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Abstract: Catalysis is the most efficient and economical method for treating volatile organic pollu-
tants (VOCs). Among the many materials that are used in engineering, platinized carbon nitride
(Pt/g-C3N4) is an efficient and multifunctional catalyst which has strong light absorption and mass
transfer capabilities, which enable it to be used in photocatalysis, thermal catalysis and photothermal
synergistic catalysis for the degradation of benzene. In this work, Pt/g-C3N4 was prepared by four
precursors for the photothermal synergistic catalytic degradation of benzene, which show different
activities, and many tests were carried out to explore the possible reasons for the discrepancy. Among
them, the Pt/g-C3N4 prepared from dicyanamide showed the highest activity and could convert
benzene (300 ppm, 20 mL·min−1) completely at 162 ◦C under solar light and 173 ◦C under visible
light. The reaction temperature was reduced by nearly half compared to the traditional thermal
catalytic degradation of benzene at about 300 ◦C.

Keywords: photodegradation; photothermal catalysis; carbon nitride; metal support effect

1. Introduction

Volatile organic compounds (VOCs), such as benzene, which is regarded as one of the
most toxic and stable materials, are widely used in industrial production, building materials
and automobile exhaust [1–3]. VOCs can cause irreversible effects on the environment
and biology, such as teratogenicity, carcinogenicity and mutagenicity [4,5]. Therefore, it is
necessary for current research to handle benzene with traditional methods, such as chemical
absorption and combustion, ozonation, microbiological method and catalytic oxidation. In
recent years, catalytic oxidation has become the main form to convert benzene to CO2 and
H2O because of its great potential for the efficient degradation of benzene [6–8].

Catalytic oxidation has three types, including thermal catalytic oxidation, photocat-
alytic oxidation and photothermal catalytic oxidation [9–11]. Thermal catalysis oxidation
can handle a large number of volatile organic compounds with high selectivity benefiting
from thermal energy and noble metals, but it needs high-energy consumption. Photocat-
alytic oxidation can be carried out under mild conditions without secondary pollution;
however, low efficiency and poisoning photocatalyst limit its application [12,13]. It is of
great difficulty to convert the high-concentration VOCs under mild conditions by photo-
catalysis or thermal catalysis alone. Photothermal catalytic oxidation (PTO) overcomes
the shortcomings of high-energy consumption and low efficiency of traditional catalytic
reactions [14–16]. The introduction of heat energy can promote carrier migration, accelerate
mass transfer and facilitate the dissociation of reactants. On the other hand, in thermody-
namics, regulating the reaction temperature is beneficial to regulate the redox potential of
the reaction and to expand the application range of narrow gap semiconductors [17–19].
Therefore, PTO has attracted a wide concern from researchers in benzene degradation
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in recent years. Photocatalysts with thermal effects can completely degrade VOCs un-
der the action of photothermal coupling, which offers a new way for the treatment of
high-concentration VOCs [10,19–21].

Currently, the most widely used photocatalysts in photothermal catalytic degradation
of VOCs are TiO2-based composite materials and rare earth metal salts. For example,
Fang et al. used BiVO4/TiO2 for photothermal synergistic catalysis, which makes benzene
completely converted at low temperatures [22]. Yang et al. prepared Pt/SrTiO3 for the
photothermal synergistic catalysis of toluene and the most excellent treatment effect was
obtained at 150 ◦C [23]. However, the application of TiO2 is limited by weak visible light
absorption. In 2009, Wang et al. successfully synthesized and applied carbon nitride (g-
C3N4) with a visible light response in water splitting [24]. Subsequently, g-C3N4 has been
applied widely for its excellent reducibility, chemical stability and lack of toxicity. Com-
mon g-C3N4-based materials, such as WO3/g-C3N4, CoS2/g-C3N4, TiO2/g-C3N4 [25–29],
etc., have made outstanding progress in the application of photocatalysis. However, the
application of low-temperature PTO is rarely reported.

