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Abstract: The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated
with Alzheimer’s disease and dementia. Therefore, disrupting amyloid assembly by direct targeting
of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy.
However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied
for high-throughput structure-based virtual screening in drug discovery projects. In the current
study, we propose a computational pipeline—in the framework of the ensemble docking strategy—to
identify catechins’ binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic
interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally,
it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against
amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated
and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed
pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for
the virtual screening of ligand libraries against Aβ.

Keywords: catechins; amyloid-β; binding sites; ensemble docking; MD simulations

1. Introduction

Intrinsically disordered proteins (IDPs) are very flexible biomolecules without a well-
defined folded structure and typically have important roles in biological processes, in
particular in cellular signaling and gene regulation [1–4]. Under certain conditions, some
IDPs may aggregate into highly toxic oligomers. These oligomers are associated with a wide
range of serious human diseases such as cancer, neurodegenerative diseases, autoimmune
disorders, cardiovascular disease, and type II diabetes [4–9]. Thus, preventing or reducing
aggregation of the IDPs involved in such diseases is as an effective therapeutic strategy.

In recent years, there have been efforts to design and synthesize small molecules
and short peptides to block IDP aggregation at different stages along the aggregation
pathway, in particular nucleation and oligomer formation [4,10–17]. Several studies have
revealed that a large number of natural compounds derived from plants, animals and
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microorganisms have the potential to inhibit oligomerization [11,12,18–20]. For example,
several computational and experimental observations have shown that polyphenolic plant
compounds which occur naturally in fruit, vegetables, chocolate, and tea are capable of
inhibiting IDP aggregation [12,13,20–38].

Finding aggregation inhibitors and direct targeting of monomeric IDPs via small
molecules is a very active area of research and a wide variety of computational techniques
have been applied, yet there are many inherent difficulties [12–14,27,39–46]. For example,
most docking algorithms employ the flexible ligand and rigid receptor paradigm [47–49].
However, IDPs display high conformational heterogeneity, and ligand binding causes large
structural changes in the IDP conformations. To circumvent this problem, heterogeneous
conformational ensembles of IDPs have been used for docking studies [27,38,42,50,51].
Nevertheless, challenges associated with generating and choosing a set of suitable confor-
mations for docking still remain. It will also be interesting to see how and if Alphafold [52]
will change the situation as it has already been applied to non-IDP-related binding prob-
lems [53], but IDPs appear to be a challenge even for Alphafold [54].

Several methods have been proposed for efficient sampling of IDP’s conformational
space and constructing a representative conformational ensemble. Examples include
replica-exchange- [55–58] and metadynamics-based methods [59–61], diffusion map ap-
proaches [62,63] and Markov state modeling [64–67]. For comparisons between the meth-
ods, see for example [43,68–70]. One alternative for effective exploration of the conforma-
tional space is the use of multiple conventional MD trajectories (replicas) with different
initial conditions (different velocities or/and different starting configurations). The strategy
of choosing the initial conditions controls the effectiveness of this approach and its ability
to enhance conformational sampling performance [71–76]. We have recently proposed a
new efficient algorithm for comprehensive exploring of the conformational space of IDPs,
called Blockwise Excursion Sampling (BES) [75,76]. It uses simulated annealing (SA) to find
different low-energy states of various regions of conformational space as optimal starting
configurations for short conventional MD simulations. In BES, conformational sampling
is based on many uncorrelated short MD simulations starting from different points of the
accessible phase space. It has been shown that the protocol is successful in generating
a diverse conformational library for IDP conformations in agreement with experimental
data [75,76].

