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Abstract: Cancer biologists have focused on studying cancer stem cells (CSCs) because of their ability
to self-renew and recapitulate tumor heterogeneity, which increases their resistance to chemotherapy
and is associated with cancer relapse. Here, we used two approaches to isolate CSCs: the first
involved the metabolic enzyme aldehyde dehydrogenase ALDH, and the second involved the three
cell surface markers CD44, CD117, and CD133. ALDH cells showed a higher zinc finger E-box
binding homeobox 1 (ZEB1) microRNA (miRNA) expression than CD44/CD117/133 triple-positive
cells, which overexpressed miRNA 200c-3p: a well-known microRNA ZEB1 inhibitor. We found that
ZEB1 inhibition was driven by miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p
and that the FaDu Cell Line inhibition occurred at the mRNA level, whereas HN13 did not affect
mRNA expression but decreased protein levels. Furthermore, we demonstrated the ability of the
ZEB1 inhibitor miRNAs to modulate CSC-related genes, such as TrkB, ALDH, NANOG, and HIF1A,
using transfection technology. We showed that ALDH was upregulated upon ZEB1-suppressed
miRNA transfection (Mann–Whitney ** p101 = 0.009, t-test ** p139 = 0.009, t-test ** p144 = 0.002,
and t-test *** p199 = 0.0006). Overall, our study enabled an improved understanding of the role of
ZEB1-suppressed miRNAs in CSC biology.

Keywords: cancer stem cell; epithelial cell; mesenchymal transition; microRNA targeting; ZEB1

1. Introduction

Cancer stem cells (CSCs) are well-known for their ability to self-renew and recapitulate
the heterogeneity of primary tumors [1]. These cells are considered important targets
for future therapies; therefore, the identification of their genetic signatures is crucial.
Various genes, such as CD44, CD117, Prom-1 (also known as CD133) [2,3], ALDH [3–5], and
NANOG [6,7], are associated with cancer stemness. Nonetheless, a better understanding of
the heterogeneity of CSCs is required; therefore, we decided to use two approaches to sort
CSC-enriched populations: first, using ALDH, and second, using the triple-staining of the
cell surface markers CD44, CD117, and CD133 [8].

Another phenomenon that plays an important role in cancer biology is the epithelial-
to-mesenchymal transition (EMT), which might be associated with CSCs in some circum-
stances [9]. EMT is the process of acquiring mesenchymal morphology and plays a pivotal
role in cancer invasion and metastasis. Therefore, a good understanding of the potential
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of CSCs to undergo EMT is needed. From this standpoint, the zinc finger E-box binding
homeobox (ZEB) family is among the most prominent regulators of EMT [10], and un-
derstanding its regulation by microRNAs (miRNAs) is critical. miRNAs are small RNA
molecules that are capable of affecting processes that are fundamentally important for the
proper functioning of an organism. Regulation by miRNAs has been widely observed
in cancer studies with promising results for the prognosis, diagnosis, and treatment of
diseases and to improve the quality of life of patients [11,12]. The objective of this study
was to evaluate the expression of ZEB1 and its regulation by miRNAs and genes involved
in hypoxia and EMT, in addition to evaluating the potential of the two populations of
tumor stem cells: ALDH+ and CD44/CD117/133 triple-positive cells.

2. Results
2.1. Analysis of In Silico and Predicted miRNAs

In silico analysis was performed using the Perl script in miRTarBase to search for
miRNAs that regulate ZEB1. Three miRNAs were chosen for this analysis (miR-101-
3p, miR-144-3p, and miR-200c-3p). Two other miRNAs, miR-139-5p and miR199b-5p,
were selected from the literature, and in the bioinformatic softwares, mirDIP (microRNA
Data Integration Portal), DIANA Tools-MicroT-CDS, DIANA-TarBase databases [13], and
STRING v11.0 [14].

2.2. Analyzing ZEB1 Inhibition Using microRNAs Pre-Selected by Bioinformatic Tools

We first investigated the potential of miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-
5p, and miR-200c-3p to suppress ZEB1. FaDu cells showed downregulated ZEB1 mRNA ex-
pression upon transfection with miR-139-5p and miR-200c-3p mimics (Figure 1A; *, p = 0.02
and *, p = 0.01, respectively). In HN13 cells, miR-199b-5p upregulated ZEB1 expression
(Figure 1B, p = 0.02).

