorem, we can use the principle of equipartition of energy over
degrees of freedom, namely we can consider the energy (4) to be equally divided between
the kinetic energy of free molecules and the kinetic energy stored in oscillators (a kind
of potential energy). The second, oscillatory half, in turn, can be considered distributed
between the rapidly interconverted kinetic and potential energies of an oscillator. We
continue the topic of equipartition of energy in Section 2.6.

2.3. The 5-THz Molecular Oscillator

Equation (4) produces the binding energy per molecule 7.2·10−20 J. The new finding
of the present work is that the molecular oscillator shown in Figure 2 has the energy of the
same order of magnitude. In fact, in the harmonic approximation

EZ =
3
2

mω2
Zλ2, (5)

ωZ is the eigen circular frequency, λ—the amplitude and, as we set, κ = mω2
Z—the elasticity

coefficient. Index Z means Zelsmann’s oscillator studied in detail in Ref. [32] by the method
of dielectric spectroscopy. The temperature dependence of the frequency was established.
We employed it for our research in the form of the fitted curve νZ = (8.1− 0.0095 · T) · 1012

Hz to calculate κ = 102− 4 · T1/2 kg·s−2 (for reference, κ = 33 N·m−1 at room temperature).
The calculation stages are shown in Figure 4. First, we suggested that κ depends on T

in so far as depends on V, more precisely, on l ∼ V1/3. Then, we converted the temperature
dependence νZ(T) into the dependence νZ(V), to calculate the dependence κ(V) and then
κ(T) with further forced extrapolation to the critical point 647 K.
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extrapolation to the critical point 647 K.
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We set the oscillation amplitude λ to be the mean free path of molecules and ions. Ac-
cording to gas-kinetic consideration λ = 1/

(√
2Nσ

)
[33], where σ = πd2 is the scattering

cross section and d is the diameter of a molecule, 2.8 Å is for water [34]. For the full volume,
taking into account Equation (2), we obtain

EOSC = NiEZ =
3

4σ2 nκ
1
N

=
3

4σ2 nκ
m
M

V. (6)

The oscillator under discussion obviously has a cohesive property: it is formed by
molecular dipoles which are pulled together by a strong inhomogeneous central Coulomb
field (ion–dipole interaction).

2.4. Thermodynamic Outline

Now, let us introduce the oscillator energy into thermodynamics. We proceed from
what is very much present in textbooks and the specialized literature [1,35–40]. We consider
the internal energy of liquid to be the sum of kinetic energies of individual particles and
the interaction energy between particles. In an isochoric process, all heat contributes to
increasing the internal energy U.

The fundamentally important ratio is dU = (∂U/∂T)VdT + (∂U/∂V)TdV or dU =
CVdT + PidV, where CV = (∂U/∂T)V is the heat capacity and Pi = −(∂Ui/∂V)T is the
internal pressure. The latter, Pi, is a measure of cohesion forces in a substance determined
by energy interaction Ui between molecules. The mentioned parameters are linked by the
equation of state. They are varied. Integration provides U =

∫
CV(T)dT + Ui for energy

and P + Pi = T(∂P/∂T)V for pressure. Zero Pi reduces the equation of state to that for an
ideal gas, PV/T = const.

A famous van der Waals equation, the simplest and most physically clear, is P =
NkBT(V − b) − Pi, where Pi = a/V2 and the corresponding energy Ui = −a/V. The
coefficient a models the attractive interactions between molecules while the coefficient
b accounts for the total volume of the molecules. The parameter a does not depend on
temperature and van der Waals’s heat capacity does not depend on volume.