In this work, a computational pipeline in the framework of the ensemble docking
strategy has been proposed to identify catechins’ binding sites on the full-length human
amyloid-β (Aβ42) monomer which is involved in Alzheimer’s disease [2,5,11,12,27,39,41,43].
Catechins (or flavan-3-ols) are dietary polyphenolic compounds commonly found in green
tea and their inhibitory effects on Aβ aggregation have been the subject of numerous
experimental and computational investigations [21,28,36,77–94]. There is experimental
evidence indicating that the catechins are able to disturb Aβ aggregation and change the
aggregation process toward the formation of non-toxic oligomers [28,37,77,78,80,81,85,86].
Several computational studies have proposed that green tea catechin EGCG interacts with
Aβ42 through both multiple hydrophobic interactions and hydrogen bonding [28,79,84,85].
Those studies have suggested that π-stacking interactions with aromatic amino acids of the
aromatic hydrophobic core region of Aβ42 (from Tyr10 to Phe20) affect Aβ42 aggregation
and can, consequently, disrupt interchain interactions in Aβ42 protofibril structure and
lead to the distortion of the protofibril structure [28,83–85,87,93]. Here, we applied the BES
protocol to generate a reliable structural library for Aβ42 monomer. Through the ensemble
docking approach, a catechin library was docked onto the surfaces of a library of Aβ42
monomers to identify the binding “hot spots” on the Aβ42 peptide. In order to further
evaluate the docking results and the stability of complexes, the obtained structures with
the largest binding energies for each Aβ42–catechin complex were used as the starting
structures for long multi-microsecond MD simulations (total of 15 µs).
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2. Results and Discussion
2.1. Docking Analysis

Structural Analysis and Identifying Ligand Binding Site
Determination of the important residues that are in close contact with the ligand is very

important for the identification of potential inhibitors of Aβ42 aggregation. The distances
between the heavy atoms of the ligand and the residues of Aβ42 were used to define the
binding sites of Aβ42. Based on this assumption, a list of binding residues for each selected
complex was generated for which at least one heavy atom of the residues falls within the
distance cutoff of any ligand heavy atom. To assess the effect of the distance cutoff, five
distances were evaluated: 3.0, 3.5, 4.0, 4.5, and 5.0 Å; the distances cutoff from 3.0 to 5.0 Å
are commonly used to study ligand–protein binding interactions, such as hydrogen bonds,
hydrophobic contacts, and aromatic interactions [22,95–100].

The number of contacts between each ligand and Aβ42 residues for the set-1 (as defined
in Section 3.2) was counted for five different distance cutoffs and tabulated in Tables S1–S5.
Here, we only show the results related to the distance cutoff of 5.0 Å in Table 1. It is very
important to emphasize that in our structural analysis, none of the conformers selected
from molecular docking alone were used to draw qualitative conclusions about the binding
site. All the structural analyses in this study are based on the results given in Table 1, which
were obtained from the statistical study of all the selected complexes based on ∆∆Gbinding,
which is illustrated in more detail in Section 3.2.

The first observation from the tables is that all the ligands have the most contacts with
residues Tyr10, Phe19, and Phe20. Moreover, based on the ranked lists (Tables 1 and S1–S5),
other aromatic residues (His13, His14, His6, and Phe4) show a relatively high number of
contacts and thus, they contribute to stabilizing the interactions with catechins. Therefore,
it seems that these polyphenolic compounds tend to interact with the aromatic residues
through stacking and/or T-shaped interactions, as shown in the snapshots of Figures 1–5.
Another important observation is that the tendency of ligands to interact with Tyr10 corre-
lates with the number of hydroxyl groups on the ligands. This is seen in the data in the
tables: EGCG possesses the largest number of hydroxyl groups (8 OH’s) and has a greater
tendency to interact with Tyr10 than with Phe19 or Phe20, i.e., the number of contacts
between EGCG and Tyr10 is larger than those between EGCG and Phe19 or Phe20. Thus, the
data appear to imply that, hydrophobic aromatic interactions and hydrogen bonding are
both crucial for the binding process. Finally, a comparative look at the tabulated values im-
mediately shows that all ligands have a tendency to associate with the hydrophobic region
of Aβ42 spanning residues from Tyr10 to Phe20. This region contains most of the aromatic
residues found in full-length Aβ. This region also encompasses the central hydrophobic re-
gion (16KLVFF20) that, based on many experimental and computational studies, is involved
in the initiation of amyloid aggregation [11–13,22,40,101–106]. Therefore, our docking
results show that all studied ligands, especially EGCG, can act as potent inhibitors against
amyloid aggregation through blocking the central hydrophobic region. These findings are
in agreement with experimental studies [28,37,78–80,83].
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Table 1. The number of contacts between the amino acid residues of Aβ42 (For the full amino acid sequence of Aβ42, see Section 3.1) and each ligand for set-1
(as defined in Section 3.2) and the distance cutoff of 5.0 Å. The aromatic residues are in bold typeface and the three most favorable aromatic residue hotspots are
highlighted in light blue.