Moreover, the Western blot analysis of ZEB1 protein expression in HN13 cells showed
a striking reduction upon the overexpression of these miRNAs (Figure 1C).

Prediction analysis performed in DIANAmicroT-CDS also revealed the potential
regulation of NANOG and VEGF-A by miR-101-3p and miR-144-3p. HIF-1α, VEGF-A, and
NTRK2 were predicted to be regulated by miR-56 and miR-+199b-5p, while miR-200c-3p
was predicted to regulate the expression of ALDH1, HIF-1α, VEGF-A, and NTRK2. For
miR-139-5p, no regulatory predictions were made for the selected genes (Figure 2).

Interaction analysis between the proteins expressed by the above-mentioned genes
revealed that ZEB1 interacted directly with ALDH1, NANOG, HIF-1α, and VEGF-A and
indirectly with NTRK2 via VEGF-A (Figure 2).
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Figure 1. Based on bioinformatics analysis, we investigated five miRNAs as potential ZEB1 regula-
tors (miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p). (A) In the pharyngeal 
cancer cell line (FaDu), miR-139-5p and miR-200c-3p significantly downregulated ZEB1 mRNA; 
however, this was not observed for other miRNAs (t-test *, p = 0.02, *, p = 0.01, and ns, p > 0.05, 
respectively). (B) For the oral cancer cell line HN13, transfection with miR-199b-5p significantly up-
regulated ZEB1 mRNA expression, but transfection with other miRNAs showed no statistical sig-
nificance (t-test *, p = 0.02, and ns, p > 0.05, respectively). (C) HN13 transfected with miRNAs (miR-
101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p) and downregulated ZEB1 protein 
levels as observed by Western blot assay. 

Prediction analysis performed in DIANAmicroT-CDS also revealed the potential reg-
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Figure 1. Based on bioinformatics analysis, we investigated five miRNAs as potential ZEB1 regulators
(miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p). (A) In the pharyngeal cancer
cell line (FaDu), miR-139-5p and miR-200c-3p significantly downregulated ZEB1 mRNA; however,
this was not observed for other miRNAs (t-test *, p = 0.02, *, p = 0.01, and ns, p > 0.05, respectively).
(B) For the oral cancer cell line HN13, transfection with miR-199b-5p significantly upregulated ZEB1
mRNA expression, but transfection with other miRNAs showed no statistical significance (t-test
*, p = 0.02, and ns, p > 0.05, respectively). (C) HN13 transfected with miRNAs (miR-101-3p, miR-139-
5p, miR-144-3p, miR-199b-5p, and miR-200c-3p) and downregulated ZEB1 protein levels as observed
by Western blot assay.
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Figure 2. (A) DIANA-microT-CDS miRNA prediction analysis; considering the score greater than 
0.5 (B) Interaction between the proteins ZEB1, NANOG, ALDH1, VEGF-A, HIF-1α, and NTRK2. 

2.3. Expression of CSC-Related Genes upon Transfection with microRNA ZEB Regulators 
 While attempting to elucidate the association between EMT and CSCs, we investi-
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tors. We observed that miR-101-3p, 139-5p, and miR-144-3p increased TrkB mRNA ex-
pression (Figure 3A; p = 0.02, p = 0.01, and p = 0.004, respectively). Upon treatment with 
the miR-200c-3p mimic, the cells did not show a statistically significant difference in 
ALDH mRNA expression, whereas the other miRNAs upregulated its expression (Figure 
3B **, p101 = 0.009, **, p139 = 0.009, **, p144 = 0.002, and ***, p199 = 0.0006). Interestingly, miR-
144-3p and miR-199b-5p significantly upregulated NANOG mRNA (**, p = 0.002 and *, p 
= 0.02, respectively), whereas transfection with other miRNAs did not result in a statisti-
cally significant upregulation (Figure 3C). Hypoxia and its biomarker HIF-1α are associ-
ated with ALDH expression in CSCs [15,16]. Transfection with miR-144-3p upregulated 
the expression of HIF-1α, but no statistically significant differences were observed for the 
other miRNAs (Figure 3D *, p = 0.03). The present study sheds light on the complexity of 
the EMT process in CSCs. 

