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Abstract: It is currently believed that plaque complication, with the consequent superimposed
thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets
are major players in this process. Despite the considerable progress made by the new antithrombotic
strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in
terms of a reduction in major cardiovascular events, a significant number of patients with previous
ACSs treated with these drugs continue to experience events, indicating that the mechanisms of
platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology
has improved. It has been reported that, in response to physiological and pathological stimuli,
platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly
well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets
are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for
protein synthesis following their activation. A better understanding of the pathophysiology of platelet
activation and the interaction with the main cellular components of the vascular wall will open up
new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and
peripheral artery diseases before and after the acute event. In the present review, we will discuss the
novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications
in activation and aggregation.
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1. Introduction

The rupture (or the erosion) of an atherosclerotic plaque with a superimposed platelet
aggregation is the most accepted cause of acute coronary syndromes (ACSs) [1].

Unfortunately, the vulnerable plaques cannot be identified in everyday clinical prac-
tice, and new molecular biomarkers are desirable to allow a more efficient estimation of
the risk of the most encountered complications of atherothrombosis, such as ACSs and
cardiovascular deaths [2,3].

Platelet activation is a key element in the genesis of clinical complications of atheroscle-
rotic coronary diseases. Indeed, the availability of increasingly efficient antiplatelet drugs
had a significant impact on the prognosis of patients with ACSs [4–6]. Moreover, the
presence of high on-treatment platelet reactivity is an important predictor of major adverse
cardiovascular events (MACEs) in patients with chronic ischemic heart disease [7–9]. The
presence of type 2 diabetes mellitus (DM2) or chronic kidney diseases (CDs) also has a
significant impact on platelet activation [10,11] and represents a prognostic factor with an
important additive value [12]. In addition, the presence of peripheral arterial disease (PAD)
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of the lower limbs and/or peripheral ischemia is associated with an alteration in the respon-
siveness of the platelets to shear stress and to pharmacological inhibition [13,14]. However,
despite the considerable progress made by new antithrombotic and anticoagulant therapies
(P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in
terms of MACE reduction, a significant number of patients with previous MACE treated
with these drugs continue to experience events [15], indicating that the mechanisms of
platelet activation in these patients are still largely unknown. For years, platelets have been
considered only the final effector of the coagulation cascade mainly involved in thrombus
formation [16]. However, in the last decade, great efforts have been directed toward a
better understanding of platelet pathophysiology and discovering its functions beyond
aggregation, such as immune modulation [17].

It has been found that, in response to physiological and pathological stimuli, platelet
activation is associated with de novo protein synthesis, through a rapid and particularly well-
regulated translation of resident mRNAs of megakaryocytic derivation [18]. Although platelets
are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used
for protein synthesis following their activation [17,18]. However, the mechanisms underlying
the modulation of the activity of these mRNAs are still not completely known.

Moreover, beyond their well-established indispensable role in regulating hemostasis,
platelets are increasingly emerging as key regulators in several processes, including in-
flammatory and immune pathways, response to both viral and bacterial infections, cancer,
vascular and lymphatic development, the maintenance of vascular integrity, the maturation
of the circulatory system, the formation of new blood vessels, wound healing, and bone
formation [19]. This extraordinary ability of platelets to regulate so many physiological and
pathophysiological conditions depends on their biochemical and functional heterogeneity,
and on their capacity to store and release a wide range of biologically active substances
via their granules and microparticles [17,20–22]. Platelets also secrete a large number of
noncoding RNAs (miRNAs, lncRNAs, circRNAs, or snoRNAs) [23,24].

In the present review, the emerging regulatory pathways involved in platelet activation
and aggregation will be discussed.