C EC ECG EGC EGCG

Residue ID Population Residue ID Population Residue ID Population Residue ID Population Residue ID Population
PHE 19 6290 PHE 19 6194 PHE 19 7425 TYR 10 7107 TYR 10 8585
PHE 20 6242 PHE 20 6083 PHE 20 7304 PHE 19 7010 PHE 19 8302
TYR 10 6014 TYR 10 5967 TYR 10 7187 PHE 20 6931 PHE 20 8282
GLN 15 5911 GLN 15 5800 GLN 15 7058 GLN 15 6792 GLN 15 8159
LYS 16 5586 LEU 17 5497 HIS 14 6641 HIS 13 6456 HIS 13 7861
LEU 17 5581 LYS 16 5456 HIS 13 6620 HIS 14 6438 HIS 14 7760
VAL 18 5423 VAL 18 5418 LEU 17 6578 LYS 16 6300 VAL 12 7712
HIS 13 5386 HIS 14 5403 VAL 18 6545 VAL 12 6254 LYS 16 7546
HIS 14 5381 HIS 13 5375 LYS 16 6545 LEU 17 6251 LEU 17 7538
VAL 12 5279 VAL 12 5214 VAL 12 6495 VAL 18 6212 VAL 18 7463
GLU 11 4785 GLU 11 4776 GLU 11 5988 GLU 11 5730 GLU 11 7189
ALA 21 4721 ALA 21 4671 ALA 21 5763 ALA 21 5459 ALA 21 6624
GLY 9 4225 GLY 9 4282 GLY 9 5452 GLY 9 5250 GLY 9 6552
GLU 22 4223 GLU 22 4244 SER 8 5246 SER 8 5198 SER 8 6389
SER 8 4122 SER 8 4177 ARG 5 5178 ARG 5 5144 ARG 5 6294
ARG 5 4075 ARG 5 4119 GLU 22 5176 GLU 22 5051 HIS 6 6105
HIS 6 3934 HIS 6 3999 HIS 6 4978 HIS 6 4989 GLU 22 5944
ASP 7 3715 ASP 7 3829 ASP 7 4792 ASP 7 4670 ASP 7 5906
VAL 24 3710 PHE 4 3694 PHE 4 4623 PHE 4 4522 PHE 4 5621
PHE 4 3686 VAL 24 3688 VAL 24 4612 VAL 24 4373 VAL 24 5316
ASP 23 3430 ASP 23 3414 ASP 23 4334 ASP 23 4127 ASP 23 4988
SER 26 3110 SER 26 3150 SER 26 3998 SER 26 3871 SER 26 4651
ASN 27 2975 ASN 27 3001 ASN 27 3808 ASN 27 3660 ASN 27 4429
GLY 25 2927 GLY 25 2952 GLY 25 3751 GLY 25 3598 GLY 25 4363
LYS 28 2766 LYS 28 2717 GLU 3 3548 GLU 3 3387 GLU 3 4314
GLU 3 2685 GLU 3 2676 LYS 28 3512 LYS 28 3259 LYS 28 4067
ILE 31 2473 ILE 31 2501 ALA 30 3044 ILE 31 2928 ALA 30 3506