2.5. Isochores and Heat Capacity

In view of the above, Pi seems to us to be the value which can be substituted by
POSC = −(∂UOSC/∂V)T to incorporate the oscillator into thermodynamics. In this case,
both CV and Pi depend on both V and T, but we consider the relationship V(T) to be known
(see Section 2.2). Then, our equation of state, by analogy with van der Waals equation and
taking into account Equation (6), can be written as

P =
3
2

NkBT − Pi ⇒
3
2

1
V(T)− b

M
m

kBT − POSC(V, T). (7)

How does it relate to reality? We clarified this issue by calculating on Equation (7) the
water isochores obtained from the database [30]. For V-values as parameters in the range of
1–5 (i.e., for temperatures of 300–700 K), we selected b and POSC(V) to fit the experiment. We
determined the predictions of Equation (7) to be satisfactory at a constant b = 0.68± 0.02 m3

(or 0.0123 m3·kmol−1) when changing POSC(V) according to the law POSC(V) = 800/V1.4

MPa or, in terms of temperature, POSC(T) = 800/[73(700− T) + 0.82]1.4 MPa. The quality
of the fit is illustrated in Figure 5.
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770 m−3). Reference points are taken from Ref. [30].

Integration of Equation (7) over V leads to the equation of state for energy:

U =
∫

PdV =
3
2

M
m

kBT[ln(V(T)− b) + c] + EOSC(V, T), (8)

where c is the constant of integration. This equation is a nodal one. By inverse differentiation
with respect to V, we would obtain the pressure, but with differentiation with respect to T
we obtain the heat capacity:

CV =
3
2

M
m

kB
∂{T · [ln(V(T)− b) + c]}

∂T
+ POSC

(
∂V
∂T

)
U

. (9)

The only fitting parameter c = −4± 0.5 turns out to be sufficient. It provides, together
with the previously determined b = 0.68 m3 and the dependence POSC(T), good agreement
with reference CV(T), as shown in Figure 6.
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To reiterate, we used the parameters of the electrodynamic 5-THz oscillator to postulate
the thermodynamic van der Waals-like equation of state and, with its help, consistently
evaluate the isochoric pattern and the heat capacity of liquid water. The calculated data
fitted satisfactorily with reference data.

2.6. The Ion Concentration

The grain of our consideration is the quantity nκ, which enters into the energy EOSC (6).
It contains information about the concentration of ions Ni = nN which are fundamentally
inherent in our IM model. To evaluate n, we considered EOSC to be the maximal potential
energy of an oscillator and, at same time, of the part of the total potential energy EVAP.
Then, the energy EOSC(T) as an integral of the dependence POSC = −(∂UOSC/∂V)T can be
compared with EVAP(T). Figure 7 clearly shows the dependence EOSC(T) to be a quarter of
EVAP(T).
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The result is consistent with that dictated by the equipartition principle, discussed
earlier in Section 2.2. Namely, according to the equipartition principle, the total energy is
distributed between the molecular and oscillatory systems, while the latter divides its en-
ergy in twain between kinetic and potential energies. Then, we postulate EOSC = 1/4EVAP
and, taking into account Equations (4) and (6), we obtain the formula

nκ =
Bσ2

3 · 24/3 N8/3 =
Bσ2

3 · 24/3

(
M
m

)8/3
V−8/3. (10)

Given the above settled dependence κ(T) (see Section 2.3), we calculate n(T) and
then—Ni = nN. The result is shown in Figure 8. Strikingly, the ion concentration is
quite a bit, about an order of magnitude, inferior to the concentration N0 − Ni of neutral
H2O molecules.
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2.7. The Ion Concentration Issue

In our IM model, thermodynamics is determined by the ion concentration Ni as well
as the specific elasticity κNi/N by its value and temperature behaviour on the PVT surface.
The parameters n and κ are new ones, which do not exist in common HB models.

