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Abstract: This paper assesses the association of the insertion/deletion ACE (angiotensin-converting
enzyme) variant (rs1799752 I/D) and the serum ACE activity with the severity of COVID-19 as well
as its impact on post-COVID-19, and we compare these associations with those for patients with non-
COVID-19 respiratory disorders. We studied 1252 patients with COVID-19, 104 subjects recovered
from COVID-19, and 74 patients hospitalized with a respiratory disease different from COVID-19. The
rs1799752 ACE variant was assessed using TaqMan® Assays. The serum ACE activity was determined
using a colorimetric assay. The DD genotype was related to risk for invasive mechanical ventilation
(IMV) requirement as an indicator of COVID-19 severity when compared to the frequencies of
II + ID genotypes (p = 0.025, OR = 1.428, 95% CI = 1.046–1.949). In addition, this genotype was
significantly higher in COVID-19 and post-COVID-19 groups than in the non-COVID-19 subjects. The
serum ACE activity levels were lower in the COVID-19 group (22.30 U/L (13.84–32.23 U/L)), which
was followed by the non-COVID-19 (27.94 U/L (20.32–53.36 U/L)) and post-COVID-19 subjects
(50.00 U/L (42.16–62.25 U/L)). The DD genotype of the rs1799752 ACE variant was associated with
the IMV requirement in patients with COVID-19, and low serum ACE activity levels could be related
to patients with severe disease.

Keywords: ACE; COVID-19; genetics; angiotensin-converting enzyme; single nucleotide variant;
renin–angiotensin system

1. Introduction

The renin–angiotensin system (RAS) controls multiple functions in the cardiovascular
system, including metabolism, cell growth, and homeostasis. RAS has been reported to
participate in the inflammatory process of cardiac hypertrophy, pulmonary hypertension,
glomerulonephritis, lung injury, sepsis, and acute pancreatitis [1].
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The RAS is regulated by the angiotensin-converting enzyme (ACE) and its homologue
angiotensin-converting enzyme 2 (ACE2) [2]. ACE is expressed in the lung, kidney, small in-
testine, brain, heart, adrenal gland, and gut. ACE interacts with angiotensin (Ang) I (Ang-I)
to produce the vasoconstrictor Ang-II and inactivates bradykinin, producing vasoconstric-
tion, fibrosis, inflammation, and thrombosis responses [3,4]. Meanwhile, ACE2 hydrolyzes
Ang-II into Ang-1–7, which increases vasodilation [5]. In the lung, RAS regulates cell
proliferation, inflammatory immune response, hypoxia, and angiogenesis [6].

In humans, ACE and ACE2 genes are located at chromosomes 17q23 and Xp22. ACE
is especially abundant in highly vascular organs such as the retina and lungs. Even the
lung possesses the highest amount of ACE and contributes 0.1% of total protein [7]. ACE
is under promoter regulation by hypoxia-inducing factor 1α (HIF-1α), which upregulates
this gene expression under hypoxic conditions, increasing Ang-II levels. Under hypoxia,
ACE2 is downregulated through Ang-II [8].

The imbalance of this system leads to several complications observed in inflamma-
tory syndromes [9]. Moreover, the regulation factor of ACE expression, HIF-1α, is af-
fected by aging and high-risk factors (diabetes, hypertension, and chronic obstructive
pulmonary disease) [10].

In coronavirus disease (COVID-19), the RAS seems to play an essential role in the
pathogenesis of severe cases since the RAS is crucial to the homeostasis of both the cardio-
vascular and respiratory systems, and the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) utilizes and interrupts this pathway directly [11,12]. SARS-CoV-2 infection
is initiated by the specific binding of the viral spike protein to ACE2. The expression
of ACE2 and several genetic variants have been related to COVID-19 susceptibility and
severity [13–15]. Likewise, high admission plasma ACE2 levels have been associated with
increased COVID-19 severity within 28 days [16], and the serum ACE2 activity was related
to COVID-19 severity and mortality risk in this disease [17].