ALA 30 2427 ALA 30 2458 ILE 31 3014 ALA 30 2910 ILE 31 3471
GLY 29 2310 GLY 29 2336 GLY 29 2903 GLY 29 2808 ALA 2 3358
ILE 32 2254 ILE 32 2298 ILE 32 2808 ILE 32 2689 GLY 29 3320
LEU 34 2110 LEU 34 2095 ALA 2 2753 ALA 2 2595 ILE 32 3261
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Table 1. Cont.

C EC ECG EGC EGCG

Residue ID Population Residue ID Population Residue ID Population Residue ID Population Residue ID Population

ALA 2 2040 ALA 2 2068 LEU 34 2549 LEU 34 2397 LEU 34 2977
MET 35 1875 MET 35 1889 MET 35 2415 MET 35 2185 MET 35 2792
VAL 36 1822 VAL 36 1810 VAL 36 2284 VAL 36 2104 VAL 36 2595
GLY 33 1672 GLY 33 1729 GLY 33 2139 GLY 33 2004 ASP 1 2452
VAL 39 1559 VAL 39 1569 VAL 39 2038 ASP 1 1872 GLY 33 2451
ASP 1 1416 ASP 1 1414 ASP 1 2008 VAL 39 1867 VAL 39 2423
VAL 40 1392 GLY 37 1412 VAL 40 1824 GLY 37 1635 GLY 38 2126
GLY 37 1373 VAL 40 1353 ILE 41 1805 VAL 40 1620 ILE 41 2103
ILE 41 1372 GLY 38 1346 GLY 37 1792 GLY 38 1591 VAL 40 2094
GLY 38 1305 ILE 41 1310 GLY 38 1761 ILE 41 1557 GLY 37 2090
ALA 42 870 ALA 42 837 ALA 42 1202 ALA 42 1060 ALA 42 1466
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The distributions of binding affinities (kcal.mol−1) of all ligands in set-1 (with the cut-
off value of 0.1 kcal.mol−1) are shown in Figures 1–5. In addition, the figures show a couple 
of complexes with the highest binding affinities and for each complex the different types 
of aromatic interactions, such as π–π, XH–π (X = C, N, O), and lone pair–π interactions 
between the aromatic rings of the ligands, and the sidechain of aromatic residues have 
been highlighted by colored dashed lines for clarity. In all cases, at least one aromatic 
residue was in contact with the ligand and in most cases, catechin compounds possessing 
multiple aromatic rings were capable of interacting with several aromatic residues simul-
taneously. A comparative look at Figures 1–5 shows that one or two rotatable aromatic 
rings of the ligands (phenyl ring containing R3 substitution and gallate moiety, as illus-
trated in Section 3.1) are essential to make the aromatic interactions between the ligands 
and the aromatic residues. It is reasonable to assume that these flexible rings can be ad-
justed during the docking process, to maximize the aromatic interaction formation. In 
conclusion, it seems that these aromatic interactions play an important role in binding to 
aggregation-prone regions of Aβ42 and are essential for high affinity and binding specific-
ity. 

 

Figure 1. The histogram of binding affinity (kcal.mol−1) of the C ligand in set-1 (with the cutoff
value of 0.1 kcal.mol−1, as illustrated in Section 3.2). The binding affinities were divided to bins
of 0.1 kcal/mol, and the numbers on top of the bins show the number of complexes in each bin.
The three aromatic residue hotspots (i.e., Tyr10, Phe19, and Phe20, see Figure 7 for sequence) and
interacting aromatic residues with the ligand for some complexes with the highest binding affinities
are shown in licorice representation. Favorable aromatic interactions between the ligand and peptide
are depicted with orange dashed lines.
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2.2. Analysis of MD Simulations 
In order to evaluate the docking results, microsecond-scale MD simulations were per-

formed on Aβ42-L (L = C, EC, ECG, EGC, EGCG) structures for which the largest binding 
energies were obtained by the docking procedure. The initial and final MD structures are 
provided in Figure S1 which show that the ligands maintain their interactions with Aβ42 

throughout the simulation. Root mean square deviation (RMSD) of Aβ42 indicates that in 
all cases the system has reached steady state (Table S6 and Figure S2). The stability of the 
Aβ42-L complexes is also reflected in the relatively low radius of gyration (~1.0 nm) of Aβ42 

