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Abstract: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. The pathogen-
esis of DKD is multifactorial, with several molecular pathways implicated. Recent data suggest that
histone modification plays an important role in the development and progression of DKD. Histone
modification appears to induce oxidative stress, inflammation and fibrosis in the diabetic kidney.
In the present review, we summarize the current knowledge on the association between histone
modification and DKD.
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1. Introduction

Chronic kidney disease (CKD) affects 9.1% of the population worldwide and is an
important cause of morbidity and mortality [1]. Diabetic nephropathy is the leading cause
of CKD and end-stage renal disease (ESRD) [2]. Even in prediabetes, there is evidence of
kidney dysfunction [3]. The decline of estimated glomerular filtration rate (eGFR) and
increased urinary albumin excretion are accompanied with an increased risk for progression
to ESRD and death [4]. Moreover, CKD is a risk factor for cardiovascular disease (CVD) [5].

Epigenetic mechanisms include DNA methylation, histone modification, and mi-
croRNA (miRNA) [6]. Histone modification has been involved in the pathogenesis of
diabetes mellitus but emerging data suggest that it also plays a role in the pathogenesis
of DKD [7,8]. In the current review, we summarize the current evidence regarding the
association between histone modifications and DKD. Of note, histone modification appears
to be implicated in other microvascular complications of diabetes mellitus, i.e., neuropathy
and retinopathy, and also in the pathogenesis of atherosclerosis in these patients [8], but
these associations are outside of the scope of the present review.

2. Pathogenesis of DKD

The defining histopathologic features of DKD are glomerular basement membrane
(GBM) thickening, mesangial matrix expansion, nodular glomerulosclerosis and tubular
and vascular lesions [9]. p21 plays a key role in glomerular and mesangial cell hypertro-
phy [10]. The pathophysiology of DKD is characterized by impaired renal hemodynamics,
oxidative stress, inflammation and a dysregulated renin–angiotensin–aldosterone system
(RAAS) (Tables 1 and 2) [11]. Glomerular hyperfiltration in diabetes predisposes to albu-
minuria, a decline in renal function and progressive kidney damage [12,13]. In addition to
hyperglycemia, glomerular hyperfiltration in diabetic patients is also attributed to hyper-
aminoacidemia, hypertension and obesity [13]. Hyperinsulinemia stimulates endothelin 1
(ET-1) secretion in the endothelium and in turn increased ET-1 levels induce vasoconstric-
tion which eventually leads to vascular dysfunction [14].
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Table 1. Major risk factors for kidney disease in patients with diabetes mellitus and their management.

Risk Factor Target Recommended Management

Hyperglycemia

HbA1c < 7% (<6.5% if
achievable without a

substantially increased risk for
hypoglycemia, or 7.5–8.0% in

patients with substantial
comorbidities or reduced life

expectancy)

Sodium glucose transporter
inhibitors

Other antidiabetic agents if
needed

Hypertension

Systolic blood pressure < 140
mmHg (<120 mmHg if it can

be reasonably achieved)
Diastolic blood pressure 80–90

mmHg

Angiotensin converting
enzyme inhibitors or

angiotensin receptor blockers
Finerenone

Other antihypertensive agents
if needed

Obesity At least 5% weight loss from
baseline

Physical activity and
low-calorie diet (500 kcal/day

deficit)

Dyslipidemia

Low density lipoprotein
cholesterol levels < 55 mg/dl
and LDL-C reduction > 50%

from baseline

Statins
Ezetimibe and proprotein

convertase subtilisin/kexin
type 9 inhibitors if needed

Table 2. Principal mechanisms implicated in the pathogenesis of diabetic kidney disease.