Regarding ACE, different reports have linked ACE variants and their expression with
COVID-19 mortality and severity among worldwide populations [18]. For instance, the
rs1799752 ACE has been associated with COVID-19 risk and ACE expression [19,20] and
with the ACE2 protein levels in alveolar lung epithelium in patients with the disease [21].
However, the ACE activity enzyme could be involved in the severity of COVID-19 and
the outcome in post-COVID-19 patients, but this has not been previously evaluated. Thus,
we aimed to assess the association of the insertion/deletion ACE variant (rs1799752) and
the serum ACE activity with the severity of COVID-19 and its impact in post-COVID-19
subjects and patients hospitalized with a respiratory disease different from COVID-19.

2. Results
2.1. Clinical and Demographical Data of the COVID-19, Post-COVID-19, and
Non-COVID-19 Subjects

The clinical and demographical characteristics of patients hospitalized with COVID-19
are shown in Table 1. Patients requiring invasive mechanical ventilation (IMV) were older
and predominantly male (OR = 1.7, 95% CI = 1.3–2.2) compared to the non-IMV group. Co-
morbidities such as type 2 diabetes mellitus (T2DM), systemic arterial hypertension (SAH),
chronic respiratory diseases (CRD), and cardiovascular diseases (CVD) were observed in
both groups and had a similar frequency. As expected, the PaO2/FiO2 levels and the length
of hospital stay differed among groups, and the days since symptoms onset to hospital
admission were slightly higher in the IMV group.
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Table 1. Clinical and demographic data of patients with severe COVID-19.

Variable a All
(n = 1252)

IMV
(n = 899)

Non-IMV
(n = 353) p-Value b

Age, years 59 (50–67) 60 (51–68) 56 (48–65) <0.001
Sex, M/F

(%)
844/408

(67.4/32.6)
638/261

(71.0/29.0)
206/147

(58.4/41.6) <0.001

BMI, kg/m2 29.3 (26.2–33.2) 29.4 (26.6–33.3) 28.9 (25.7–33.1) 0.103
Smokers (%) 363 (29.0) 264 (29.4) 99 (28.1) 0.564

Co-morbidities
T2DM (%) 340 (27.2) 246 (27.4) 94 (26.8) 0.561
SAH (%) 438 (35.0) 318 (35.4) 120 (34.0) 0.817
CRD (%) 95 (7.6) 68 (7.6) 27 (7.6) 0.234
CVD (%) 49 (3.9) 38 (4.3) 11 (3.1) 0.178

PaO2/FiO2 147 (102.8–196.2) 135 (94.2–178) 200 (141–240) <0.001
Days since

symptoms onset 9 (7–13) 10 (7–14) 9 (7–12) 0.035

Hospital stay,
days 18 (12–29) 22 (16–33) 11 (8–15) <0.001

IMV days NA 17.5 (11–28) NA NA
Non-survivors 381 (33.9) 354 (44.5) 27 (8.2) <0.001

Data are presented as median (interquartile range) and absolute account (percentage) for continuous and categori-
cal variables. a Clinical data were unavailable for some subjects; b The comparisons were performed using the
Mann–Whitney U and Fisher’s exact tests. BMI, body mass index; CRD, chronic respiratory diseases; CVD, cardio-
vascular diseases; M, male; F, female; IMV, invasive mechanical ventilation; SAH, systemic arterial hypertension;
T2DM, type 2 diabetes mellitus.

The post-COVID-19 group comprises patients discharged 5–12 months ago due to
a COVID-19 diagnosis; they were predominantly males (65.0%), with a median age of
58 years, body mass index (BMI) of 28.2 kg/m2, and 32.5% of these patients still presented
a respiratory dysfunction (see Section 4) when sampling was performed. Meanwhile, 55.4%
of the non-COVID-19 group were males, and the median age was 63.5 years. Patients in
this group were hospitalized for different respiratory, but non-infectious, diseases (i.e.,
cancer, vasculitis). Unfortunately, we could not obtain the complete clinical information for
all non-COVID-19 patients, such as co-morbidities and disease severity.