Profiting from its stable planar electron π-conjugated structure and large specific
surface, g-C3N4 can conduct electrons and adsorb VOCs efficiently. Although it has good
reducibility, the development of g-C3N4 in the gas–solid phase catalytic oxidation of benzene
is sluggish because of the low conversion rate and mineralization rate. Limitations include
the weak oxidizing property of g-C3N4 and the high stability of saturated C–H bonds in
benzene [30–32]. Many strategies have been adopted to improve the efficiency of g-C3N4 in
benzene degradation, such as doping, cocatalysts loading and composites construction [33–38].
For example, Mamari et al. synthesized ZnO/g-C3N4 composites which could degrade
benzene by visible light [37]. Zou et al. prepared BiPO4/g-C3N4 through a hydrothermal
method, including calcination; the improved photoactivity could be attributed to the effective
separation of photogenerated charge carriers for a 73% degradation rate of benzene [7].
However, g-C3N4-based materials are rarely used in photothermal synergistic catalysis.

Research has revealed that the loading of noble metals cocatalysts, such as Pt, Au
and Ag, etc., could enhance the photocatalytic performance. On one hand, the appro-
priate work function enables noble metal cocatalysts to build efficient charge separation
between semiconductor and cocatalysts through the Schottky junction or Ohmic contact
construction within the metal-semiconductor structure. However, on the other hand, they
were in favor of improving visible light absorption influence and promoting photoinduced
charge separation and active oxygen species production (·O2

−) using the surface plasmon
resonance effect (SPR) [39–42]. The strong interaction of metal–support is mainly through
the formation of negatively charged noble metal nanoparticles (NPs) on the carrier and
the influence of chemically adsorbed oxygen. Driven by light (heat), electrons will con-
tinuously flow from catalysts to the noble metal until their Fermi energy levels are equal.
In the space charge layer, the metal surface will obtain excess negative charges, while
the catalyst’s surface will appear as excess positive charges to catalyze the degradation
of VOCs. Meanwhile, the addition of heat can promote the SMSI effect to promote the
oxygen activation in the thermaocatalytic oxidation process, so that the pollutants can be
degradated quickly on the surface of the carrier and the precious metals [43–46].

In this work, g-C3N4 was prepared by four different precursors through thermal
polymerization and by loading Pt NPs uniformly using photodeposition. The characteristic
of Pt/g-C3N4 was discussed in the terms of morphologic structure, characterization and
photothermal synergistic catalysis activity via various techniques. When Pt NPs were sup-
ported on the surface of g-C3N4, there was also a strong metal–support interaction effect,
which could enhance the photothermal catalytic degradation of benzene. The plasma effect
of Pt can promote the adsorption of O2 and converts it into superoxide radicals to participate
in the ring-opening degradation of benzene, making the performance of g-C3N4 gas–solid
phase photothermal synergistic catalysis better than traditional methods. The performance
of the prepared CNs was evaluated by the degradation of benzene using photothermal syn-
ergistic catalysis. Among them, the Pt/g-C3N4 prepared from dicyanamide (named PDA)
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showed the highest activity. It could convert benzene (300 ppm, 20 mL·min−1) completely
at 162 ◦C (irradiated by solar light) and 173 °C (irradiated by visible light). Whereas the
reaction temperature of the traditional thermal catalytic degradation of benzene happened
at about 300 ◦C. Meanwhile, PDA showed excellent stability after a four-cycle reaction. The
mechanism was also explored using DRS, electrochemical experiments and EPR.

2. Results and Discussion

The crystal structure of the sample was characterized using XRD. In Figure 1a, the XRD
diffraction peaks demonstrate that Pt/g-C3N4 samples synthesized from different precur-
sors had different intensity peaks at 13◦ and 27.5◦, corresponding to (100) and (002) planes
of g-C3N4, respectively [47,48]. No other impurity peaks appeared indicating that the
synthesized samples were pure without other impurities. Due to the structural differences
of precursors, there are obvious differences in morphology, interplanar packing space and
crystallinity of g-C3N4 synthesized in the thermal polymerization process. Besides, the
possible incompletion of condensation generated during the polymerization of different
precursors could be considerably affected by the XRD characteristic peaks. Taking g-C3N4
prepared with urea as an example, when the temperature increased, the functional group
of ammonia detached and formed isocyanic acid which could condense with another urea
molecule to form a biuret. Then, the biuret forms cyanuric acid by a nucleophilic addition
reaction, which in turn is converted to melamine. Melamine is polymerized by deamina-
tion to form melon, which can then form the triazine ring structure g-C3N4 by thermal
polymerization. The degrees of stacking of g-C3N4 are different from precursors under
thermal polymerization, leading to differences in their crystallinity.
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Figure 1. (a) XRD spectra, (b) FT-IR spectra of PDA, PMA, PUR and PCA samples.