2. The Classic View of Platelets in Thrombosis and Hemostasis

Platelets are the final effectors of the hemostatic process with the primary role to
prevent blood loss if vascular damage occurs [16]. This process is highly regulated and
involves vessels, vascular wall components, platelets, the coagulation cascade, and the
fibrinolytic system [16,17]. Schematically, the hemostatic process may be divided into four
interconnected steps [25]: (1) vascular phase: In the beginning, there is a short period
of vasoconstriction (due to reflex neurogenic mechanisms and humoral factors such as
endothelin, which is a potent vasoconstrictor of endothelial origin). Vascular contraction is
more evident in vessels with well-defined muscle walls and serves to reduce momentary
blood loss; (2) platelet phase: Endothelial cell injury exposes the subendothelial thrombo-
genic materials, to which platelets adhere, thus entering an “activation” state [16,26]. At this
moment, a change in platelet shape and an exocytosis reaction occur [27]. Then, platelets
release different factors from their own granules (ADP, TXA2, serotonin, and others) that
recruit further platelets, leading to the final plug formation [16]. This reaction occurs within
a few minutes of the injury and constitutes the so-called primary hemostasis [25]. In the
case of capillary lesions, primary hemostasis is sufficient to repair the damage; (3) coag-
ulation phase: The injury of larger vessels induces the exposure of tissue factor, which
binds the circulating coagulation factor VII, thus activating the extrinsic pathway of the
coagulation cascade and finally leading to thrombin generation [26]. Its primary function is
to cleave fibrinogen to fibrin, forming the fibrin clot of the hemostatic plug [28]. This step
is named secondary hemostasis [25]; (4) fibrinolytic phase: Once the vascular lesion has
been repaired, the clot dissolves through the fibrinolysis process [25]. This lytic activity
is mainly performed by plasmin that is generated in situ from its precursor the zymogen
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plasminogen [29]. This conversion occurs on the surface of the fibrin clot or cell surfaces,
through two enzymes, the tissue plasminogen activator or urokinase [29].

This process is highly regulated via several mechanisms, including RNA-related
pathways. A schematic view of the hemostatic process is shown in Figure 1.

Figure 1. Overview of hemostasis. Endothelial damage induces activation of the primary hemostasis.
Subendothelial thrombogenic material is exposed to the flowing blood. Vasoconstriction and coagu-
lation cascade activation occur. Moreover, the subendothelial matrix proteins bind to receptors on
the platelet surface finally resulting in platelet activation and aggregation, leading to platelet plug
formation. Secondary hemostasis leads to the formation of fibrin through coagulation proteins and
the formation of a blood clot including activated platelets. Once the vessel wall is repaired, the clot is
dissolved by fibrinolysis. These processes are regulated via different RNA-related mechanisms.

A perturbation at any step of the hemostatic process may lead to thrombosis and/or
bleeding. The modulation of the two faces of hemostasis, such as coagulation cascade and
platelet aggregation, is now the cornerstone in the management of thrombotic disorders,
such as atrial fibrillation [30], pulmonary embolism [31], acute coronary syndromes [32],
peripheral artery diseases [33] and stroke [34]. However, despite the antithrombotic in-
tervention, recurrent thrombotic events still occur, indicating that the mechanisms of the
coagulation cascade and platelet activation need to be further investigated. In this regard,
in the last 15 years, our understanding of the molecular mechanisms involved in platelet
activation has improved, uncovering novel therapeutical strategies to pursue even in an-
tithrombotic interventions. Despite the lack of nuclei, the modulation of platelet genome
and proteome has been reported, with important therapeutical implications [17].
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3. Platelet Genome and Proteome Regulation: Role of miRNA, Splicing mRNA, and
Noncoding RNA
3.1. miRNome Modulation upon Platelet Activation

The central dogma of molecular biology demonstrates the importance of mRNAs as
pivotal mediators between the genetic information at the DNA level and proteomes that
regulate the various functional outcomes at the cellular level. For this reason, RNA-Seq
and real-time techniques are very used in many different research fields and assume an
important role in the study of cardiac development and platelet maturation [35]. It has been
largely proved that mRNA levels can be used for research and diagnostical purposes [36],
especially if related to cardiovascular diseases [37]. Despite anucleate, platelets possess
a repertoire of mRNAs, several of which are translated into protein [38]. These mRNAs
may be transferred from platelets to other cells, and these recipients may use the mRNA
as a template for translation [38]. Variation in blood mRNA has been reported in ACS
patients [35,39] as well as in animal models of acute cerebral ischemia [40–42]. In addition,
mRNA levels derived from the platelets have been used as indicators of pathological
status [35,43,44]. Hence, the characterization of platelet transcriptome may be helpful to
obtain further information regarding the function of platelets in health and disease. A
summary overview of this process is provided in Figure 2.

Figure 2. The central dogma of biology in platelets: from megakaryocyte genome to platelet pro-
teome via platelet transcriptome modulation. The focus is on noncoding RNAs and alternatively
spliced mRNAs.