We further assessed the corresponding protein expression by Western blot analysis, 
which confirmed the mRNA expression results (Figure 3E). Altogether, our findings 
showed that ALDH-positive cells overexpressed ZEB1 and VEGF mRNAs, while 
CD44/CD117/CD133 triple-positive cells upregulated miR-200c-3p, which is capable of 

Figure 2. (A) DIANA-microT-CDS miRNA prediction analysis; considering the score greater than 0.5
(B) Interaction between the proteins ZEB1, NANOG, ALDH1, VEGF-A, HIF-1α, and NTRK2.

2.3. Expression of CSC-Related Genes upon Transfection with microRNA ZEB Regulators

While attempting to elucidate the association between EMT and CSCs, we investigated
stemness mRNA gene expression upon transfection with ZEB microRNA regulators. We
observed that miR-101-3p, 139-5p, and miR-144-3p increased TrkB mRNA expression
(Figure 3A; p = 0.02, p = 0.01, and p = 0.004, respectively). Upon treatment with the
miR-200c-3p mimic, the cells did not show a statistically significant difference in ALDH
mRNA expression, whereas the other miRNAs upregulated its expression (Figure 3B
**, p101 = 0.009, **, p139 = 0.009, **, p144 = 0.002, and ***, p199 = 0.0006). Interestingly, miR-144-
3p and miR-199b-5p significantly upregulated NANOG mRNA (**, p = 0.002 and *, p = 0.02,
respectively), whereas transfection with other miRNAs did not result in a statistically
significant upregulation (Figure 3C). Hypoxia and its biomarker HIF-1α are associated
with ALDH expression in CSCs [15,16]. Transfection with miR-144-3p upregulated the
expression of HIF-1α, but no statistically significant differences were observed for the other
miRNAs (Figure 3D *, p = 0.03). The present study sheds light on the complexity of the
EMT process in CSCs.
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1α mRNA levels are upregulated after transfection with miR-144-3p but shows no statistical signif-
icance for the other microRNAs (t-test *, p = 0.03). (E) Western blot results of mRNA expression 
findings. 

2.4. Isolation and Characterization of Different Head and Neck CSC Subpopulations 
The presence of CSCs could be associated with poor prognosis [17]. To further inves-

tigate the relationship between CSCs and EMT, we isolated two groups of well-known 
CSC types based on the signatures: (1) CD44/CD117/CD133 triple-marker positive cells 
and (2) ALDH-positive cell populations. Cells that did not present these markers were 
also isolated and, hereafter, are named the control groups (Figure 4A). This was conducted 
using a BD FACSAria II Cell Sorter and BD FACSMelody, which can sort populations of 
CD44/CD117/CD133 triple-marker positive and ALDH-positive populations from head 

Figure 3. ZEB 1 suppression by miRNAs maintains cancer stem cell properties. mRNA expression lev-
els of cancer stem cell-related genes (A–D). (A) Cells transfected with ZEB1 inhibitor miRNAs upreg-
ulate TrkB mRNA expression apart from miR-101-3p, miR-139-5p, and miR-144-3p (t-test *, p = 0.02,
*, p = 0.01, and **, p = 0.004, respectively). (B) miR-200c-3p does not affect ALDH mRNA expression
compared to the other miRNAs, which increase its expression (Mann–Whitney **, p101 = 0.009, t-test
**, p139 = 0.009, t-test ** p144 = 0.002, and t-test ***, p199 = 0.0006). (C) NANOG mRNA is significantly
upregulated after transfection with miR-144-3p and miR-199b-5p and shows no significant upregula-
tion for the other miRNAs (t-test **, p = 0.002, and *, p = 0.02, respectively). (D) HIF-1α mRNA levels
are upregulated after transfection with miR-144-3p but shows no statistical significance for the other
microRNAs (t-test *, p = 0.03). (E) Western blot results of mRNA expression findings.

We further assessed the corresponding protein expression by Western blot analy-
sis, which confirmed the mRNA expression results (Figure 3E). Altogether, our find-
ings showed that ALDH-positive cells overexpressed ZEB1 and VEGF mRNAs, while
CD44/CD117/CD133 triple-positive cells upregulated miR-200c-3p, which is capable of
inhibiting ZEB1 mRNA and proteins. Although these findings suggest interesting mecha-
nisms associated with CSCs and miRNAs targeting ZEB1 expression, further studies are
required to validate the ability of these cell populations to undergo EMT.