2.2. Association of rs1799752 ACE with IMV Requirement in Patients with COVID-19

The allele and genotype frequencies of the rs1799752 variant are shown in Table 2.
Neither the insertion (I) nor deletion (D) alleles were associated with the IMV requirement,
while the frequency of the genotypes differed between the studied groups. The DD geno-
type was associated with the risk of requiring IMV in patients hospitalized with severe
COVID-19. Individuals carrying the ID genotype could exhibit a low risk of needing the
therapeutic procedure. These associations were also observed when the recessive and
over-dominant models were performed (Table 2). These genetic associations remained in
a logistic regression model adjusting for sex and age (Table 2), which are two covariates
strongly related to the studied phenotype. We also evaluated if the genotypes were associ-
ated with mortality among a subgroup of patients in which data were available. Still, we
did not find significant differences in the frequencies between survivor and non-survivor
groups (Supplementary Table S1).
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Table 2. Association study of the rs1799752 ACE with the requirement of IMV among patients with
COVID-19.

Allele/Genotype IMV (n = 899) Non-IMV (n = 353) p-Value a OR (95% CI) Adjusted p-Value b

I 1045 (0.581) 422 (0.598)
0.450D 753 (0.419) 284 (0.402) NA NA

II 362 (0.403) 133 (0.377) 1
ID 321 (0.357) 156 (0.442) 0.010 0.756 (0.574–0.996) 0.011
DD 216 (0.240) 64 (0.181) 1.240 (0.880–1.746)

Recessive model
II + ID 683 (0.760) 289 (0.819)

0.025DD 216 (0.240) 64 (0.181) 1.428 (1.046–1.949) 0.027
Dominant model

II 362 (0.403) 133 (0.377)
ID + DD 537 (0.597) 220 (0.623) 0.399 NA NA

Over-dominant
model

ID 321 (0.357) 156 (0.442)
0.005II + DD 578 (0.643) 197 (0.558) 0.701 (0.546–0.901) 0.006

Frequencies are presented as absolute counts and percentages (proportion). a Chi-square test; b logistic regression
model using age and sex as covariates. 95% CI, 95% confidence interval; D, deletion; I, insertion; IMV, invasive
mechanical ventilation; OR, odds ratio.

We also evaluated whether the genotype frequencies differed among the comparison
groups (post-COVID-19 and non-COVID-19). The genotype distribution in the COVID-19
and post-COVID-19 groups did not accomplish the Hardy-Weinberg equilibrium (HWE);
meanwhile, the frequencies observed in the non-COVID-19 group did meet the assumption.
We found a higher frequency of DD genotype in the COVID-19 group when compared
to non-COVID-19 (p = 0.031, OR = 2.67, 95% CI = 1.16–6.11) (Table 3), which could be
related to a higher risk of severe COVID-19 in agreement with the previous result in which
this genotype was associated with the IMV requirement, and the deviation from HWE
found in COVID-19 groups; however, further studies in subjects with mild or moderate
COVID-19 could drive to more robust conclusions. The DD genotype frequency also
differed between post-COVID-19 and non-COVID-19 groups (p = 0.025, OR = 2.56, 95%
CI = 0.99–6.62), but no differences were observed when comparing the frequencies in
COVID-19 and post-COVID-19 (p = 0.431).

Table 3. Comparison of the genotype frequencies of the rs1799752 ACE among the studied groups.

Genotype COVID-19
(n = 1252) a

Post-COVID-19
(n = 104) a

Non-COVID-19
(n = 74) c

II 495 (0.395) 46 (0.442) 33 (0.446)
ID 477 (0.381) 33 (0.317) 34 (0.459)
DD 280 (0.224) b 25 (0.240) b 7 (0.095) b

Data are presented as n (frequency). D, deletion; I, insertion. a The COVID-19 and post-COVID-19 groups
presented a deviation from Hardy–Weinberg equilibrium; b The DD genotype frequencies were different when
compared COVID-19 vs. non-COVID-19 (p = 0.031) and post-COVID-19 vs. non-COVID-19 (p = 0.025); c The
frequencies in the non-COVID-19 group were according to the Hardy–Weinberg equilibrium.