A regulation mechanism of gene expression in eukaryotes is controlled through mi-
croRNAs (miRNAs), which are small RNAs (21–24 nucleotides) able to regulate the transla-
tion of mRNAs by directly binding to them [45]. It has been demonstrated that the activity
of the majority of human genes is regulated at the post-transcriptional level through
miRNAs [45]. Platelets also possess different miRNAs [46], which are “inherited” from
megakaryocytes along with the key components of the “RNA interference” machinery
dependent on these small noncoding RNAs [47]. Moreover, during the initial phases of
platelet activation, significant modulation occurs in different miRNA levels in the platelets,
resulting in significant modifications in the proteome [18,46].

It has been reported that human platelets contain a miRNA repertoire [46,47] and
biosynthetic pathway components [48]. The regulatory network existing between platelets’
miRNome, transcriptome, and proteome during activation is a matter of intense investiga-
tion. Our group has demonstrated that upon activation, the platelet proteome undergoes
significant remodeling [18]. These changes occur in the absence of comparable changes
in the steady-state levels of the corresponding mRNAs. Taking into account the known
effects of miRNAs on mRNA translation efficiency, we then showed that platelet miRNome
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underwent major reprogramming under these conditions [18]. This modulation resulted
in proteome changes that were independent of the nature of the stimulus [18]. It has
also been reported that the extent of the miRNA response is directly correlated with the
potency of the activating stimulus. Moreover, it has also been shown that a large num-
ber of miRNAs respond to different degrees of platelet activation [46,49–51], indicating
a strong reorganization of platelet miRNome upon activation [18,52]. This accumulation
of miRNAs is the result of an enhanced precursor (pre-miRNA) maturation mediated
via the enhanced expression of the key components of miRNA machinery, such as Dicer,
GW182, and Ago2 [47,50]. On the other hand, the downmodulation of miRNAs occurs
through nucleic acid modifications, such as adenylation and uridylation, which reduce
their stability [50], and/or through the selective release of mature miRNAs from activated
platelets [49,53,54] via other mechanisms that are still under investigation [21,46]. An
inverse correlation between miRNAs and mRNA behavior is also possible, suggesting a pu-
tative effect of miRNAs on messenger stability [55]. MiRNAs may also target longer RNAs.
This requires their assembly in a RISC complex or microRNP (microRNA–ribonucleic–
protein complex (miRNP)), where the miRNA serves as a specificity guide for target RNA
recognition [55,56]. The core of every miRNP/RISC includes an Ago protein, which directly
binds to a single-stranded miRNA and, upon target RNA recognition, orchestrates mRNA
degradation or translational repression [55]. In detail, a perfect complementarity with
the target RNA leads to RNA cleavage; an imperfect one, instead, produces translational
repression [55]. The final effect is the modulation of protein synthesis, even if the level of
the target mRNA remains unchanged [55].

It has been shown that the integrin pathway is one of the most modulated targets
by miRNAs in activated platelets [18]. This is not a surprise since upon activation, a
substantial change in platelets’ shape occurs [27]. It is well known that integrins play
a key role in the adhesion and aggregation of the subendothelial matrix proteins of the
vascular wall, thus ensuring hemostasis [57]. Five different integrins, belonging to the β1
and β3 families, (α2β1, α5β1, α6β1, αvβ3, and αIIbβ3, whose main ligands are collagen,
fibronectin, laminins, vitronectin, and fibrinogen, respectively) are expressed at platelet
surface [57]. The most abundant and best-characterized integrin is αIIbβ3 [58]. Recently,
the importance of α5β1 in hemostasis under normal and inflammatory conditions has
also been better defined [59]. Various agonists may modulate the affinity of integrins for
their ligands, thereby reinforcing platelet activation [57]. Integrins’ expression, as well
as the intracellular integrin-related pathway, are highly regulated [60]. Specifically, the
upregulation of miR-92b-3p, miR-486–3p, and let7-e-5p has been reported [18,46,49,50].

Additionally, miR-107 and miR-15b-5p are reported to be downregulated in platelets
following activation [18,50]. More interestingly, upon activation, several platelet miRNAs
targeting the immunoinflammatory response pathway are modulated [18]. Several other
miRNAs have been linked to platelet activity and aggregation [46]. We will discuss the
most significant ones.