Mechanism Associated Mechanisms Regulators

Impaired renal
hemodynamics

Hyperglycemia,
hyperaminoacidemia,

hypertension and obesity [13]
ET-1 [14]

Oxidative stress Inflammation and renal
fibrosis [15] Txnip [16,17]

Dysregulation of the immune
system/

Inflammation

Immune cells and adhesion
molecules [18,19] NF-κB [20], NLRP3 [21]

Compromised autophagy
AGEs, oxidative stress, ER

stress, RAAS activation and
renal fibrosis [22,23]

mTORC1 [22], insulin [24]

Fibrosis Oxidative stress [15],
autophagy [22,23]

TGF-β, MAPK,
Wnt/β-catenin, PI3K/Akt,

JAK/STAT, and Notch
pathways [25], PAI-1 [26]

Histone modification
Fibrosis [27,28], inflammation
[29,30], hypertrophy [31,32],

apoptosis [33,34]
ET-1: endothelin 1, Txnip: thioredoxin interacting protein, NF-κB: nuclear factor kappa-light-chain-enhancer of
activated B cells, NLRP3: nucleotide binding and oligomerization domain-like receptor family pyrin domain-
containing 3, AGEs: advanced glycation end-products, ER: endoplasmic reticulum, RAAS: renin–angiotensin–
aldosterone system, TGF-β: transforming growth factor β, MAPK: mitogen-activated protein kinase, PI3K:
phosphatidyl-inositol-3 kinase, PAI-1: plasminogen activator inhibitor-1.

Intrarenal oxidative stress is another feature of DKD [15,35]. Oxidative stress predis-
poses to inflammation and renal fibrosis in DKD [15]. In diabetes, thioredoxin interact-
ing protein (Txnip) is involved in the pathogenesis of oxidative stress, podocyte injury
and apoptosis [16,17]. Mitochondrial injury in diabetes is present in renal tubular cells,
podocytes, mesangial cells, and glomerular endothelial cells [36]. In turn, glomerular
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endothelial mitochondrial dysfunction might increase the risk for DKD [37]. Moreover, in
the podocytes of DKD patients, mitochondrial dynamics are impaired [38].

Autophagy represents a mechanism of preservation of podocyte integrity [39]. Com-
promised autophagy is implicated in the pathogenesis of DKD [22,23]. Autophagy interacts
with advanced glycation end-products (AGEs), oxidative stress, endoplasmic reticulum
(ER) stress, RAAS activation and renal fibrosis in DKD [22,23]. mTORC1 negatively regu-
lates autophagy by inhibiting the activity of the unc-51-like autophagy activating kinase
1 (ULK1) complex through direct phosphorylation [22]. Insulin also impairs autophagic
activity in proximal tubule epithelial cells [24].

DKD is also characterized by the accumulation of extracellular matrix (ECM) proteins,
collagen, laminin and fibronectin, in the glomerulus and the renal tubulointerstitium, which
ultimately lead to glomerulosclerosis and tubulointerstitial fibrosis [40]. The pathogenesis
of diabetic renal fibrosis involves several players, including transforming growth factor β
(TGF-β), mitogen-activated protein kinase (MAPK), Wnt/β-catenin, phosphatidyl-inositol-
3 kinase (PI3K)/Akt, JAK/STAT and Notch pathways, which also interact with each
other [25]. Plasminogen activator inhibitor-1 (PAI-1) promotes ECM accumulation by
regulating fibrinolysis and plasmin-mediated matrix metalloproteinase activation and is
strongly induced in various forms of kidney diseases including DKD [26]. In patients with
type 2 diabetes mellitus, PAI-1 levels were inversely linked to renal function [41].

Several immune cells of both the innate and adaptive immune system also contribute
to renal injury in DKD [18,19]. In addition, cellular adhesion molecules including in-
tracellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1)
and E-selectin, chemokines including monocyte chemoattractant protein-1 (MCP-1), and
cytokines including interleukin-6 (IL-6) are inflammatory mediators of renal injury in
DKD [19]. MCP-1 levels have been shown to predict renal disease progression in diabetic
patients [42]. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a
transcriptional factor that regulates the expression of inflammatory cytokines, chemokines
and cellular adhesion proteins that are involved in DKD [20]. The nucleotide binding
and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) in-
flammasome, by interacting with the mitogen-activated protein kinase (MAPK), induces
oxidative stress, NF-κB signaling pathways and inflammatory factors, thus resulting in
impaired kidney functioning and structural changes that culminate in DKD development
and progression [21].

Advanced glycation end-products (AGEs) induced by hyperglycemia play an impor-
tant role in the pathogenesis of DKD [43,44]. AGEs appear to promote renal inflammation
and fibrosis in DKD [44].