2.4. Isolation and Characterization of Different Head and Neck CSC Subpopulations

The presence of CSCs could be associated with poor prognosis [17]. To further inves-
tigate the relationship between CSCs and EMT, we isolated two groups of well-known
CSC types based on the signatures: (1) CD44/CD117/CD133 triple-marker positive cells
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and (2) ALDH-positive cell populations. Cells that did not present these markers were
also isolated and, hereafter, are named the control groups (Figure 4A). This was conducted
using a BD FACSAria II Cell Sorter and BD FACSMelody, which can sort populations of
CD44/CD117/CD133 triple-marker positive and ALDH-positive populations from head
and neck cancer cells from four cultured primary cells and four immortalized cell lines
(SSC28, FaDu, HN13, and HEP-2). Following the sorting, we decided to explore the prop-
erties of these populations endowed with stem-like potential. Thus, we cultivated each
of these populations on an ultra-low attachment plate for 5 d, as described by Almeida
et al. [18], and carried out migration and invasion assays. Overall, CD triple-marker pos-
itive and ALDH+ cells showed an enhanced potential to form spheroids, migrate, and
invade, although the ALDH+ cells formed larger spheroids than CD triple-marker positive
cells (Figure 4B,C), suggesting a greater stemness potential, as reported previously [18],
and greater capacity for invasion and migration (Figure 5). These results highlight the
central but not unique role of ALDH in CSC biology.
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Figure 4. Isolation of distinctive cancer stem cell behavior. (A) Schematic illustration of FACS isolation
of the two populations of stem cells from head and neck cancer cell lines and primary culture. DEAB
negative was the basis for gating ALDH+ cells. Meanwhile, the ALDH− and CD44−CD117−CD133−

cells were also sorted. (B) Isolated CDs+ and ALDH+ cells cultivated in ultra-low attachment
conditions showed an increased number of spheroids compared with the negative control groups.
Moreover, ALDH+ cells enhanced stemness potential by a different diameter in the head and neck
cancer cell line (FaDu ALDH+ and HEP2 CDs+ cells). (C) ALDH+ cells show an increased number
of spheroids compared to those arising from the primary cultures of head and neck squamous
cell carcinoma.
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Figure 5. (A) Microphotography of the cells submitted to the migration assay (200× magnification).
The isolated CD triple-marker positive and ALDH + cells showed a greater ability to migrate than
the negative control group. In addition, the ALDH+ group showed a greater ability to migrate
than the CDs+ group. (A,B) Microphotography of the cells subjected to the invasion assay (200×
magnification). Cells labeled positively in general showed greater invasiveness than the negative
control group, and a greater capacity for invasion was also observed in the ALDH+ group for the CD
triple-marker positive cells.

We found that the CD44/CD117/CD133 triple-positive population upregulated miR-
200c-3p and downregulated miR-199b-5p expression (Figure 6A; p = 0.004 and *, p = 0.03, re-
spectively). In the ALDH+ population, no significant differences were observed (Figure 6B,
ns, p > 0.05).

However, when comparing the properties of CSCs, we observed the downregulation
of ALDH mRNA in CD44/CD117/CD133 triple-marker positive cells compared to the
ALDH-positive population (Figure 6C *, p = 0.02). We observed no difference in NANOG
mRNA levels between ALDH+ and CD44/CD117/CD133 triple-positive cells (Figure 6C
ns, p > 0.05). In CD44, no statistically significant difference was observed, whereas PROM1
(also known as CD133) was upregulated in CD44/CD117/CD133 triple-positive cells
(Figure 6C, ns, p > 0.05; *, p = 0.02, respectively). Taken together, these findings indicate
that these subpopulations have different transcriptional profiles.