One of the most abundant miRNAs present in platelets is miR-223 [61]. It is involved
in the regulation of the mRNA of the P2Y12 receptor, one of the main receptors involved in
aggregation [16] and pharmacologically modulated in most antithrombotic strategies [62].
Thus, a putative role as a biomarker of platelet reactivity has been proposed and investi-
gated for miR-223 [61]. Moreover, it has been reported that thrombin-activated platelets
may release the complex Ago2/miR-223 [63], and this complex may be internalized via en-
dothelial cells, thus modifying gene and protein expression [63]. Different reports support
the prognostic role of plasma circulating miR-223 in the incidence of myocardial infarction
with 10 years of follow-up [64], as well as the diagnostic value in healthy subjects treated
with antiplatelet agents [65] and ACS patients [66]. Another highly expressed platelet
miRNA involved in the modulation of P2Y12 receptor expression is miR-126 [67,68]. It
also affects the expression of proteins involved in platelet adhesion [69]. Moreover, its role
in platelet reactivity has also been reported [70]. Finally, miR-126 modulates the proteins
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encoded by the PLXNB2 gene, which belongs to the receptors for semaphorins involved in
platelets’ actin dynamics and thrombus formation [70].

The in vitro activation of platelets by arachidonic acid induces the release of
miR-126 [71,72], which is also inhibited by acetylsalicylic acid (ASA) [73]. In diabetic
patients, a correlation between circulating miR-126 levels and platelet reactivity measured
with P-selectin was found [74]. The administration of ASA in this group was associated
with a decrease in circulating miR-126 [74]. Based on the available data, the final effect of
miR-126 on platelet aggregation results from the modulation of P2Y12 receptor activation
plus platelet adhesion to collagen [75]; thus, the miR-126 downregulation associated with
ASA administration impaired platelet activity [67].

In the last few years, special attention has also been paid to the miR-19b-1-5p that is
associated with thromboxane-mediated platelet aggregation [46]. This miRNA belongs
to the miR-19b cluster that has been reported to have antithrombotic properties [76]. A
previous in vitro study indicates that miR-19b expression inhibits the expression of the
endothelial tissue factor and its procoagulant activity [77]. Taking into account these prop-
erties, the downregulation of miR-19b-1-5p may potentially be associated with increased
platelet reactivity [46]. Two reports have shown that decreased levels of miR-19b-1-5p in
isolated platelet samples after ASA administration are associated with sustained platelet
aggregation in healthy subjects [78] and higher risk of major cardiovascular events in ACS
patients [79], supporting its putative role as a biomarker to monitor antiplatelet therapy.

Another miRNA that has been linked to increased platelet reactivity is miR-204-5p [80].
Its regulation seems to occur through CDC42 downregulation and the modulation of
fibrinogen receptor expression (αIIbβ3) [81]. CDC42 is actively involved in cytoskeleton
dynamics, and it is a direct target of miR-204-5p [82]. A significant upregulation of miR-204-
5p has been reported in ACS patients on dual antiplatelet therapy (ASA plus clopidogrel),
showing high platelet reactivity [83].

A pool of other miRNAs, specifically miR-15a, miR-339-3p, miR-365, miR-495, miR-98,
and miR-361-3p, are linked to the mTOR signaling, which is known to correlate with
glycoprotein-VI-mediated platelet aggregation [84].

3.2. Role of the mRNA Splicing

Immature RNAs represent a significant fraction of platelet transcriptome [23]. These
RNAs contain one or more introns because of the ‘alternative splicing’ in megakaryocytes
and are therefore incompetent for protein synthesis [85,86]. During platelet activation, a
maturation process of these mRNAs is triggered, which leads to an increase in the synthesis
of different regulatory proteins of key processes in the platelet, as demonstrated by in-
depth proteogenomic analyses [18,52,87,88]. Understanding proteome changes following
platelet activation is a new way to diagnose, monitor, and treat diseases caused by platelet
dysfunction [52,88]. It has been shown that platelet proteome can be reorganized through
post-transcriptional/translational processes [87]. In this regard, cytoplasmic splicing may
be a possible regulatory mechanism active during platelet activation [89,90]. The role of
intron retention (IR)-induced mRNA modulation is a relevant process, which is active
during hemopoietic lineage maturation [91] and platelet activation [87]. It is known that
IR is usually associated with mRNA degradation [91]. However, some reports indicated
that it could also influence protein production. It has been demonstrated that transcripts
carrying retained introns are present in megakaryocytes and anucleate platelets [91]. These
introns may be spliced out upon platelet activation [87]. Studies combining proteome and
transcriptome profiling data from resting and activated platelets have definitely shed more
light on the relationship between mRNAs and proteins in human platelets. Activation
may lead to the modulation of thousands of proteins from ~8000 protein-coding RNAs
detected [18,87]. On the other hand, IR analysis revealed a very significant number of
immature RNAs, many of them being matured during the activation process [87,92]. The
induction of resident pre-mRNA maturation during platelet activation promotes selective
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changes in the platelet proteome through the neo-synthesis of proteins involved in platelet
shape changes and possibly other key processes during thrombosis [87].