(Table S6 and Figure S3). Moreover, the steady solvent accessible surface area (SASA; with 
< 7% fluctuations) observed for the chains provides further support for the stability and 
compactness of the system (Table S6 and Figure S4). 

Figure 2. The histogram of binding affinity (kcal.mol−1) of the EC ligand in set-1 (with the cutoff
value of 0.1 kcal.mol−1, as illustrated in Section 3.2). The binding affinities were divided to bins
of 0.1 kcal.mol−1, and the numbers on top of the bins show the number of complexes in each bin.
The three aromatic residue hotspots (i.e., Tyr10, Phe19, and Phe20, see Figure 7 for sequence) and
interacting aromatic residues with the ligand for some complexes with the highest binding affinities
are shown in licorice representation. Favorable aromatic interactions between the ligand and peptide
are depicted with orange dashed lines.
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The docking results suggest that Tyr10, Phe19, and to some extent Phe20, are the 
main residues involved in ligand binding. Average distances between these residues and 
the five ligands from the MD simulations are provided in Table 2. In agreement with the 
results from our docking procedure, with the exception of C for which the distance is ~1.0 
nm, the average distance between the ligands and all three residues is ~0.5 nm (Table 2 
and Figures S5–S9). The time evolution of these distances and the end-to-end distance for 
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Table 2. Average Aβ42 end-to-end distance (D1–A42) and distances between EGCG and Y10, F19, F20 
residues (the amino acid sequence is provided in the caption of Figure 7, in Section 3.1). Standard 
deviations are provided in parentheses. 

 Distance (nm) 
 C EC ECG EGC EGCG 

end-to-end 1.10 (0.66) 1.69 (0.73) 1.30 (0.48) 1.77 (0.60) 1.54 (0.59) 
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Figure 3. The histogram of binding affinity (kcal.mol−1) of the ECG ligand in set-1 (with the cutoff
value of 0.1 kcal.mol−1, as illustrated in Section 3.2). The binding affinities were divided to bins
of 0.1 kcal.mol−1, and the numbers on top of the bins show the number of complexes in each bin.
The three aromatic residue hotspots (i.e., Tyr10, Phe19, and Phe20, see Figure 7 for sequence) and
interacting aromatic residues with the ligand for some complexes with the highest binding affinities
are shown in licorice representation. Favorable aromatic interactions between the ligand and peptide
are depicted with orange dashed lines.
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0.1 kcal.mol−1, and the numbers on top of the bins show the number of complexes in each bin. The 
three aromatic residue hotspots (i.e., Tyr10, Phe19, and Phe20, see Figure 7 for sequence) and inter-
acting aromatic residues with the ligand for some complexes with the highest binding affinities are 
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Inspection of hydrogen bonds between the ligands and Aβ42 reveals that hydrogen 
bonding plays a more important role in binding of EGCG and EGC than with the other 
three ligands (Table 3). Binding of C seems to have the least dependence on the hydrogen 
bonding among the ligands and relies on the π–π, XH–π (X = C, O) interactions. Average 
number of Aβ42···ligand, Aβ42···solvent, and ligand···solvent hydrogen bonds are collected 
in Table 3. 

Table 3. Average number of hydrogen bonds (donor···acceptor ≤ 0.35 nm and α (∠(hydrogen–donor–
acceptor) ≤ 30°). Standard deviations are provided in parentheses. 