2.3. Serum ACE Activity Role in COVID-19 and Post-COVID-19

The serum ACE activity was assessed in available samples from patients of the three
subgroups (COVID-19, post-COVID-19, and non-COVID-19). The accessible demographics
and clinical information of these subgroups are included in Table 4.
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Table 4. Demographic and clinical characteristics of patients included in the subgroups for the serum
ACE activity determination.

Variable COVID-19
(n = 66)

Post-COVID-19
(n = 69)

Non-COVID-19
(n = 26) p-Value a

Age, years 61.5 (52.2–69.8) 58 (50–65.2) 69.5 (37–76) 0.224
Sex, M/F

(%)
45/21

(68.2/31.8)
49/20

(71.0/29.0)
13/13

(50.0/50.0) 0.086

BMI, kg/m2 27.9 (25.7–31.2) 28 (26.1–31.8) NA 0.666
Co-morbidities

T2DM (%) 22 (33.3) 22 (31.9) NA 0.857
SAH (%) 22 (33.3) 18 (26.1) NA 0.357
CRD (%) 4 (6.1) 6 (8.7) NA 0.559
CVD (%) 3 (4.5) 2 (2.9) NA 0.612

a Kruskal–Wallis test or chi-square test. Continuous data are presented as median (interquartile range). BMI,
body mass index; CRD, chronic respiratory diseases; CVD, cardiovascular diseases; F, female; IMV, invasive
mechanical ventilation; M, male; NA, not available data; SAH, systemic arterial hypertension; T2DM, type 2
diabetes mellitus.

The groups’ activity levels differed significantly (p < 0.001, Figure 1). We observed a
higher activity level of enzyme activity in the post-COVID-19 group (50.00 U/L (42.16–62.25
U/L)) when compared to patients with pulmonary diseases (COVID-19 and non-COVID-19
groups). Meanwhile, lower levels were observed for the COVID-19 group (22.30 U/L
(13.84–32.23 U/L)) than for the non-COVID-19 group (27.94 U/L (20.32–53.36 U/L)).
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Figure 1. Serum ACE activity levels in the COVID-19 (n = 66), post-COVID-19 (n = 69), and non-
COVID-19 (n = 26) groups. The comparisons were performed using the Kruskal–Wallis test corrected
with the Benjamini–Hochberg method.

We wondered if post-COVID-19 patients still presenting respiratory anomalies were
affecting the analysis; therefore, we performed the same analysis, including only those
patients who completely recovered and reported as healthy when the sampling was
performed. The significant values present minimal variations that can be observed in
Supplementary Figure S1.
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Differences in serum ACE activity levels were independent of the rs1799752 ACE
genotypes. Figure 2 shows that the enzyme activity levels were not statistically different
according to genotypes among each clinical group (COVID-19 p = 0.165, post-COVID19
p = 0.288, non-COVID-19 p = 0.226, Kruskal–Wallis test). Thus, we wondered if there
were some risk factors impacting the serum ACE activity and if this was related to the
requirement of IMV. Among the COVID-19 group, sex, age, BMI, co-morbidities, and
the rs1799752 genotype were unrelated to the activity levels (Supplementary Table S2).
Nevertheless, a tendency toward difference (p = 0.057) was observed when the activity
levels were compared between the patients requiring IMV (n = 43, 19.12 U/L (11.76–29.29
U/L)) and non-IMV (n = 23, 28.43 U/L (17.65–41.91 U/L)), suggesting that low serum ACE
activity is related with higher COVID-19 severity. However, we did not observe a trend
with other clinical parameters such as IMV days or PaO2/FiO2 (Supplementary Table S3).
We also performed a logistic regression model using IMV as a dependent variable, and the
variables included were serum ACE activity, sex, and age, and the only variant that was
found significant was sex (p = 0.019); therefore, further studies are required to determine
if there are additional factors that could be affecting the apparent difference in the ACE
activity among IMV and non-IMV groups.
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Figure 2. Serum ACE activity according to the rs1799752 ACE genotypes in the COVID-19 (n = 66),
post-COVID-19 (n = 69), and non-COVID-19 (n = 26) groups. The ACE activity was not different
among the three genotypes in any of the studied groups (Kruskal–Wallis test, p > 0.05).