Notably, we observed an upregulation in ZEB1 and VEGF-A mRNA expression in
the ALDH+ population compared with that in CD44/CD117/CD133 triple-positive cells
(Figure 6D,E ****, p < 0.0001 and *, p = 0.02). The ZEB gene family is linked to the EMT
phenotype, which plays an important role in tumor progression and metastasis [19,20].
Therefore, our findings suggest that these two populations exhibit different behaviors,
although further experimental validation is required to confirm this hypothesis.
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Figure 6. (A) CD44/CD117/CD133 triple-positive cell overexpresses miR-200c-3p compared with
triple-negative cells (t-test **, p = 0.004) and downregulates miR-199b-5p (t-test *, p = 0.03). (B) We
observed no difference between ALDH+ and ALDH- populations for all miRNAs (p < 0.05). (C) Can-
cer stem cell-related gene expression in the ALDH+ cells (Mann–Whitney test *, p = 0.02) was not
statistically significant for NANOG (Mann–Whitney test ns, p > 0.05) and CD44 (t-test ns, p > 0.05),
and CD44/CD117/CD133 triple-positive cells showed an augmented expression of PROM1 (t-test
*, p = 0.03). The mRNA expression of the angiogenesis and EMT genes: (D,E) VEGF-A and ZEB1
increased in ALDH+ cells (t-test *, p = 0.02 and ****, p < 0.0001, respectively).

3. Discussion

Several miRNAs have already been described as possible regulators during the de-
velopment of head and neck squamous cell carcinomas, participating in cell regulation
processes such as differentiation, proliferation, apoptosis, and metastasis [21]. Metastasis is
directly linked to EMT, a dynamic and necessary process during embryonic development
that plays an important role in cancer progression by changing the adhesion capacity and
polarity of cells, which makes them invasive and migratory [22]. One important regulator
of EMT is ZEB1, which plays an essential role in intracellular regulation, differentiation, pro-
liferation, senescence, survival, and apoptosis. Its high expression is correlated with tumor
development, and it has been strongly linked with intratumoral plasticity, heterogeneity,
and resistance to treatment [23]; therefore, its depletion using miRNAs is a potent tool for
future therapies. In several cancers, only a subpopulation of CSCs exhibit characteristics
of EMT activation, which suggests that EMT in cancer cells has a strong connection with
tumor stem cells [9].
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Thus, our study identified new interactions involving EMT, ZEB1, and miRNAs
wherein miR-139-5p and miR-200c-3p negatively regulated ZEB1 mRNA levels in the
pharyngeal cancer cell line (FaDu) while miR-199b-5p upregulated them in the oral cancer
cell line (HN13). This regulation illustrates two possible mechanisms of action of miRNAs:
mRNA cleavage (e.g., FaDu) and translation repression would down-regulate protein
levels of Zeb1 in HN13 (e.g., HN13, Figure 1C) [11], which displays individual genetic
signatures for these cells. In contrast, the protein expression of ZEB1 in oral cancer cells
showed a marked reduction upon transfection with these miRNAs, which confirmed their
inhibitory capacity. As miRNAs may regulate more than one gene, we also observed
the upregulation of TrkB and ALDH mRNAs for miR-101-3p and miRNA-139-5p, while
miR-144-3p led to the upregulation of TrkB, ALDH, NANOG, and HIF-α mRNAs. miRNA-
199b-5p upregulated ALDH and NANOG mRNA. Interestingly, most of the mRNAs
suppressed by ZEB1 upregulated stem cell-related genes, such as TrKb, which, when
activated, morphologically modifies the cells [24] and is related to metastases in colorectal
and liver cancer [25], and NANOG, which upon activation expresses a phenotype similar to
that of CSC and is related to poor prognosis [26]. This further indicates that EMT status and
cancerous trunk association are more complex than expected. Furthermore, the miRNAs
did not affect HIF-1α expression, which is consistent with the well-known role of hypoxia
in stem cell maintenance [27] and the association between tumor hypoxia and CSCs, as
observed in breast and head and neck cancers [15,16]. These findings indicate the possible
mechanisms by which miRNAs interact with ZEB1 in the regulation of tumor stem cells.

In search of a better metric of the CSC potential, two CSC subpopulations were isolated
from cell lines and primary tumors, and through qualitative assays, the triple-positive
CD44/CD117/CD133 cells and ALDH+ cells presented larger spheroids in comparison
with their control cells, although the ALDH + cells showed the largest spheroids and also
displayed a greater capacity for migration and invasion when compared with their control
cells and with triple-positive cells, which suggests less differentiated levels of stem cells, as
reported in another study [18]. These results highlight the central, but not the exclusive,
role of ALDH in CSC biology.

Although the lack of experimental validation for EMT status and invasiveness is a
limitation of the present study, future studies addressing these points are warranted.