In the XRD pattern, the half-peak width reflects the crystallinity of the crystal, which
affects the photothermal synergistic catalysis. The sharper the peak is, the higher the
crystallinity of the sample, which is more in favor of photogenerated electron transfer. The
half-peak width of PMA and PDA was narrower than that of PCA and PUR. The FT-IR
spectra of Pt/g-C3N4 are shown in Figure 1b. The peaks at 1200–1600 cm−1 belonged to
the vibration of the CN ring absorption, and the peaks at 805 cm−1 were mainly attributed
to the breathing vibration of the triazine. The absorption peaks located at 3000–3300 cm−1

are mainly attributed to O–H, N–H vibration, which indicated the presence of uncondensed
amino functional in the CN. Besides, the peaks at 1284 and 1213 cm−1 were associated with
the vibration modes of N–(C)3 and C–N–C in the heptazine rings [36,47]. In addition, the
characteristic peaks of PCA could not be found at 1213 and 1442 cm−1 and the peaks intensity
of PCA were weaker than that of other CNs. This indicates that there are more defects in the
structure of heptazine rings of PCA, which leads to the reduction in crystallinity in PCA. The
information obtained from FT-IR spectra is consistent with XRD results as well.
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The SEM images shown in Figure 2a were used to observe the morphologies of the
Pt/g-C3N4. The prepared product was predominantly composed of crystals with several
microns. The g-C3N4 prepared from dicyandiamide, cyanamide, and melamine were all
micro-sized block structures shown in Figure 2a, while the g-C3N4 obtained using urea,
was composed of numerous stacked nanosheets (Figure 2b). However, there were no Pt
nanoparticles that could be observed maybe because of the small size of Pt. For an in-depth
understanding of the crystal structure and composition, the Pt/g-C3N4 synthesized with
dicyandiamide (PDA) was observed using TEM. In Figure 2c, the sample was a block with
a size of 2 µm. As shown in Figure 2d, Pt NPs were distributed uniformly on the surface
of PDA with a particle size of about 2 nm. The interplanar spacing of Pt NPs was 2.26 Å,
corresponding to the (111) plane of Pt, where was the insert image with red frame shown
in Figure 2e [21,31,49]. The EDX elemental mapping (Figure 2e,f) showed that C, N and Pt
elements were all detected and displayed a uniformity of Pt dispersion in PDA.
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Figure 2. The morphology and atomic structure of Pt/CN. (a) block CN, (b) nanosheet CN,
(c–e) TEM image, (f) EDX mapping of PDA.

XPS analysis was applied to elucidate the chemical composition and oxidation state of
PDA. As shown in Figure 3a, the sample was mainly composed of C, N, O and Pt elements.
The percentage of C, N and H in PDA was 61.67%, 34.83% and 2.10%, respectively. The two
formers were the main component of g-C3N4, while O was a part of oxygen introduced in
contact with the air during thermal polymerization. The XPS spectrum of Pt 4f in Figure 3b
was divided into four peaks, the peaks located at 72.8 eV and 76.0 eV contributed to Pt 4f7/2
and the other one at 74.8 eV and 78.1 eV corresponding to Pt 4f5/2 spin–orbit. In Figure 3c, the
three XPS peaks of C 1s were located at 288.2, 286.4 and 284.8 eV, which was attributed to
the N–C=N of the triazine ring, C–O=C bond and C=C group of g-C3N4, respectively [50].
The characteristic peaks of N 1s in Figure 3d located at 398.3 and 400.0 eV corresponded to
C–N=C and N–(C)3 groups, respectively. Both of them together with the sp2–C (N–C=N)
make up the C6N7 units [51]. The last one of N 1s at 401.1 eV arose from the uncondensed
C–N–H groups of g-C3N4. The XRD, FT-IR and XPS analysis of PDA indicated that the
main structure of g-C3N4 was still well preserved after loading Pt NPs.
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Figure 3. XPS spectra of (a) survey, (b) Pt 4f, (c) C 1s, (d) N 1s, (e) BET patterns, (f) thermalgravimetric
curves of PDA.