We also evaluated if the serum ACE activity level was related to available demographic
characteristics and/or clinical parameters in the post-COVID-19 and non-COVID-19 groups.
In the post-COVID-19 group, the ACE activity level was not different according to sex
(p = 0.322), age (p = 0.841), BMI (p = 0.144), months since patients’ discharge (p = 0.942),
co-morbidities (T2DM p = 0.609; SAH p = 0.573; heart diseases p = 0.858), nor if patients
still presented a respiratory dysfunction (p = 0.407). In patients with non-COVID-19, we
found a correlation between the ACE activity with age (p = 0.042, rho = −0.829), but no
differences in the activity levels were observed according to sex (p = 0.602). A multivariate
analysis was not performed due to the lack of associations in univariate models.



Int. J. Mol. Sci. 2023, 24, 7678 7 of 11

3. Discussion

The COVID-19 pandemic has uncovered several questions about the inter-individual
variability in the severity and clinical outcomes of the disease. Different risk factors have
been related to the complications of subjects with COVID-19, including genetic and non-
genetic issues. Herein, we report the association of the DD genotype of rs1799752 ACE
with the IMV requirement among patients with severe COVID-19 and that the serum ACE
activity is decreased in patients coursing with COVID-19 when compared to subjects with
other pulmonary diseases and convalescent COVID-19 patients.

The association of the ACE rs1799752 variant with COVID-19 severity has been ob-
served in different reports. A recent meta-analysis, including 11 studies with 950 patients
with severe COVID-19, and 1573 patients with non-severe disease, reported that the DD
genotype was related to COVID-19 severity through different models [22]. This finding
agrees with our study and other reports in diverse populations [19,20,23] as well as another
meta-analysis [24], which highlights the relevance of the RAS system, mainly the ACE gene,
in the severity of COVID-19 and other pulmonary diseases. According to our findings, the
DD genotype confers a risk of IMV requirement; meanwhile, the heterozygous genotype
(ID) shows a decreased risk of requiring the procedure. The risk finding of the DD genotype
is in agreement with the previous reports, and the presence of both D alleles is required
to present the risk, as it was observed in the additive and over-dominant models, where
the presence of the insertion in the ID genotype shows a decreased risk of requiring IMV
among patients with COVID-19.

The differences in the DD frequencies among COVID-19/post-COVID-19 and non-
COVID-19 groups could be controversial due to the sample size, or the DD genotype could
provide susceptibility to COVID-19, as it was associated with susceptibility of COVID-
19 in a meta-analysis including 13 studies [25]. Unfortunately, we could not determine
the frequency in a group of healthy volunteers of Mexican Mestizo origin. Nevertheless,
we evaluated if our frequencies differed from those reported in a pre-pandemic study
by Vargas-Alarcon et al., 2003 [26], including 98 Mexican Mestizos. We did not find any
differences with our studied groups (vs. COVID-19 group p = 0.763, vs. post-COVID-19
p = 0.391, and vs. non-COVID-19 p = 0.200). Thus, an indirect association with the risk of
severe COVID-19 could be observed, which aligns with the HWE deviation found in the
COVID-19 groups but not in the non-COVID-19 group.