Now, we proceed on the basis that the IM model successfully describes the reference
data in Figures 5 and 6 and predicts the ion concentration shown in Figure 8. By this we
assume the adequacy of the model, which is necessary for the performed fittings to be
meaningful. As can be seen, the IM model produces a very high concentration of ions Ni in
water (higher than the level 2·1027 m−3 in Figure 8), the one that we invariably obtained in
our previous works [6–9]. Thus, the success of the IM model once again appears to be due
to the high concentration of ions in liquid water Ni, which performs a cohesive function
and determines the thermodynamic properties of water. Notably, this high concentration Ni
is the constant basic objection to the IM model. A typical objection is “the model, however,
requires a hydronium ion concentration by seven orders of magnitude higher than the
actual concentration [H3O+] = 10–7 mol/dm3 and appears thus implausible” [41]. Here, let
us pay attention to the fact that the “actual concentration” Ni = 10–7 mol/L was adopted
conventionally based on the results of many disparate measurements (conductometric and
chemical), which were interpreted using a whole set of assumptions. The main assumption
was that there are few H3O+ and OH− ions in liquid water and they do not interact with
each other [42]. Then, under conditions of high ion mobility originating from chemical
experiments, the low static conductivity of water is naturally interpreted as evidence of
low ion concentration.

In our IM model, the molecular dynamic is different—particles interact strongly
and complexly; on a picosecond time scale, they are mutually interconverted. Charged
particles—oxygen atoms with access proton (or hole)—mobilize swarms of dipole H2O
molecules around themselves (marked by arrows in Figure 2). Additionally, there is an
electrophoretic effect due to the interaction of an ion with the surrounding counterions
(interaction of “+” with a few “−”). During thermal collisions, the charge transfer occurs
(the O–O proton/hole transit) resulting in the rearrangement of the environment in a new
equilibrium state. In Figure 2, this is displayed as a charge “+” jump to the neighboring
molecule (with an arrow) and the subsequent relaxation of the environment (molecular
swarm) until the pattern is completely restored in a new equilibrium state (having been
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shifted by one random intermolecular step). Random O–O proton jumps and rearrange-
ments of the swarms constitute the steps of the chaotic swarm wandering, i.e., the motion
of an oscillator with the Brownian mobile centrum.

We note, although our Equation (7) is structurally close to the van der Waals equation, it
is built according to a completely different arguments, suggesting a high ionic concentration.
Interestingly, the van der Waals equation also leaves room for such an idea: “In a liquid,
van der Waals’ “a/V2” takes charge: the molecules are tied by attractive forces in a semi-
organized, mobile, crowd; there must be some local order among neighbors, but not the
permanent seating of a solid crystal” [43].

3. Materials and Methods
3.1. General Strategy

In this work, we searched for the possibility of describing thermodynamic properties
of liquid water by a simple and physically clear methods. We used as an experimental data
to be predicted the data taken from databases [28,30]. Simple basic analytical relations of
classical electro- and thermodynamics were used for the modeling [13,37].

Commonly, models of new materials are expected to predict new properties. In the case
of water, the situation is special—water’s properties have already been studied thoroughly
and they are known in great detail. This reduces the chance of a new discovery but provides
a basis for exhaustive validation of the model. Following this tactic, we seek agreement
of model calculations with the rich body of reference data accessible in the literature. The
space for fitting is huge. The situation is dynamic; there are many branching points in
logical constructions. The success of the model is in the maximum grasp of everything
known. At the first stage, we chose isochores and the heat capacity of liquid water as the
most convenient for fitting.

3.2. Resolution of the 180 cm−1 (5-THz) Peak Issue

The complex molecular motion which is invented by us to agree numerous microscopic
properties of water with the electrodynamic response of water shown in Figure 1 (see.
Ref. [27] on this issue) demonstrates at the same time, a rather simple and physically clear
fact, namely the presence of a local energy-saturated oscillator in water which allows simple
parametrization. Thus, the known spectral peak at 180 cm−1 (5 THz) assumes a worthy
place in the problem of its application to thermodynamics.