CD44+/CD117+/CD133+ cells deactivate EMT by downregulating ZEB1 while main-
taining their potential as CSCs by upregulating NANOG expression. These results are in
line with those of other studies showing that increased NANOG expression is character-
istic of stem cells, including embryonic stem cells. However, its role in the induction of
pluripotent stem cells is not necessary [28,29]. Triple-positive CD44/CD117/CD133 cells
showed downregulated ALDH expression, which sheds light on the hypothesis that CSCs
are more heterogeneous than expected and may show less differentiated levels of tumor in
the trunk region [17].

Most interestingly, our findings revealed that miRNAs have a distinct expression
profile in CSCs. In recent years, two subpopulations of CSCs: mesenchymal and epithe-
lial [30,31], have emerged. Here, a higher expression of miR-144-3p and miR-200c-3p in
CD44/CD117/CD133 triple-positive cells compared to that in the ALDH + population,
leading to a downregulated ZEB1 expression. In summary, it was also possible to identify a
downregulation in the expression of ALDH, CD44, and VEGF-A in these triple-positive
cells. This relationship could be explained by the regulatory mechanisms of miRNAs, which
confirm their role in tumor stem cell potential by migration, invasion, sphere formation,
and ZEB1 expression assays.

4. Materials and Methods

This study was approved by the Research Ethics Committee of the Medical School
of São José do Rio Preto (CAAE 60735316.9.0000.5415, document no. 1.814.438). Written
consent was obtained from all the patients enrolled in the study. The samples were collected
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only after obtaining free and informed consent from patients or legal guardians. Patients
who had undergone radiation and/or chemotherapy were excluded from the study.

4.1. Head and Neck Cancer Samples from Patients

Four fresh head and neck cancer samples were used in the primary cell culture study.
To establish primary cultures, histological head and neck squamous cell carcinoma (HN-
SCC) was obtained from surgical resection or biopsy in the Otorhinolaryngology Service
and Head and Neck Surgery, Base Hospital, São José do Rio Preto. Fresh tissue was stored
in a sterile container in a transport medium composed of Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma, San Louis, MO, USA) and 2% antibiotic/antimycotic (AB/AM)
(Invitrogen, Waltham, MA, USA) in a thermal box was transferred to the laboratory.

Upon arrival at the laboratory, HNSCC samples were immediately washed thrice
with phosphate-buffered saline supplemented with 2% AB/AM. For tissue digestion, the
samples were fragmented with scissors and forceps and subjected to enzymatic disinte-
gration using 2 mL of collagenase type I (100 U) (Gibco, Waltham, MA, USA), which were
then diluted in DMEM overnight at 37 ◦C. The cell suspension was transferred to a 15 mL
centrifuge tube containing 4 mL of DMEM culture medium supplemented with 10% fetal
bovine serum (FBS), 1% AB/AM, and 1% glutamine and was centrifuged at 1000 rpm
for 5 min. The supernatant was discarded, and the cell pellet was resuspended in the
culture medium. Table 1 shows the clinicopathological characteristics and tumor staging
of the four primary cultures from the patients included in this study. Data were obtained
retrospectively from medical records.

Table 1. Clinicopathological characteristics and tumor staging of samples from patients with HNSCC.

Samples Age Gender Smoking Alcohol Use Site TNM *

pHNC1 76 Male Yes No Oral cavity T2N0M0
pHNC2 61 Male Yes Yes Larynx T2N0M0
pHNC3 71 Male Yes No Larynx X
pHNC4 64 Male No No Larynx T1N1M0

* TNM = Tumor nodal metastasis [32].

4.2. Cell Sorting of Head and Neck CSCs

Head and neck stem-like cells were identified by cell sorting for the surface markers
CD44-phycoerythrin (PE) (BD Biosciences, San Jose, CA, USA) [33,34], CD117-fluorescein
isothiocyanate (FITC) (BD Biosciences, San Jose, CA, USA), CD133-allophycocyanin (APC)
(Miltenyi Biotec, Bergisch Gladbach, Germany) [2,35,36], and the intracellular marker
ALDH (aldehyde dehydrogenase) [37–39]. ALDH activity was detected using an Aldefluor
Kit (StemCell Technologies, Durham, NC, USA) according to the manufacturer’s instruc-
tions. Flow cytometry analysis was performed on FACSAria II (BD Biosciences, Mountain
View, CA, USA) and FACSMelody (BD Biosciences, Mountain View, CA, USA) equipment.
Table 2 summarizes all the markers used for immunophenotyping and cell sorting from
primary cultures and cell lines.