In patients with diabetes mellitus, the production of TGF-β is increased in the kid-
ney, which then facilitates the development of early manifestations of DKD [45]. TGF-β
was shown to be upregulated in the glomerular and tubulointerstitial compartments of
diabetic animal models [46]. Moreover, TGF-β is involved in the pathogenesis of renal
hypertrophy, glomerulosclerosis and tubulointerstitial fibrosis observed in DKD [47]. The
TGF-β/Smad signaling plays a crucial role in renal fibrosis, inflammation [48,49] and
podocyte apoptosis [50].

Epithelial-to-mesenchymal transition (EMT), which occurs in tubular cells after injury,
refers to a change in phenotype that is characterized by the conversion of epithelial markers
to mesenchymal features and generates kidney fibrosis [51]. The downregulation of e-
cadherin is observed in EMT [52]. It has been reported that endothelial-to-mesenchymal
transition (EndMT) in glomeruli, a subtype of EMT, might be involved in the pathogenesis
of DKD [53,54].

3. Histone Modification and DKD

Histone modifications regulate gene transcription, DNA repair and DNA replica-
tion [55,56]. Post-translational modifications (PTMs) occur at the residues of N-terminal
tails of the histone proteins while modifications are also detected in the core regions of the



Int. J. Mol. Sci. 2023, 24, 6007 4 of 13

histones [57]. The major histone PTMs are acetylation, methylation, ubiquitination and
phosphorylation [58].

There is accumulating evidence that PTMs are involved in the regulation of genes
associated with the pathogenesis of diabetes [7,8]. The PTMs of several genes related to
diabetes and inflammation have been identified in monocytes and lymphocytes under
diabetic conditions [59,60]. The persistent expression of genes and phenotypes created
by former exposure to hyperglycemia, despite the subsequent achievement of glycemic
control, a phenomenon termed metabolic memory, might be caused by epigenetic mecha-
nisms and be associated with DKD [61,62]. Several studies demonstrated the non-histone
modifications of histone-modifying enzymes in the setting of DKD [63–65].

4. Histone Acetylation and DKD (Table 3)

Histone acetylation can unravel chromatin and enable the binding of transcription
factors and cofactors that lead to gene expression [55]. Histone acetylation, such as H3K9Ac,
H3K14Ac and H4KAc, is generally correlated with permissive gene expression, while
histone deacetylation is mainly associated with gene transcriptional repression [66]. Histone
acetylation is catalyzed by histone acetyltransferases (HATs) and histone deacetylation by
histone deacetylases (HDACs) [55]. p300/CREB-binding protein (CBP) and p300/CBP-
associated factor (PCAF) are some of the known HATs [67]. Among the four classes of
HDACs, the sirtuins (Sirt 1–7) belong in the third class [67].

Studies in db/db diabetic mice reported that early glomerulosclerosis was associ-
ated with reduced histone H3K9 and H3K23 acetylation [68]. Other studies showed that
acetylation levels of H3K9, H3K18 and H3K23 were increased in the kidneys of diabetic
mice [29,69]. Moreover, H3K27ac levels in diabetic mice are increased compared with non-
diabetic mice [70]. Moreover, the increased H3K9/14Ac levels in the diabetic kidney mainly
involved the nuclei of both glomerular and renal tubular cells [71]. Others indicated that
hyperglycemia induced histone acetylation at the H3K18 and H3K9/14 sites in mesangial
cells [72].

Table 3. Effects of histone acetylation on the pathogenesis of diabetic kidney disease.

Histone
Acetylation Gene/Molecule Target Implicated Mechanism

Histone Acetyl-
transerases/Deacetylases or

Their Inhibitors

H3K9/14Ac

Promoters of PAI-1 and p21 genes in
mesangial cells

ECM accumulation and
hypertrophy p300/CBP [31]

Fibrinonectin protein expression in
mesangial cells Renal fibrosis Lys-CoA [72]

BMP-7 gene promoter in tubular cells Renal fibrosis SFN [27]

H3K18Ac MCP-1, ICAM-1, VCAM-1 and iNOS in
mesangial cells Mesangial cell inflammation Apelin [29]