In conclusion, together with other several processes, such as the modulation of miRNA
expression [18,21,46,49,54], the extensive maturation of resident pre-mRNAs occurs in
platelets in response to activating stimuli [87], representing a mechanism for the post-
transcriptional control of proteome composition in these anucleated cell fragments.

Moreover, some of the pathways involved in platelet response to activating stimuli [93]
overlap with the mechanisms involved in splicing control, thus being amenable to pharma-
cological modulation [94].

3.3. Involvement of lncRNA in Platelet Function

Long noncoding RNAs (lncRNAs) are long RNA transcripts (usually more than 200
nucleotides) not translated into proteins [95]. Their main role is the modulation of the
crucial functions of other noncoding RNAs such as miRNAs, small nucleolar RNAs (snoR-
NAs), etc. [96,97]. It is known that lncRNAs originate from their own promoters, the
promoters of coding or noncoding genes, or enhancer sequences [96,98]. lncRNAs are
present in many organisms with a higher degree of tissue specificity [99] and distinctive
evolutionarily conserved patterns [99–101]. It has been reported that lncRNAs affect a
wide range of cellular activities and functions in health and diseases such as cancer [102],
neurological [103] and cardiovascular [23] conditions, and immunological and metabolic
disorders [104,105]. Notably, lncRNAs may (a) activate or repress gene expression through
the relocalization of regulatory factors; (b) aid in the formation of ribonucleoprotein (RNP)
complexes; (c) remove the regulatory factor bound to the genome, thereby terminating
its regulation; (d) inhibit the miRNA-mediated gene repression; (e) function as primary
miRNA precursors that are processed into mature miRNAs; and (f) initiate long-range gene
regulation [95–97,105].

Long noncoding RNAs seem to be highly involved in megakaryocyte development
and platelet production [106]. It has also been shown that a large number of lncRNAs
are present in platelets despite the lack of nuclei, suggesting that epigenetic regulation
may be an important regulatory mechanism to modulate the platelet proteome and adapt
to environmental situations over their lifespan [23,96]. In the absence of nuclei, post-
transcriptional mechanisms are the key systems for gene expression regulation mainly
via noncoding RNAs [96,98]. Accumulated evidence indicates that lncRNAs play an im-
portant role in platelet reactivity [107]. In this regard, it has been reported that lncRNA
ENST00000433442 is significantly correlated with high platelet reactivity [108], while the
knockdown of lncRNA metallothionein 1 pseudogene 3 (MT1P3) may inhibit platelet
activation [68], indicating a potential link between platelet lncRNAs and platelet functions.
Specifically, lncRNAs exert a different expression profile between hyperreactive and hy-
poreactive platelets [107]. The multiple genes/signaling pathways associated with platelet
functions are influenced by differentially expressed platelet lncRNAs [23,107,109]. Addi-
tionally, other genes/pathways linked to platelet-mediated effects on other cells/tissues
are also influenced by these differentially expressed platelet lncRNAs [96], presenting a
further scenario to be explored. Thus, lncRNAs in circulating platelets might represent a
novel potential biomarker or a possible therapeutic target in many diseases. To date, four
lncRNAs (LNCAROD, SNHG20, LINC00534, and TSPOAP-AS1) have been reported to be
upregulated in platelets of colorectal cancer (CRC) patients and are potential biomarkers for
CRC diagnostics [110]. Further evidence links lncRNAs with cardiovascular diseases [111].
Specifically, the lncRNA ENSG00000258689 is downregulated in hyper-reactive platelets, in
patients with AMI [107]. Notably, the aberrant expression of ENSG00000258689 in AMI
patients could be partially reversed with the use of aspirin [107]. Moreover, it has also
been shown that the lncRNA ENST00000433442 is an independent risk factor for high
residual platelet reactivity in patients affected by ischemic heart diseases already under
dual antiplatelet therapy [108], further supporting the role of lncRNA involvement in
platelet reactivity.
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3.4. Other Noncoding RNAs (Small Nucleolar RNAs, Y-RNAs, Circular RNAs, and piRNA): Is
There a Role in Platelet Activity?