 Number of Hydrogen Bonds (SD) 
 C EC ECG EGC EGCG 

Aβ∙∙∙Ligand 2 (2) 2 (1) 4 (2) 4 (1) 5 (2) 
Aβ∙∙∙Solvent 109 (17) 114 (20) 108 (21) 114 (21) 112 (8) 

Ligand∙∙∙Solvent 6 (2) 5 (3) 7 (4) 5 (3) 7 (3) 

Figure 4. The histogram of binding affinity (kcal.mol−1) of the EGC ligand in set-1 (with the cutoff
value of 0.1 kcal.mol−1, as illustrated in Section 3.2). The binding affinities were divided to bins
of 0.1 kcal.mol−1, and the numbers on top of the bins show the number of complexes in each bin.
The three aromatic residue hotspots (i.e., Tyr10, Phe19, and Phe20, see Figure 7 for sequence) and
interacting aromatic residues with the ligand for some complexes with the highest binding affinities
are shown in licorice representation. Favorable aromatic interactions between the ligand and peptide
are depicted with orange dashed lines.
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peptide and ligands are depicted in Figure S15. Similar conclusion has been previously 
made for Aβ42 protofibrils and EGCG, where EGCG was shown to bind to Aβ42 monomer 
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same study identifies Asp1, Glu22, and Ala42 residues to form the most hydrogen bonds 
with EGCG, which except for Asp1, agrees with our observation (Figure S14). It should be 
noted, however, that while we have examined disordered structures in this study, Li et al. 
[107] considered fibrils and 25 EGCG molecules. 

Finally, the secondary structure of Aβ42 in the presence of catechins was also evalu-
ated and plotted using the VMD visualization software (Figure 6). As is evident from the 
figure, �turn’ and �coil’ are the main observed secondary structures, followed by the helices 
and β-strands. In some instances, relatively short-lived fast-alternating helices (α-helix 
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N-terminal domain is mainly unstructured (turn and coil) in the presence of ECG, while a 

Figure 5. The histogram of binding affinity (kcal.mol−1) of the EGCG ligand in set-1 (with the cutoff
value of 0.1 kcal.mol−1, as illustrated in Section 3.2). The binding affinities were divided to bins
of 0.1 kcal.mol−1, and the numbers on top of the bins show the number of complexes for each bin.
The three aromatic residue hotspots (i.e., Tyr10, Phe19, and Phe20, see Figure 7 for sequence) and
interacting aromatic residues with the ligand for some complexes with the highest binding affinities
are shown in licorice representation. Favorable aromatic interactions between the ligand and peptide
are depicted with orange dashed lines.

The distributions of binding affinities (kcal.mol−1) of all ligands in set-1 (with the
cutoff value of 0.1 kcal.mol−1) are shown in Figures 1–5. In addition, the figures show a
couple of complexes with the highest binding affinities and for each complex the different
types of aromatic interactions, such as π–π, XH–π (X = C, N, O), and lone pair–π interactions
between the aromatic rings of the ligands, and the sidechain of aromatic residues have been
highlighted by colored dashed lines for clarity. In all cases, at least one aromatic residue
was in contact with the ligand and in most cases, catechin compounds possessing multiple
aromatic rings were capable of interacting with several aromatic residues simultaneously.
A comparative look at Figures 1–5 shows that one or two rotatable aromatic rings of
the ligands (phenyl ring containing R3 substitution and gallate moiety, as illustrated in
Section 3.1) are essential to make the aromatic interactions between the ligands and the
aromatic residues. It is reasonable to assume that these flexible rings can be adjusted during
the docking process, to maximize the aromatic interaction formation. In conclusion, it seems
that these aromatic interactions play an important role in binding to aggregation-prone
regions of Aβ42 and are essential for high affinity and binding specificity.