H3K9Ac

MCP-1, ICAM-1, VCAM-1 and iNOS in
mesangial cells Mesangial cell inflammation Apelin [29]

Promoters of Notch1 and Notch4 in
hyperglycemia-treated podocytes

Apoptosis and inflammation
of podocytes Sirt6 [33]

Timp1 promoter in proximal tubular cells
miR-29a proximal promoter

Tubular fibrosis Sirt6 [73]
Podocyte apoptosis HDAC4 [34]

PAI-1: Plasminogen activator inhibitor-1, ECM: extracellular matrix, p300/CBP: p300/CREB-binding protein,
BMP-7: bone morphologic protein 7, SFN: sulforaphane, MCP-1: monocyte chemoattractant protein-1, ICAM-1:
intracellular adhesion molecule 1, VCAM-1: vascular cell adhesion molecule 1, iNOS: inducible nitric oxide
synthases, Sirt6: sirtuin 6.

5. Histone Acetylation and Renal Inflammation in DKD

In the context of hyperglycemia, increased H3K9 and H3K18 acetylation levels in the
mesangial cells were associated with the production of inflammatory mediators including
MCP-1, ICAM-1, VCAM-1 and inducible nitric oxide synthases (iNOS) [29]. Furthermore,
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ChIP assays revealed that PAI-induced enrichment of H3K18ac at the promoters of ICAM-
1 and MCP-1 was mitigated after PCAF knockdown along with altered transcription
levels [69]. In vitro studies demonstrated elevated levels of H3K9ac in the promoters of
Notch1 and Notch4 in hyperglycemia-treated podocytes, whereas Sirt6 suppressed Notch1
and Notch4 transcription by deacetylating histone H3K9 and protected podocytes from
apoptosis and inflammation through inhibition of the Notch pathway [33].

6. Histone Acetylation and Renal Fibrosis in DKD

The enrichment of H3K9/14Ac at the promoters of PAI-1 and p21 genes in rat mesan-
gial cells exposed to hyperglycemia and glomeruli from diabetic mice were associated
with the increased expression of these genes [31]. In addition, the elevated H3K9/14Ac
levels on the gene promoters of connective tissue growth factor (CTGF), PAI-1 and fi-
bronectin 1 (FN-1) in the kidneys of diabetic mice were associated with activation of HAT
p300/CBP [71]. ChIP assays found elevated levels of acetylated H3 at the promoter sites of
the ET-1, FN genes in human umbilical vein endothelial cells (HUVECs) [74]. Under hyper-
glycemic and hyperinsulinemic conditions in kidneys the, levels of histone H3 acetylation
in the fibrillin 1 gene were increased [75]. In another study in renal tubular cells, exposure
to hyperglycemia augmented the enrichment of H3K18Ac, H3K27Ac and H3K4Me3 but not
H3K9Ac on the collagen gene promoters [76]. Claudin-1 expression was regulated through
the deacetylation of histone H3 and H4 by Sirt1 while Claudin-1 expression in podocytes
induced podocyte effacement and resulted in albuminuria [77]. Sirt6 increased H3K9 acety-
lation in the promoter region of the pro-fibrotic factor Timp1 leading to the upregulation of
Timp1 that may inactivate matrix metalloproteinases (MMPs) and reduced fibrous tissue
degradation [73]. In another study, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), an
oxidized lipid which promotes oxidative stress, induced profibrotic gene expression in
association with the augmented enrichment of their promoter by H3K9Ac and H3K4me
in rat mesangial cell [78]. In mesangial cells, the inhibition of H3K9/14 acetylation by
Lys-CoA, an inhibitor of CBP/p300 HAT activity, led to diminished FN protein expres-
sion [72]. In vitro, trichostatin A (TSA)-induced acetylation of H3 was correlated with the
overexpression of E-cadherin and decreased expression of the FN gene in TGF-β1-treated
tubular epithelial cells [79]. In addition, TSA treatment increased the acetylation of his-
tones H3 and H4 in the E-cadherin promoter, H3 in the Id2 promoter and H4 in the bone
morphologic protein 7 (BMP-7) promoter and subsequently regulated the expression of
Id2 and BMP-7 [80]. In another study, sulforaphane (SFN) treatment counteracted the
diabetes-induced decline in H3K9/14Ac expression and H3K9/14Ac levels in the BMP-7
gene promoter, which was accompanied by BMP-7 upregulation [27].