In the last few years, other noncoding RNAs have been identified, such as small nucle-
olar RNAs, Y-RNAs, and circular RNAs, opening a new field of investigation concerning
their role in health and diseases [112]. Small nucleolar RNAs (snoRNAs) are small non-
coding RNAs (between 60 and 200 nt) found in the nucleolus, mainly encoded by intronic
regions of both protein coding and non-protein coding genes [113]. Their primary function
is the 2′-O-methylation and pseudouridylation of rRNAs (ribosomal RNAs) [113]. Is also
postulated that snoRNAs might regulate cell physiology by guiding N4-acetylcytidine
(ac4C) modifications, modulating alternative splicing, and performing miRNA-like func-
tions, thus enabling protein synthesis [113]. It has been reported that the plasma levels of
snoRNAs (mainly SNORD113.2 and SNORD114.1) correlate with platelet activation [114],
supporting their putative role in platelet function.

Y-RNAs are small noncoding RNAs of approximately 100 ± 20 nucleotides in size, in-
volved in several cellular processes, including DNA replication, RNA stability, and cellular
stress responses [115]. They fold into characteristic stem–loop secondary structures that
include a loop domain, an upper and lower stem domain, and a polyuridine domain [115].
The lower stem domain as well as the polyuridine tail are highly conserved binding sites
for Ro60 and La proteins, respectively, and are essential for Y-RNAs to associate with these
proteins to form RoRNPs [115]. Ro60 ribonucleoprotein particles are necessary for DNA
replication through interactions with chromatin and initiation proteins [116]. Although
Y-RNAs are similar in size to miRNAs, it has been shown that these RNA fragments are
not involved in the microRNA pathway [117]. However, the levels of both platelet-derived
plasma miRNAs and Y-RNAs have been linked to platelet function [67]. In this regard, a
previous study reported a correlation between miRNAs and Y-RNA fragments with platelet
activation markers in the general population from the Bruneck Study. Furthermore, plasma
miRNA and Y-RNA levels were associated with residual platelet activity in ACS patients
on dual antiplatelet therapy [67]. Furthermore, a recent review underlined a possible role
of Y-RNAs in atherosclerosis through the release in the bloodstream of extracellular vesicle
(EV)-enclosed Y-RNAs [118].

piRNAs were first discovered in the testes of Drosophila melanogaster [119], and they
were later associated with transposable elements [120]. Today, it is known that piRNAs are
small noncoding RNAs of 26–32 nucleotides and are quite conserved among species [121].
They interact with the PIWI proteins of the AGO family (from this derives the name
Piwi-interacting RNAs (piRNAs)), forming a silencing complex able to suppress transpos-
able elements and regulate gene expression at both epigenetic and post-transcriptional
levels [121,122]. It has been demonstrated that this class of molecules can have an important
role in cardiovascular diseases. Indeed, they seem to be involved in heart failure, myocar-
dial infarction, angiogenesis, and ischemic damage [123]. Furthermore, many studies have
shown that piRNAs are involved in regulating many factors such as cell proliferation,
apoptosis, cell cycle, cell migration, oxidative stress, and DNA damage [123]. Recently,
it has been hypothesized that piRNAs are not easily degraded and can pass through the
cell membrane [124]. Indeed, they were also proposed as a tool to cloak the platelet mem-
brane with nanoparticles and thus increase the permeability of the blood–brain barrier
to treat neurological cancers [125]. To date, the role of piRNAs in platelet activity is not
completely understood, but it is known that they may synergize with miRNAs to promote
megakaryocyte differentiation [126].

Circular RNAs (or circRNAs) are single-stranded RNAs that form a covalently closed
continuous loop [112,127], with the 3’ and 5’ ends joined together [128]. This feature confers
numerous properties to circRNAs, many of which have only recently been identified.
The biological function of most circRNAs remains unclear; however, because they are
resistant to degradation, a putative role in mRNA stability in the absence of transcription is
postulated [23,129]. The identification of circRNAs’ mechanism of action is very challenging
and includes the characterization of alterations in the host gene transcript (particularly for
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nuclear circRNAs), the identification of the interactions with RNAs, and the assessment
of the circRNA–protein relationship [112]. It has been reported that some circRNAs may
code for proteins [130], while others have shown potential as gene regulators [127,128].
CircRNAs are highly abundant in human platelets [129]. To date, no evidence is available
on the role of circRNAs in platelet function. A summary of noncoding RNAs and their
involvement in platelet function are provided in Table 1.