2.2. Analysis of MD Simulations

In order to evaluate the docking results, microsecond-scale MD simulations were
performed on Aβ42-L (L = C, EC, ECG, EGC, EGCG) structures for which the largest binding
energies were obtained by the docking procedure. The initial and final MD structures are
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provided in Figure S1 which show that the ligands maintain their interactions with Aβ42
throughout the simulation. Root mean square deviation (RMSD) of Aβ42 indicates that
in all cases the system has reached steady state (Table S6 and Figure S2). The stability of
the Aβ42-L complexes is also reflected in the relatively low radius of gyration (~1.0 nm) of
Aβ42 (Table S6 and Figure S3). Moreover, the steady solvent accessible surface area (SASA;
with <7% fluctuations) observed for the chains provides further support for the stability
and compactness of the system (Table S6 and Figure S4).

The docking results suggest that Tyr10, Phe19, and to some extent Phe20, are the main
residues involved in ligand binding. Average distances between these residues and the five
ligands from the MD simulations are provided in Table 2. In agreement with the results
from our docking procedure, with the exception of C for which the distance is ~1.0 nm,
the average distance between the ligands and all three residues is ~0.5 nm (Table 2 and
Figures S5–S9). The time evolution of these distances and the end-to-end distance for Aβ42
are shown in Figures S5–S9.

Table 2. Average Aβ42 end-to-end distance (D1–A42) and distances between EGCG and Y10, F19, F20
residues (the amino acid sequence is provided in the caption of Figure 7, in Section 3.1). Standard
deviations are provided in parentheses.

Distance (nm)

C EC ECG EGC EGCG
end-to-end 1.10 (0.66) 1.69 (0.73) 1.30 (0.48) 1.77 (0.60) 1.54 (0.59)

Ligand···Tyr10 1.08 (0.45) 0.47 (0.40) 0.54 (0.18) 0.29 (0.08) 0.70 (0.22)
Ligand···Phe19 0.97 (0.54) 0.95 (0.51) 0.55 (0.25) 0.50 (0.20) 0.40 (0.23)
Ligand···Phe20 0.74 (0.53) 0.72 (0.39) 0.44 (0.24) 0.44 (0.20) 0.36 (0.26)

Inspection of hydrogen bonds between the ligands and Aβ42 reveals that hydrogen
bonding plays a more important role in binding of EGCG and EGC than with the other
three ligands (Table 3). Binding of C seems to have the least dependence on the hydrogen
bonding among the ligands and relies on the π–π, XH–π (X = C, O) interactions. Average
number of Aβ42···ligand, Aβ42···solvent, and ligand···solvent hydrogen bonds are collected
in Table 3.

Table 3. Average number of hydrogen bonds (donor···acceptor ≤ 0.35 nm and α (∠(hydrogen–donor–
acceptor) ≤ 30◦). Standard deviations are provided in parentheses.

Number of Hydrogen Bonds (SD)

C EC ECG EGC EGCG
Aβ···Ligand 2 (2) 2 (1) 4 (2) 4 (1) 5 (2)
Aβ···Solvent 109 (17) 114 (20) 108 (21) 114 (21) 112 (8)

Ligand···Solvent 6 (2) 5 (3) 7 (4) 5 (3) 7 (3)

Figures S10–S14 depict the contributions of Aβ42 residues that involve hydrogen
bonding with the ligands. A comparison among the five Aβ42···ligand systems reveals that
there are a few residues in the Aβ42 sequence that frequently form hydrogen bonds with
the five different catechins (e.g., Glu22, Asp23, and Ala42). These intransient hydrogen
bonds alternate between the ligand and the residues, which may suggest that hydrogen
bonds have a less important role in the binding of the ligands to Aβ42 compared to stacking
interactions. The average number of hydrogen bonds between all the amino acids of the
peptide and ligands are depicted in Figure S15. Similar conclusion has been previously
made for Aβ42 protofibrils and EGCG, where EGCG was shown to bind to Aβ42 monomer
through hydrophobic, π–π stacking, and hydrogen bonds [79,83–85,87,107]. Moreover,
same study identifies Asp1, Glu22, and Ala42 residues to form the most hydrogen bonds
with EGCG, which except for Asp1, agrees with our observation (Figure S14). It should
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be noted, however, that while we have examined disordered structures in this study,
Li et al. [107] considered fibrils and 25 EGCG molecules.