It should be noted that 180 cm−1 peak is special in spectroscopy (infrared, Raman,
nuclear scattering). For many years, it presented an insoluble problem for the molecular
interpretation [44]. Many arguments have been proposed in favor of different models,
mainly focused around that, we quote, the 180 cm−1 peak is related to hindered longitudinal
translations of water molecules in the HB network with a distinct collective character [45],
that it arises from the molecular translation modes [46], that it is due to the stretching
vibrations of nearly linear hydrogen bonds, or due to cage vibrations or more exotic
hydrogen bond network relaxations [23], that it is due to the presence of water with a
tetrahedral hydrogen bond conformation [47], that it is due to a coupling between the
translational degrees of freedom of the water molecule and the electronic cloud [48].

Remarkably, generating the peak at approximately 180 cm−1 in the low-frequency
infrared spectrum for liquid water “is an intrinsic difficulty in modeling condensed-phase
water with conventional rigid non-polarizable water models” [49]. However, “even polar-
izable models fail in reproducing this feature” [48].

In terms of the IM model, the problem of the 180 cm−1 peak seems to be rather clear.
Against a background of endless discussions, the main feature of the 5-THz peak for us
is that it shows no H–D isotope effect [32]. Just a large mass of a charged species and the
specific temperature dependence of the frequency (Figure 4) distinguishes the spectrally
modest 5-THz peak (L1, Figure 1) as an energy-saturated oscillator. We can assume that all
water molecules vibrate within their environment, and those that are currently marked by
the presence of an excess or missing proton, that is, are charged, respond in the IR spectra.
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An oxygen atom with an odd number of protons is IR active. The 5-THz oscillation is
presented as a local resonant one, similar to those known in solid state physics (excitons,
polarons) [50]. The localization time (ion life), according to our data, is on the scale of
picoseconds [27].

3.3. Striving for Simplicity and Clarity

Our work is conducted in line with a long-overdue need—to seek “how water
molecules move in between each other and not always search for the determining struc-
ture” [51]. The IM model just assumes the sufficient free movement of molecules with
translational kinetic energy, which contributes to the acceptance of heat and its retention.
According to Feynman, “the problems of molecular motion are so complicated that even
an elementary understanding, although inaccurate and incomplete, is worthwhile having.
The real successes come to those who start from a physical point of view” [52].

With this approach, we attempted to consider the thermodynamics of liquid water
within the framework of an ion–molecular model inspired by the panoramic dielectric
spectra of water [27]. A specific effect taken from dielectric spectroscopy is introduced into
the model—an energy-enriched oscillator at 5 THz. It is assumed to be a vibration of a
singly charged H3O+ or OH− ion in a cage of dipole H2O molecules swarming around it.

The main result of the present work is a satisfactory description of a large body of
experimental data with the help of few fitting parameters. This is important because the
IM model is fundamentally different from all that are presented in the literature. While the
latter derive from the radial distribution function, static in essence, the IM model originates
from dynamic data on the electrodynamic response of liquid water. Initially, at a very
early stage, since the time of Röntgen, the radial distribution functions of water showed
the molecular water structure similar to that of polymorphous SiO2 [53]. Further spectral
measurements, up to present, are interpreted in the already accepted paradigm.

The modern water modeling develops predominantly through computer simula-
tion techniques with increasing attention to fine-tuning and quantum mechanical de-
tail [12,44,48]. We are more inclined towards the tactics of simplified analytical models, in
which “the chain of logic from the model premises to conclusions is so much more trans-
parent”, we share the opinion that “there is a need for computationally cheaper models of
water that can retain the relevant physics” [54].

4. Conclusions

We used the spectroscopic data as dynamic input to turn to the fundamental principles
and to find an alternative view on water structure. Namely, we addressed the similarity of
the electrodynamics of liquid water with the electrodynamics of electrolytes to develop a
new ion–molecular concept. Although the model is microscopically complex, it is physi-
cally quite clear. This made it possible to use averaged values to form proper postulates and
connect the 5 THz electrodynamic feature with general thermodynamics. The good agree-
ment between the calculated isochores of water and heat capacity is a valuable argument
in favor of the IM model and stimulus for its further development.
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