Table 1. RNA-related mechanisms involved in platelet function.

RNA-Related Activity Nucleotides Function Relevance

miRNA ~22 Downregulation of protein
synthesis Most studied platelet ncRNAs

Alternatively spliced
mRNA

Different exons combinations
from the same gene, leading

to different, but related,
mRNA transcripts

An important mechanism in
anucleate cells with prespecified

transcriptome to modulate protein
synthesis

lncRNA >200 Role in platelet reactivity Highly involved in megakaryocytes
development and platelet production

snoRNA 60–200 Possible role in platelet
activation

The primary function is to guide
nucleotide modifications in rRNA

Y-RNA 100 ± 20 Possible role in platelet
function

Involvement DNA replication, RNA
stability, and cellular stress responses

piRNA 26–32
Possible synergism with

miRNAs to promote
megakaryocyte differentiation

A silencing complex able to suppress
transposable elements

circRNA
single-stranded RNA that
forms a covalently closed

continuous loop

Highly abundant in human
platelets with a

not-well-defined function
Putative role in mRNA stability

An overview of noncoding RNAs in platelet is provided in Figure 3.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 3. Schematic view of platelet transcriptome/proteome modulation upon activation. This dia-

gram illustrates the complex interplay between platelets’ transcriptome and proteome via miRNAs 

and mRNA alternative splicing. It is also reported that noncoding RNAs might affect the transcrip-

tome (see text for details). Finally, post-translational modifications may occur once platelet proteins 

are synthesized. MiRNA: microRNA; lncRNA: long-noncoding RNA; snoRNA: small-nucleolar 

RNAs; circRNA: circular RNA; piRNA: piwi RNA. 

4. Potential Clinical Implications and Future Perspectives: Are We Ready for Daily 

Use of Noncoding RNAs in Clinical Practice? 

In the last few years, technological innovation has led to a great improvement in an-

alyzing cellular functions.  

The classic view of genome translation from DNA to proteins has deeply changed 

even in cells that lack nuclei such as platelets. It is now well known that these cell frag-

ments are not only the final effectors of the coagulation cascade but also can participate in 

several other biological functions beyond thrombosis [17,19]. Upon activation, platelets 

are able to modulate their own megakaryocyte-derived transcripts that finally lead to pro-

teome change [17,85,86]. This modulation is the final result of complex pathways that are 

still under intense investigation. New discoveries are focused on the role of miRNAs, 

mRNA alternative splicing, and noncoding RNAs [24].  

The possibility to monitor the changes in mRNA and miRNA profiles, detect the al-

ternative mRNA transcripts, and evaluate the different noncoding RNAs (lncRNAs, Y-

RNAs, and circRNAs) could unveil new interesting perspectives in clinical practice. It is 

known that platelets may secrete over 500 different molecules into the plasma, including 

a large number of noncoding RNAs and miRNAs [24]. 

MicroRNAs are abundant in platelets [18,46]. They may regulate platelet function by 

targeting specific genes, thus modifying protein expression [18]. Selected platelet-derived 

miRNAs have been linked to platelet reactivity. Hence, they might be useful diagnostic 

and prognostic biomarkers of high on-treatment platelet reactivity. To date, many authors 

have sought to study transcriptomic data derived from human platelets [35] and their re-

lationship with microRNA data [131]. These data, collected by many authors over the 

years, underline the remarkable features of the transcript–protein network in platelets. 

However, these features are still not completely known. In particular, not only the data 

Figure 3. Schematic view of platelet transcriptome/proteome modulation upon activation. This
diagram illustrates the complex interplay between platelets’ transcriptome and proteome via miRNAs



Int. J. Mol. Sci. 2023, 24, 7650 10 of 17

and mRNA alternative splicing. It is also reported that noncoding RNAs might affect the transcrip-
tome (see text for details). Finally, post-translational modifications may occur once platelet proteins
are synthesized. MiRNA: microRNA; lncRNA: long-noncoding RNA; snoRNA: small-nucleolar
RNAs; circRNA: circular RNA; piRNA: piwi RNA.

4. Potential Clinical Implications and Future Perspectives: Are We Ready for Daily
Use of Noncoding RNAs in Clinical Practice?

In the last few years, technological innovation has led to a great improvement in
analyzing cellular functions.