7. Histone Acetylation and Apoptosis in DKD

Blockade of HDAC4 signaling increased the H3K9Ac levels in the miR-29a proximal
promoter and miR-29a transcription in hyperglycemia-treated podocytes and attenuated
the hyperglycemia-induced apoptosis [34]. In another study, the acetylation of histone
H4 in the glucose-regulated protein (GRP78) promoter, was increased in the DKD group,
compared with controls; valproate reversed apoptosis by increasing the acetylation of
histone H4 in the GRP78 promoter and decreasing the acetylation of histone H4 in the
C/EBP-homologous protein (CHOP) promoter, two promoters that encode proteins related
to ER stress [81].

8. Histone Acetylation and Other Manifestations of DKD

Hyperglycemia-induced Txnip expression was associated with the enrichment of
H3K9ac at the promoter region of the gene in the kidneys of diabetic mice [82]. ChIP
assays showed increased levels of H3K18Ac and H2BK5Ac in the membrane metalloen-
dopeptidase (Mme) promoter region in the kidneys of diabetic rats but enrichment of
H2AK5Ac remained unchanged on Mme promoter in kidneys [83]. The expression of ULK1
in diabetic mice was decreased compared with that in non-diabetic mice, whereas ChIP
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assays also revealed reduced levels of H3K27Ac on of the ULK1 promoter sequences in
diabetic mice [84].

9. Histone Methylation and DKD (Table 4)

Histone methylation takes place in arginines, lysines and histidines on histone tails [85].
Histone methylation modifications promote or repress gene transcription [86]. Lysine
methylation is catalyzed by methyltransferases (KMTs) and is reversed by demethylases
(KDMs) [87–89]. SET domain-containing enzymes are one class of KMTs [87].

KDM6A expression was increased and H3K27me2/3 levels were decreased in the
kidneys of diabetic mice [90] and in hyperglycemia-treated podocytes and renal tubular
cells [91,92]. In addition, in kidney tissues from patients with DKD, there was a reduction
of podocyte, glomerular cell and tubular cell H3K27me3 [93]. Elevated H3K4me1 and
H3K4me3 levels and decreases in H3K27me3 levels were detected in the kidneys of diabetic
animals compared with non-diabetic controls [94].

Table 4. Effects of histone methylation on the pathogenesis of diabetic kidney disease.

Histone Methylation Gene/Molecule Target Implicated Mechanism
Histone Methyl-

transerases/Demethylases or
Their Inhibitors

H3K9me2/3 p21 gene promoter in rat mesangial
cells Mesangial cell hypertrophy SET7/9 [32]

H3K4me1/2/3 p21 gene promoter
in rat mesangial cells Mesangial cell hypertrophy SET7/9 [32]

H3K4me3
Txnip promoter in mesangial cells

Renal inflammation
C646 [95]

Spp1 gene hyperglycemia-treated
mesangial cells MM-102 [94]

H3K4me1
MCP-1 promoter in db/db mice Renal inflammation SET7/9 [30]

Txnip promoter in mesangial cells Renal inflammation C646 [95]

H3K27me3

Promoters of IL1b and IL6 in renal
mesangial cells Renal inflammation Palmitic acid, KDM6A [90]

FN and PAI-1 expression Mesangial cell hypertrophy KMT6A [96]
HES1 promoter

hyperglycemia-treated mesangial
cells

Mesangial cell proliferation
and fibrosis KMT6A [97]

α-SMA, collagen I, and FN in rat
renal interstitial fibroblast cells Renal fibrosis KMT6A [28]

Pax6, TxnIP promoters in renal
podocytes Podocyte oxidative stress KMT6A [98]

MCP-1: monocyte chemoattractant protein-1, Spp1: secreted phosphoprotein 1, IL1b: interleukin 1b, IL6: inter-
leukin 6, KDM6A: lysine demethylase 6A, FN: fibronectin, PAI-1: plasminogen activator inhibitor-1, KMT6A:
histone-lysine N-methyltrasferase, HES1: enhancer of split 1, α-SMA: smooth muscle alpha-actin, Pax6: paired
box 6.