Table 2. Markers used for immunophenotyping and cell sorting.

Samples and Cell Lines Markers

pHNC1 CD44/CD117/CD133
pHNC2 CD44/CD117/CD133
HEp-2 CD44/CD117/CD133
HN13 CD44/CD117/CD133

pHNC3 ALDH
pHNC4 ALDH
FADu ALDH

SCC-28 ALDH
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4.3. Sphere Assay

CSCs can form spheres when cultured in an ultralow attachment plate [8]. To evaluate
the ability of the sorted cells to grow in suspension as spheres, subpopulations were
cultured in ultra-low attachment plates (Corning, New York, NY, USA) for 5 d [18].

4.4. Migration Test

Approximately 2.5 × 103 cells (positive and negative) suspended in 200 µL of DMEM
(Sigma, San Louis, MO, USA) were seeded in the insert on a polycarbonate filter membrane
with a pore size of 8 µm in a 24-well plate (BD BioCoat migration chamber, San Josè, CA,
USA). The bottom layer of the plate was supplemented with 10% FBS (Gibco, USA). The
cells were incubated for 12 h at 37 ◦C in a humidified incubator with 5% CO2.

Subsequently, the bottom of the filter membrane was fixed with 4% formaldehyde for
2 min and methanol for 20 min, stained with 5% Giemsa stain and photographed under an
inverted microscope at 200× magnification.

4.5. Invasion Test

Cells suspended in DMEM (positive and negative) were seeded at a density of
2.5 × 103 on inserts containing a Matrigel layer in 24-well plates (BD BioCoat Matrigel in-
vasion chamber, USA). The lower chambers of the plate were filled with DMEM containing
10% FBS (Gibco, USA). The cells were incubated for 12 h at 37 ◦C in a humidified incubator
with 5% CO2.

The invaded cells were fixed with 4% formaldehyde for 2 min and methanol for 20 min
and stained with 5% Giemsa. The cells on the upper surface of the membrane were removed
with a cotton swab, and subsequently, the inserts were photographed under an inverted
microscope at 200× magnification.

4.6. Bioinformatics Analysis

Due to the constant upgrading of the literature related to post-transcriptional regula-
tory control in which the miRNAs were involved, a Perl script was created in miRTarBase
to search for the miRNAs that could regulate ZEB1. After the selection of ZEB1 regulatory
miRNAs using DIANAmicroT v5.0 Software [13], a prediction analysis was performed to
determine whether these miRNAs could regulate the genes (Nanog Homeobox NANOG),
Aldehyde dehydrogenase isoform 1 (ALDH1), Vascular endothelial growth factor (VEGF-
A), Hypoxia-inducible factor 1-alpha (HIF-1α), (Neurotrophic Receptor Tyrosine Kinase 2)
NTRK2, and stem cell (CTs) marker genes which had an altered expression in the tumor
microenvironment. The presence or absence of interactions between the proteins encoded
by these genes was investigated using the biological database STRING v11.0 [14].

4.7. Cell Transfection

HN13 cells were seeded (8 × 104 cells per well) in 24-well plates and transfected with
synthetic miRNAs at a concentration of 10 nM with mirVana™ miRNA mimics (Thermo
Fisher Scientific, Waltham, MA, USA) of miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-
5p, and miR-200c-3p using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher
Scientific, Waltham, MA, USA). Total RNA and proteins were collected for the assay at 48 h
post-transfection. To evaluate the effectiveness of mimic transfection, miR-1 (mirVana™
miRNA mimic, miR-1 Positive Control), a PTK9/TWF1 regulator, was used as a positive
control along with its respective negative control (mirVana™ miRNA Mimic, Negative
Control #1).

4.8. RNA Extraction

The total RNA was extracted from sorted and transfected cells using the Direct-zolTM

RNA Miniprep Plus isolation kit (Zymo Research, Irvine, CA, USA). RNA concentration
and purity were determined using a Qubit ® fluorometer (version 2.0; Thermo Fisher
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Scientific, Waltham, MA, USA) and the Qubit® RNA High Sensitivity Assay kit, according
to the manufacturer’s instructions.