The deletion allele has also been related to an increased risk of hypertension, pre-
eclampsia, heart failure, cerebral infarct, diabetic nephropathy, encephalopathy, asthma,
severe hypoglycemia in diabetes, gastric cancer (in Caucasians) and poor prognosis fol-
lowing kidney transplant [27]. In agreement, we found an association with complicated
conditions such as the IMV requirement in patients with severe COVID-19. The D allele
has been linked with increased activity of the ACE enzyme [27], which we observed in the
post-COVID-19 group (Figure 2) but not in the COVID-19 group. We thought that risk fac-
tors related to COVID-19 severity (i.e., age, sex, and co-morbidities) acted as confounders;
however, the statistical analyses showed that the serum ACE activity was not related to any
of these variables. In this sense, only in the non-COVID-19 group, we observed a strong
negative correlation between enzyme activity and age, but this could not be applied to
the other groups. However, this finding could indicate that ACE is involved and affected
during SARS-CoV-2 infection independently of other factors.

Previous studies have reported the relevance of ACE activity in the severity of COVID-
19 [28]. Guler et al., reported similar serum ACE activity between 55 patients with COVID-
19, including asymptomatic, mild, and severe groups, and 18 controls [29]. Meanwhile, the
study of Reindl-Schwaighofer et al., reported a significantly lower plasma ACE activity,
measured as angiotensin II/I ratio, related to severe COVID-19, and that did not correlate
with ACE concentrations in plasma [30]. In this sense, lower serum ACE activity can be
observed in patients with severe COVID-19, and activity levels are restored when patients
are recovered (post-COVID-19 group). This finding could be supported by the report of
higher ACE concentration in children and adolescents than adults [31], which are two
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populations with a low risk of presenting COVID-19 complications. On the other hand,
an increment in serum ACE activity may appear as a response to chronic hypoxia due to
respiratory dysfunction, as it has been observed in patients with emphysema, extrinsic
asthma, and small cell carcinoma of the lung [32]; however, a purposeful study including
more patients is warranted.

Moreover, we found that the ACE activity level is impaired in patients with other
respiratory diseases but not in the same proportion as the COVID-19 group, since the non-
COVID-19 group exhibited a lower enzyme activity when compared to the post-COVID-19
group. However, differential enzyme activity levels have been reported according to
respiratory diseases. For instance, higher ACE activity levels have been reported in patients
with sarcoidosis but lower levels have been reported in those with fibrosing alveolitis,
interstitial lung disease, and chronic obstructive lung disease [33]. Unfortunately, we could
not obtain the complete clinical information of patients in the non-COVID-19 group to
draw more solid conclusions.

This study highlights the relevance of ACE and serum ACE activity in COVID-19 and
other respiratory diseases. Nevertheless, this study is not exempt from limitations. First,
evaluating serum ACE activity with non-infected and healthy subjects would be interesting
as well as considering the influence of pharmacological treatment on enzyme activity. We
also acknowledge the small sample size of patients in whom the serum ACE activity was
determined, which could require further confirmation studies. In the non-COVID-19 group,
ample clinical information could drive additional information about the relevance of serum
ACE activity in non-infectious respiratory diseases. Finally, it is worth mentioning that
ACE is significantly expressed in the lung. This information could provide valuable insight
into current and future infectious illnesses and other chronic respiratory diseases.

4. Materials and Methods
4.1. Subjects

This study was performed in the Instituto Nacional de Enfermedades Respiratorias
Ismael Cosio Villegas (INER) (Mexico City, Mexico). For the study design, three groups
of subjects were included: (1) subjects with a diagnosis of COVID-19 confirmed by real-
time polymerase chain reaction test and hospitalized in the institute (n = 1252, recruited
from July 2020 to February 2021); (2) subjects followed after their hospitalization due to
COVID-19 (post-COVID-19, n = 104, recruited from March to October 2021); and (3) patients
hospitalized with a respiratory disease but non-COVID-19 diagnosis (n = 74, recruited
from January to March 2022). All patients were ≥ 18 years old, and they, or a responsible
family member, signed the informed consent. The study protocol was approved by the local
Research Ethics Committee (C53-20) and complied with the Helsinki Declaration criteria.