The classic view of genome translation from DNA to proteins has deeply changed
even in cells that lack nuclei such as platelets. It is now well known that these cell fragments
are not only the final effectors of the coagulation cascade but also can participate in several
other biological functions beyond thrombosis [17,19]. Upon activation, platelets are able
to modulate their own megakaryocyte-derived transcripts that finally lead to proteome
change [17,85,86]. This modulation is the final result of complex pathways that are still
under intense investigation. New discoveries are focused on the role of miRNAs, mRNA
alternative splicing, and noncoding RNAs [24].

The possibility to monitor the changes in mRNA and miRNA profiles, detect the
alternative mRNA transcripts, and evaluate the different noncoding RNAs (lncRNAs, Y-
RNAs, and circRNAs) could unveil new interesting perspectives in clinical practice. It is
known that platelets may secrete over 500 different molecules into the plasma, including a
large number of noncoding RNAs and miRNAs [24].

MicroRNAs are abundant in platelets [18,46]. They may regulate platelet function by
targeting specific genes, thus modifying protein expression [18]. Selected platelet-derived
miRNAs have been linked to platelet reactivity. Hence, they might be useful diagnostic
and prognostic biomarkers of high on-treatment platelet reactivity. To date, many authors
have sought to study transcriptomic data derived from human platelets [35] and their
relationship with microRNA data [131]. These data, collected by many authors over the
years, underline the remarkable features of the transcript–protein network in platelets.
However, these features are still not completely known. In particular, not only the data
collected on healthy donors [132] but also the data collected during acute myocardial
infarction [35], cancerous events [133], and other pathological events [86,134] are extremely
useful to understand platelet behavior (activation, aggregation, and proteomic turnover on
the surface). Furthermore, over the years, many methods have been exploited to analyze
platelet transcriptomes: bulk RNA, single-cell RNA, and gene expression arrays [85].
However, to date, single-cell data are still limited due to the very small number of RNAs
contained within the platelets [85]. Thus, further investigation is needed to better identify
their clinical application.

The splicing variants of mRNAs are also interesting and might be of clinical rele-
vance [90,94]. Alternative splicing occurs in platelets, especially in young platelets that
are enriched with prothrombotic signaling. This prothrombotic potential is abundant in
patients with diabetes, acute or chronic coronary syndrome [135], and smokers; thus, it
might be evaluated for therapeutical purposes.

Finally, alterations in the repertoire and/or the number of platelet-secreted noncoding
RNAs have been associated with CVD as well as other diseases [23].

The miRNA-based assessment of platelet reactivity, as well as the evaluation of mRNA
alternative transcripts or noncoding RNA profiles, may improve the prediction of an-
tiplatelet treatment efficacy, giving the opportunity of an individual antiplatelet treatment
tailored to highly specific patient needs.

The analysis of these data has allowed researchers to focus their attention on a few
pathways or genes dysregulated during pathological events (such as acute myocardial
infarction [35]); this could be very useful to directly test the expression of the selected genes
using easier and more cost-effective approaches such as real-time methods (now available
in many hospitals). However, many limitations remain, due to the biological conformation
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of platelets (platelets’ size and RNA contents), the biological variance between individu-
als [131], and technical difficulties (e.g., accidental activation during sample collection).

5. Conclusions

The role of noncoding RNAs is essential for the modulation of platelet function.
Undoubtedly, RNA-based diagnostics are promising tools to monitor platelet activity, CVD,
and other diseases [136]. The advantages of RNAs as biomarkers include the possibility
of detection in human fluids, a cell-type specific profile, and fluctuations in response to
stimuli. However, some technical challenges still exist: (1) there is a need for a higher
amount of blood (at least 15/20 mL), and (2) their time-consuming analysis requires several
hours to obtain the results, thus limiting their application in acute settings. Focusing on a
few dysregulated genes/noncoding RNAs might be a fair compromise to pursue.

RNAs may be also administered for therapeutical purposes. The recent approval of
RNA-based drugs to treat some CVD such as hypercholesterolemia (i.e., inclisiran) [137]
as well as other diseases [138] indicates that a new therapeutical future is on the horizon.
However, there is still a need for further technological improvements for the best use of
this approach by overcoming the current limitations. First, despite the recent advances, the
issue of the immunogenicity of RNA therapeutics still needs to be further explored. Second,
the specificity, with unexpected off-target effects and undesired on-target effects, as well as
the appropriate relationship between dosing and specificity still needs to be better defined
in the clinical setting. Finally, “safe” delivery to the target organ with more selective and
specific approaches should be achieved.
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