10. Histone Methylation and Renal Inflammation in DKD

Palmitic acid (PA) stimulation decreased the enrichment of H3K27me3 on the promot-
ers of IL1b and IL6, whereas the overexpression of KDM6A further decreased H3K27me3
levels on their promoters in renal mesangial cells [90]. In contrast, under PA treat-
ment, KDM6A knockdown increased the enrichment of H3K27me3 on the promoters
of IL1b and IL6 [90]. In vitro studies in renal tubular cells exposed to hyperglycemia
suggest that the secretion of IL6 and MCP-1 increases and inflammation stimulated the
expression of KMT1A which catalyzed H3K9me3 to inhibit the transcription of inflam-
matory genes [99]. In another study, SET domain-containing protein 8 (SETD8) over-
expression reduced hyperglycemia-induced IL-1β and IL-18 expression by attenuating
hyperglycemia-induced MARK4 expression and inactivating the NLRP3 inflammasome,
whereas H4K20me1, a downstream target of SETD8, was enriched in the MARK4 pro-
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moter region in HUVECs [100]. Furthermore, ChIP assays demonstrated that H4K20me1
levels were increased at the promoter region of E26 transformation-specific sequence
transcription factor-1 (ESE-1), in HUVECs exposed to hyperglycemia [101]. Set7-induced
enrichment of H3K4m1 on NF-kB p65 gene promoter led to the upregulation of ICAM-1,
MCP-1, iNOS and cyclooxygenase-2 (COX-2) in peripheral blood monocytes [102]. Others
reported that SET7/9 recruitment and H3K4me1 levels at MCP-1 promoters in diabetic
mice were markedly higher compared with non-diabetic animals; the ER stress resulted
in the enrichment of H3K4me1 at MCP-1 promoter in the kidneys of diabetic db/db mice
through the preferential induction of SET7/9 [30]. Finally, renal hypertrophy in diabetes
was linked to the upregulation of profibrotic and proinflammatory genes and reduced
levels of H3K27me3 and KMT6A in these gene promoters [103].

11. Histone Methylation and Renal Fibrosis in DKD

The levels of H4K20me1, a downstream target of KMT5A, decreased in hyperglycemia-
treated HUVECs and the levels of H4K20me1 were enriched in the promoter region of
enolase 1 (ENO1), regulating the ENO1 levels and thereby inducing EndMT [104]. On the
other hand, the expression of e-cadherin was decreased and its promoter methylation was
upregulated with increasing KDM6A expression, but there was no relationship with the
level of H3K27me2/3 in the E-cadherin promoter [92]. Hyperglycemia decreased KMT1A
and histone H3K9me3 levels in the FN and p21 gene promoters [105]. On the other hand,
the augmented expression of KMT1A increased the H3K9me3 levels in the FN and p21
promoters and protected against hyperglycemia-induced cell hypertrophy [105]. Hyper-
glycemia increased levels of KMT6A, resulting in the enrichment of H3K27me3 at the deptor
promoter leading to decreased deptor expression, which led to the activation of mTORC1
and mTORC2, controlled mesangial cell hypertrophy and FN and PAI-1 expression [96]. In
accordance with these findings, KMT6A inhibited mesangial cell proliferation and fibrosis-
related protein expression in hyperglycemia-treated mesangial cells by downregulating
hairy and enhancer of split 1 (HES1) expression; a ChiP assay showed that the KMT6A and
H3K27me3 levels were increased in the HES1 promoter and enrichment was intensified
by KMT6A overexpression [97]. Moreover, EZH2 knockdown significantly decreased the
levels of H3K27me3 and downregulated the levels of smooth muscle alpha-actin (α-SMA),
collagen I, and FN in rat renal interstitial fibroblast cells, whereas the silencing of KMT6A
repressed the TGFβ1-stimulated expressions of α-SMA, collagen I, and FN [28]. In animal
models of type 1 diabetes mellitus, the levels of H3K27m3 were reduced in MCP-1, vimentin
and the fibrosis marker Fsp1 genes, while the levels of H3K4m2 were increased [106]. More
recently, it was reported that histone H3 K79 methyltransferase Dot1l has an antifibrotic
effect by repressing Edn1, which encodes endothelin-1 [95]. Moreover, Dot1l interacts with
HDAC2 to regulate Edn1 transcription [95]. Notably, HDAC2 was also shown to protect
against renal ischemia/reperfusion injury by suppressing Edn1 transcription [98].