The specific surface area is an important factor affecting the catalytic performance.
The BET surface area is shown in Figure 3e. The adsorption and desorption curves of
PDA, PCA, PMA and PUR were the typical type IV isotherm of the H3 hysteresis loop.
Although PUR has the largest specific surface area, the low density and poor heat transfer
properties make it difficult to achieve a good result in the gas–solid phase photothermal
synergistic catalysis process at a higher airspeed. Under the same conditions, PDA with a
larger specific surface area than that of PMA can promote contact between the catalysts
and pollutants. Since the tests were carried out in the presence of air or an oxygen–benzene
mixture, thermogravimetric analysis was carried out. According to the thermogravimetric
analysis (Figure 3f), it can be seen that the decomposition temperature varies greatly under
N2 and O2 conditions. In the presence of oxygen, the decomposition of PDA occurred at
about 480 ◦C. However, this work was carried out in relatively mild conditions, far below
the decomposition temperature of PDA.

The performance of these Pt/g-C3N4 was measured using photothermal synergistic
catalysis of benzene under 150 ◦C and solar light conditions. The experimental results
are shown in Figure 4a,b, It can be seen that there are certain differences in the conver-
sion/mineralization rate; PDA shows excellent performance, which could reach more than
95% at 150 ◦C and converse completely at 162 ◦C. In addition, each catalyst showed the
same trend in the process of photothermal synergistic catalysis of benzene, that was, the
conversion/mineralization rate gradually increased and then stabilized with the extension
of time. According to the comprehensive analysis of conversion rate and mineralization
rate, PDA was the best one in the PTO of benzene (Figure 4a,b).
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Figure 4. (a) Conversion rate, (b) mineralization rate of benzene by PDA, PCA, PMA and PUR
under 150 ◦C and solar light conditions, (c) conversion rate, (d) mineralization rate of benzene for
PDA under only heat, visible-light photothermal or solar light photothermal conditions, (e) con-
version and mineralization rate of benzene for PDA under visible light or solar light photothermal
conditions, (f) conversion/mineralization rate of four-cycle experiments of PDA under 162 ◦C and
solar light conditions.

To explore the influence of the photo/thermal effect on the performance of PDA, the
photothermal-coupled degradation of benzene under only light, only heating, photothermal
synergistic catalysis with solar light and visible light were also investigated (Figure 4c,d).
PDA cannot degrade benzene only under light conditions, and the conversion efficiency was
only 5% at 30 ◦C. Although PDA can generate photogenerated carriers under illumination,
due to the excessively high-space velocity, benzene cannot be rapidly and completely
oxidized on the catalyst surface. In the case of only heating, the C% increased significantly
with the increment of temperature and benzene was converted completely at 190 ◦C. When
light and heat existed at the same time, benzene could be converted completely at 162 ◦C
under solar light, and at 173 ◦C under visible light (Figure 4e). The combination of light
and thermal catalysis significantly reduced the conversion temperature and improved the
conversion efficiency of PDA. The four-round cycle experiments with 8 h of photothermal
synergistic catalytic degradation of benzene were carried out at 162 ◦C in Figure 4f. It can be
seen that PDA still maintains a high conversion (mineralization) rate after the loop experiment,
which indicated that the performance of the photothermal stability of the catalyst was strong.

