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Material characterization 

Elemental analysis. The composition of the active electrode material was determined by 

complementing analytical techniques. C, H, N contents were determined by using a 

Perkin-Elmer 2400 series II Analyzer. 

Scanning Electron Microscopy, SEM imaging was performed using the Carl Zeiss NVision 

40 High-Resolution Scanning Electron Microscope (Germany) and TESCAN AMBER 

GMH (Czech Republic). The specimen was prepared by depositing small amount of the 

powder on the conductive carbon tape. 

X-ray powder diffraction. XRD measurements were performed on a D8 Advance 

Diffractometer (Bruker AXS, Karlsruhe, Germany). The powder samples were carefully 

filled into low background quartz sample holders. The specimen weight was 

approximately 0.5 g. XRD patterns from 5° to 75° 2θ were recorded at room temperature 

using CuKα radiation (1.5418 Å ) under the following measurement conditions: tube 

voltage of 40 kV, tube current of 40 mA, step scan mode with a step size 0.02° 2θ and 

counting time of 1 s/step. XRD patterns were processed using Diffrac Plus software. 

 



 

Figure S1. SEM of GeO2-GO-80 -upper row. Energy dispersive X-ray (EDX) mapping 

analysis of GeO2-rGO-80 composite lower row. 

 

Figure S2. SEM of Ge3N4-rGO obtained by treatment at 700°C for 2 h. 

 

 

Figure S3. Energy dispersive X-ray (EDX) mapping analysis of Ge3N4-rGO-80 composite.  

 

 



 

 

Figure S4. SEM images of Ge3N4-rGO-20 and energy dispersive X-ray (EDX) mapping 

analysis of composite. 

 

Figure S5. SEM images of Ge3N4-rGO-50 and energy dispersive X-ray (EDX) mapping. 

 

Figure S6. Energy dispersive X-ray (EDX) mapping analysis of GeP-rGO-80 composite. 



 

Figure S7. SEM images of GeP-rGO-20 and energy dispersive X-ray (EDX) mapping 

analysis of composite. 

 

Figure S8. SEM images of GeP-rGO-50 and energy dispersive X-ray (EDX) mapping 

analysis of composite. 

 



 

Figure S9. CV curves of GeO2-rGO-20 (a); Ge3N4-rGO-20 (b) and GeP-rGO-20 (c). 



 

Figure S10. CV curve of Ge3N4-rGO-80 after 250 discharge-charge cycles at 100 mA g-1 

with scan rate 0.1 mV s-1 in the 0.005-3.0 V potential range vs. Li/Li+. 

 

 

Figure S11. Electrode performance of GeO2-rGO-80, Ge3N4-rGO-80 and GeP-rGO-80 at 

rate of 1000 mA g-1 between 0 and 3 V vs Li/Li+. 

  



Average voltage hysteresis 

 

Figure S12. 35th discharge and charge curves of GeO2-rGO-80. 

The average voltage hysteresis can be readily calculated from the galvanostatic curves 

of Figures 3d-f and S12. 

∆𝑉̅̅ ̅̅ =
∫ 𝑉𝑑𝑞𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑄𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
−

∫ 𝑉𝑑𝑞𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
           (S1) 

The first and second terms on the right-hand side of Equation S1 correspond to the 

average charging and discharging voltage. q is the specific charge (Coul) and the integral 

Q = ∫ 𝑑𝑞 is the overall specific charge capacity. ∆𝑉̅̅ ̅̅  was calculated at the 30th cycle (the 

anodes were cycled between 0.005 and 3.0 V at 100 mA g-1). 

 