12. Histone Methylation and Oxidative Stress in DKD

In the kidneys of diabetic mice, hyperglycemia-induced Txnip expression was associ-
ated with the stimulation of activating histone marks H3K4me3 and H3K4me1, as well as
with a decrease in the repressive histone mark H3K27me3 at the promoter of the gene [95].
In another study, KMT6A downregulated TxnIP expression through H3K27me3 enrichment
in the promoter region of the transcription factor paired box 6 (Pax6), whereas the depletion
of KMT6A led to an increase in the hyperglycemia-induced reactive oxygen species (ROS)
levels and cellular death [98]. In addition, the depletion or inhibition of KMT6A attenuated
the increase of ROS in hyperglycemia-treated human renal tubular epithelial cells, while
the KMT6A knockdown attenuated the reduced expression of silent information regulator
1 (SIRT1) by hyperglycemia treatment [107]. The restoration of SIRT1 expression was in
line with the elimination of H3K27me3 from the SIRT1 promoter and the inhibition of
intracellular ROS levels [107].
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13. Histone Methylation and Glomerular and Mesangial Hypertrophy in DKD

TGF-β1 stimulated the expression of the p21 gene in rat mesangial cells, while the levels
of H3K9me2/3 and H3K4me1/2/3 at p21 gene promoter were correlated with p21 gene ex-
pression [32]. Similarly, the reduced H3K9me2 level in the p21 gene promoter in the glomeruli
of type 1 diabetic rats was inversely correlated with p21 gene upregulation [108]. The increased
H3K4me3 level in secreted phosphoprotein 1 (Spp1), the osteopontin gene, promoter were
associated with Spp1 gene enhanced expression in hyperglycemia-treated human mesangial
cells, whereas the levels of histone marks were linked to increases of Spp1 expression in
animal studies [94]. Diminished podocyte H3K27me3 was correlated with glomerular injury
while H3K27me3 controlled Notch signaling and podocyte dedifferentiation [93].

14. Histone Methylation and Other Manifestations of DKD

SIRT-6 induction of activated protein kinase (AMPK) signaling, through H3K9 and
H3K56, contributed to hyperglycemia-induced mitochondrial dysfunction and apoptosis in
podocytes [109]. In another study, ChIP assays demonstrated the enrichment of H3K4me1
levels at the MAP4K3 gene and the upregulation of MAP4K3 in diabetic mice [110].
MAP4K3 knockdown decreased HYPERGLYCEMIA-induced apoptosis while MAP4K3
downregulation counteracted the expression of apoptosis markers [110]. Histone H2AK119
and H2BK120 ubiquitination regulated H3K4Me2 and H3K9Me2 chromatin marks by mod-
ifying the expression of their respective HMTs, SET7/9 and KMT1A [111]. The increased
expression of SET7/9 and decreased expression of KMT1A could be associated with the
increased enrichment of H3K4Me2, and decreased H3K9Me2 level at Collagen Type I Al-
pha 1 Chain (Col1a1) gene promoter and increased Col1a1 gene expression in the diabetic
kidneys [111].

15. Conclusions

Histone modification appears to play an important role in the pathogenesis of DKD.
Indeed, histone acetylation and methylation are implicated in the propagation of inflammation,
oxidative stress and fibrosis in the kidney. Even though the exact mechanism(s) through which
impaired epigenetic landscape contributes to DKD is still unclear, it appears that an altered
enhancer landscape plays an important role [112–114]. It remains to be established whether
targeting this pathway might prevent the development or delay the progression of DKD.
Of note, it is well established that DKD is associated with an increased risk for CVD [115].
In this context, somatic mutations, particularly in DNA methyltransferase 3 alpha and TET
methylcytosine dioxygenase 2, are also implicated in the pathogenesis of both atherosclerosis
and DKD, partly by a pro-inflammatory effect [116,117].
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