DRS was used to measure the light absorption of the catalyst. As shown in Figure 5a,
the light absorption band edges of carbon nitride with platinum nanoparticles showed
an obvious red shift compared to pure g-C3N4. The red shift broadens the visible light
absorption range of CN. The DRS curve of PUR and PCA had an upward tail, indicating that
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a mass of defects existed on the surface of PUR and PCA, which was harmful to benzene
degradation. The separation and recombination rates of photogenerated electron–hole
pairs were also investigated using photoluminescence emission spectra (PL). As depicted
in Figure 5b, the PL intensity of PDA was the lowest, showing that PDA had the lowest
charge recombination rate.
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The transient photocurrent test was used to characterize the charge transport and sepa-
ration efficiency of the sample and used the three-electrode method to test the photocurrent
response value of the PDA sample. It is found that the PDA sample has the highest under
solar light irradiation, which indicates that PDA can generate more e−/h+ pairs and that
the photogenerated carrier flux is fast, which corresponds to the activity of catalyzing the
degradation of benzene. Simultaneously, their impedances were analyzed. The smaller
the radius of the Nyquist arch in the electrochemical impedance spectrum, the lower the
migration resistance of the photogenerated carriers. In Figure 5c, the order of radii was
PCA > PUR > PMA > PDA, which indicated that PDA had the highest charge transfer
efficiency. The photocurrent experiment in Figure 5d also showed the same conclusion,
which meant that PDA could generate more carriers under the excitation of light. The
enhanced photocurrent was due to the SPR effects of Pt NPs in PDA, which further pro-
moted photoinduced charge separation. This was the reason why PDA made the greatest
performance in the photothermal degradation of benzene.

The reactive oxidation species have a decisive effect on the PTO of benzene. They
were detected using EPR and the data are shown in Figure 5e,f. In dark conditions, the
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signals of radicals were very weak. After 300 s of light irradiation, the characteristic peaks
of DMPO trapped ·OH and ·O2

− adducts appeared in the aqueous suspension of PDA.
EPR data indicated that the main oxidative species in the benzene degradation experiment
using PDA photocatalyst were ·OH and ·O2

−. Based on the above analysis, a possible
mechanism was put forward in Scheme 1. In the photothermal synergistic catalysis process,
photoexcitation can make the matrix carbon nitride generate excited electrons so that the
electrons continuously flow to the Pt NPs. Meanwhile, thermal catalysis not only reduced
the activation energy required for the reaction but also generated the hot electrons. It is
rapidly transferred to the active site to participate in the reaction so that the O2 adsorbed
by Pt in the reaction could be quickly converted into ·O2

−, the OH- was converted to ·OH
and both of them promoted the degradation of benzene. Combined with the activity data
of photothermal catalytic degradation of benzene and the tested results, a conclusion can
be drawn. The SMSI effect of Pt/g-C3N4 led to the formation of chemisorbed oxygen and
negatively charged Pt NPs, which promoted oxygen activation in the thermocatalytic oxidation
process and SPR effects of Pt NPs in the photocatalytic oxidation process [52–54]. The SPR
effects further promoted photoinduced charges separation and the ·O2

− formation [39,42].
Thus, the efficiency of photothermal synthesis catalytic degradation of benzene improved.
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3. Materials and Methods

Materials: All chemicals were used without further purification.
Analytical-grade Chloroplatinic Acid (H2PtCl6), cyanamide (CA), dicyanamide (DA),

urea (UR) and melamine (MA) were purchased from Sinopharm.

3.1. Preparation of g-C3N4 and Pt/g-C3N4

Typically, 10 g of the precursor was loaded into a crucible with a cover. Then, the
crucible was put into a maffle and heated to 550 ◦C for 4 h at a rate of 5 ◦C/min. After
cooling, the samples were ground to obtain powdered g-C3N4.

Subsequently, Pt NPs were loaded on the surface of g-C3N4 using photodeposition
with H2PtCl6 which was named PCA, PDA, PUR and PMA according to different precur-
sors. The obtained sample was dried and sieved to 50–70 mesh for use.