The severe disease in patients with COVID-19 was determined by the presence of
dyspnea, creating a respiratory rate of ≥30 breaths per minute, blood oxygen saturation
≤ 90%, and/or PaO2/FiO2 ≤ 300 at the hospital admission [34]. The post-COVID-19
group includes patients who were followed up after their hospital discharge since they
presented a pulmonary dysfunction determined by a decrease in their forced vital capacity
or desaturation in the 6 min walking test and/or the presence of interstitial thickening in
the computed tomography, which has been previously reported in other cohorts [35,36]. All
patients in this group coursed severe COVID-19 when hospitalized and required respiratory
support through IMV or high-flow nasal cannula oxygen therapy. Fifty-nine subjects of the
post-COVID-19 group were included in the COVID-19 group; meanwhile, 45 patients were
hospitalized in the INER due to severe COVID-19 but were not in the COVID-19 group.

Blood sampling was performed during the hospital stay of the subjects with COVID-19
and non-COVID-19. Subjects with post-COVID-19 were sampled during one of their follow-
up medical consultations. Demographic and clinical data were acquired from medical
records and the clinical interview with outpatients. We considered the IMV requirement
(IMV and non-IMV) as a severity indicator and dependent variable for the association study.
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4.2. Genotyping

DNA was isolated from peripheral blood collected in tubes with EDTA, employ-
ing the commercial BDtract Genomic DNA isolation kit (Maxim Biotech, San Francisco,
CA, USA), and stored at 4 ◦C until processing. The ACE rs1799752 was determined
through the TaqMan® SNP Genotyping Assays C_60538594A_10 and C_60538594B_20;
the former reports the mutant Alu insertion allele (FAM probe), and the latter reports
the wild-type deletion allele (VIC probe) of the ACE I/D variant. The analyses were per-
formed according to the supplier instructions in a 7300 Real-Time PCR System (Applied
Biosystems/ThermoFisher Scientific Inc., Marsiling, Singapore).

4.3. Serum ACE Activity

The serum ACE activity was determined in a subset of patients from each group
(COVID-19 n = 66, post-COVID-19 n = 69, and non-COVID-19 n = 26). Patients’ samples
from COVID-19 and post-COVID-19 groups were selected according to (a) serum sample
availability and (b) the rs1799752 ACE genotype to ensure that samples from patients
with the three genotypes were assessed for ACE activity. In the non-COVID-19 group, all
the serum samples available were included independently of the genotype. Serum was
separated from peripheral blood collected in tubes without anticoagulant by centrifugation
and stored at −80 ◦C until use. The ACE activity was assessed employing the ACE Activity
Assay Kit (Colorimetric) ab273308 (Abcam, Cambridge, UK) according to the supplier
recommendations. Reads were performed at two wavelengths (345 and 600 nm) every
10 min for one hour. The enzyme activity was determined with the reads from 10 and
60 min, following the equation indicated by the supplier, the ACE activity, in U/L. Only
samples and/or positive control with a correlation coefficient > 0.8 were considered. Blank,
positive control, and samples were evaluated in duplicate, and the mean of each well
was reported.

4.4. Statistical Analysis

According to the data distribution, categorical data are reported as frequencies, and
continuous values are presented as mean ± standard deviation or median (interquartile
range). A Kolmogorov–Smirnov test was employed for the normality assessment. HWE
was assessed using a chi-square test. The association of ACE rs1799752 with the IMV
requirement was assessed using PLINK v 1.07 [37]. The comparison of categorical variables
was performed with the chi-square test or Fisher’s exact test; meanwhile, the evaluation
of continuous data was performed with Mann–Whitney U or Kruskal–Wallis test with
Benjamini–Hochberg correction, as required. A logistic regression model was employed to
adjust for covariates in the association analyses. Statistics were analyzed using RStudio
Workbench 2022.07.2 [38], the ggplot2 [39], ggpubr, and ggsignif packages.

Supplementary Materials: The following supporting information can be downloaded at: https:
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