4.9. Reverse Transcription

Complementary DNA (cDNA) was synthesized using a high-capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA) in the presence of random
primers according to the manufacturer’s instructions. The reverse transcription of miRNAs
was performed using TaqManTM MicroRNA Reverse Transcription (Applied Biosystems,
Foster City, CA, USA) with the respective primers hsa-miR-101-3p, bta-miR-139-5p, hsa-
miR-144-3p, hsa-miR-199b-5p, hsa-miR-200c-3p, hsa-miR-1, RNU6B, and RNU48.

4.10. Quantitative Real-Time PCR

Real-time PCR was performed to quantify gene and miRNA expression using PCR
Master Mix (Life Technologies, Carlsbad, CA, USA) with specific probes and the TaqManTM

miRNA Assay (Thermo Fisher Scientific, Waltham, MA, USA), according to the manufac-
turer’s instructions. The reactions were performed in 96-well plates using StepOne Plus
(Applied Biosystems) and a CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA). The
SDS version 2.0 and Bio-Rad CFX Manager were used to analyze the expression curve.
GAPDH and RPLPO were used as internal gene controls, and RNU6B and RNU48 were
used as internal miRNA controls. To quantify the relative expression of genes and miRNAs,
the formula 2−∆∆Cq [40] was used and normalized to that of the negative control (NC = 1.0).

4.11. Western Blotting

Proteins were extracted from sorted and transfected cells using sequential extraction
with the Direct-zolTM RNA Miniprep Plus Extraction Kit (Zymo Research, Irvine, CA, USA)
and TRIzol Reagent (Applied Biosystems), according to the manufacturer’s instructions.
Protein quantification was performed using the PierceTM BCA Protein Assay Kit (Thermo
Fisher Scientific) on a spectrophotometer (Fisher Scientific Wellwash). The total protein
(16 µg) was run in BoltTM from 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein Gel, 10-well (Invit-
rogen, Waltham, MA, USA) and transferred to an iBlotTM Transfer Stack polyvinylidene
difluride (PVDF) membrane using an iBlot Gel Transfer Device (Invitrogen). The PVDF
membrane was blocked in 5% Bovine Serum Albumin/Tri-buffered saline-Twen BSA/TBS-
T 1× for 1 h at 71.6 ◦F, followed by incubation with the primary antibody overnight at
4 ◦C. Thereafter, the PVDF membrane was incubated with the appropriate secondary anti-
body conjugated to horseradish peroxidase for 1 h at 71.6 ◦F. The primary and secondary
antibodies used in this study are listed in Table 3. The membranes were exposed using
the enhanced chemiluminescence (ECL) method (Kit GE Healthcare) according to the
manufacturer’s instructions.

Table 3. Antibodies used for Western blotting reactions.

Antibodies Clone Origin Dilution Manufacturer

Anti-ZEB1 ab203829 * Rabbit 1:500 ABCAM
Anti-NANOG # MA1-017 * Mouse 1:1000 Invitrogen
Anti-ALDH ab52492 * Rabbit 1:500 ABCAM

Anti-VEGF-A ab1316 * Mouse 1:100 ABCAM
Anti-HIF-1α 700505 * Rabbit 1:1000 Invitrogen

Anti-TrkB NBP2-5 2523 * Mouse 1:1000 Novus Biologicals
β-actina A1978 * Mouse 1:500 Sigma–Aldrich

Anti-mouse IgG HRP A9044 * Rabbit 1:10,000 Sigma–Aldrich
Anti-Rabbit IgG HRP ab97051 * Goat 1:10,000 ABCAM

* Catalog number.

4.12. Statistical Analyses

Statistical analyses were performed using GraphPad Prism v8.0.1 (Graphpad Soft-
ware, San Diego, CA, USA). The relative quantification values of samples for each variable
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analyzed were submitted to D’Agostino and Pearson or Shapiro–Wilk tests for normal dis-
tribution. A one-sample t-test (parametric) and Wilcoxon’s test (non-parametric) were used
to compare gene expression before and after the functional analysis. For the comparison
analysis, the unpaired t-test with Welch’s correction was used for samples that showed
a normal distribution, whereas the Mann–Whitney test was used for samples without a
normal distribution.

(* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

5. Conclusions

These findings point to the crucial role of miRNAs in the regulation of tumor develop-
ment, including the levels of CSC differentiation and the EMT phenotype. Therefore, our
findings provide new epigenetic strategies to counteract tumor plasticity and behavior.
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