3.2. Characterization

The morphology and elemental mapping images of catalysts were characterized using
field emission scanning electron microscopy (SEM, SU8000, Japan Hitachi Co., Tokyo, Japan)
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and a transmission electron microscope (TEM, Talos F200s, FEI Co., Hillsboro, OR, USA).
X-ray diffraction (XRD, D8 Advance, Germany Bruker Co., Billerica, MA, USA) patterns
using Cu Kα radiation were used to characterize the crystal structure of samples. The surface
chemical state of the catalysts was characterized by X-ray photoelectron spectroscopy (XPS,
ESCALAB 250Xi, Thermo Scientific Co., Waltham, MA, USA, the standard peak is the C 1s
peak at 284.8 eV). The UV-vis diffuse reflectance spectra of the samples were measured by
an integrating sphere UV-vis spectrophotometer (DRS, Cary 5000 Scan Spectrophotometer,
Agilent Cross Lab., Palo Alto, CA, USA). Photoluminescence (PL) was performed on Fluorolog-
3 (HORIBA Co., Tokyo, Japan) to research the recombination of charge carriers of catalysts.
Electrochemical impedance spectroscopy (EIS) of the samples was tested using an electrochem-
ical workstation (VSP–300, France Bio–Logic Co., Saône-et-Loire Department, France), which
contained a three-electrode system. The working electrode was the FTO glass with catalysts
(5 mg catalyst in 0.9 mL DMF and 0.1 mL Nafion with 0.25 cm2 active area), the reference
electrode was an Ag/AgCl electrode and the counter electrode was Pt wire. The electrolyte
was a 0.2 M Na2SO4 aqueous solution.

3.3. Photothermal Synergistic Catalytic Degradation of Benzene

The photothermal synergistic catalytic degradation of benzene takes place in a three-
way reactor, which includes an inlet, an outlet and an external thermocouple. In addition,
benzene was generated using a gas bubbling device, which makes benzene diluted with
oxygen so that the inlet concentration of benzene was about 300 ppm, 20 mL·min−1.
Benzene passed through a quartz reactor equipped with catalysts continuously. Before the
reaction, benzene flowed continuously through the catalyst for 12 h in darkness to establish
an adsorption-desorption equilibrium. Then, reacted under photothermal conditions for 8
h to investigate the activities of photothermal synergistic catalytic degradation of benzene.

The temperature of the reaction system was controlled using an external magnetic
stirrer and a thermocouple. The simulated sunlight and visible light source were provided
by an external 500 W Xenon lamp. The gas product type and contents were detected using
an Agilent 7890A online gas chromatograph.

A total of 0.15. g catalyst was put into a quartz three-way reactor and then the catalyst
was subjected to adsorption and desorption treatment under dark conditions until the
concentrations at the outlet were stable. Then, the light source and heater were turned
on to stabilize the temperature of the quartz reactor at a fixed value. The concentration
of benzene and carbon dioxide were detected using online gas chromatography, and the
conversion/mineralization rate was calculated to evaluate the performance of different
catalysts. The conversion rate (C%) and mineralization rate (M%) are calculated as follows.

C% =
(C0 − C)

C0
× 100% (1)

M% =
[CO2]prod

[6 × (C0 − C)]
× 100% (2)

C0 is the concentration of C6H6 when the absorption and desorption equilibrium
is reached, C is the concentration of C6H6 remaining after degradation and [CO2]prod
refers to the concentration of CO2 generated during the photothermal synergistic catalytic
degradation process.

4. Conclusions

In conclusion, g-C3N4 was synthesized by a simple thermal polymerization process
using four different precursors and by loading Pt NPs using photo-deposition. Among
them, PDA had the highest activity in the degradation of benzene after loading Pt NPs. The
mechanism of benzene degradation was also discussed. Light can promote PDA to generate
photogenerated electron–hole pairs, then, electrons flow to Pt NPs continuously. Heat
would reduce the activation energy of the catalyst to degrade benzene, and at the same time,
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accelerate the transfer of electrons and capture of electrons by O2, which will accelerate
the progress of the reaction. In photothermal synergistic catalysis, the thermal action of
photoexcited electrons accelerates the flow of electrons and promotes the degradation of
benzene. Therefore, benzene could be degraded under milder conditions, and it also has
high activity under visible light. This work opens up the use of g-C3N4 for the efficient
degradation of benzene under visible-light and solar light photothermal conditions.
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