Finally, the secondary structure of Aβ42 in the presence of catechins was also evaluated
and plotted using the VMD visualization software (Figure 6). As is evident from the figure,
‘turn’ and ‘coil’ are the main observed secondary structures, followed by the helices and
β-strands. In some instances, relatively short-lived fast-alternating helices (α-helix and 310
helix) as well as β-strands are formed. The propensity of certain regions of Aβ42 toward a
specific type of secondary structure varies with the ligand type. For example, the N-terminal
domain is mainly unstructured (turn and coil) in the presence of ECG, while a persistent β-
strand appears in the region when EGC is bound. Similarly, residues 14–18 form a β-strand
or turn-coil in the presence of EGCG but mainly form short-lived α-helices. As is apparent
from the figure, different catechins have different impacts on the secondary structure of
Aβ42, nevertheless, they all seem to impose local secondary structures across the Aβ42
chain, potentially impacting the formation and stability of amyloid fibrils.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 19 
 

 

persistent β-strand appears in the region when EGC is bound. Similarly, residues 14–18 
form a β-strand or turn-coil in the presence of EGCG but mainly form short-lived α-helices. 
As is apparent from the figure, different catechins have different impacts on the secondary 
structure of Aβ42, nevertheless, they all seem to impose local secondary structures across 
the Aβ42 chain, potentially impacting the formation and stability of amyloid fibrils. 

 
Figure 6. Secondary structure evolution of Aβ42 with time is shown in the presence of catechins. Turn, 
β-strand, α-helix, 310 helix, random coil, and isolated bridge are shown in teal, yellow, blue, pink, 
white, and beige, respectively. 

  

Figure 6. Secondary structure evolution of Aβ42 with time is shown in the presence of catechins.
Turn, β-strand, α-helix, 310 helix, random coil, and isolated bridge are shown in teal, yellow, blue,
pink, white, and beige, respectively.



Int. J. Mol. Sci. 2023, 24, 8161 11 of 20

3. Methods
3.1. Protein and Ligand Library Preparation

A library of Aβ42 (see Figure 7 for a snapshot and the amino acid sequence) structures
was generated using the BES protocol. Briefly, 2000 excursion chains were performed such
that all excursion chains were started from a fully extended structure; excursion chain
refers to a sequence of MD and SA blocks in the BES protocol, for details and terminology
please see [75,76]. It is interesting to note that it has already been shown that the chemical
shift calculated for the conformational ensemble has a good agreement with experimental
data [75,76].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 19 
 

 

3. Methods 
3.1. Protein and Ligand Library Preparation 

A library of Aβ42 (see Figure 7 for a snapshot and the amino acid sequence) structures 
was generated using the BES protocol. Briefly, 2000 excursion chains were performed such 
that all excursion chains were started from a fully extended structure; excursion chain 
refers to a sequence of MD and SA blocks in the BES protocol, for details and terminology 
please see [75,76]. It is interesting to note that it has already been shown that the chemical 
shift calculated for the conformational ensemble has a good agreement with experimental 
data [75,76]. 

 
Figure 7. A random structure of Amyloid β42. Aβ42 sequence: 1DAEFRHDSG 10YEVHHQKLVF 
20FAEDVGSNKG 30AIIGLMVGGV 40VI42A. Asp1 (N-terminus) and Ala42 (C-terminus) are shown 
using van der Waals radii. Other residues are represented in licorice. Acidic, basic, polar, and non-
polar amino acids are shown in red, blue, green, and white, respectively. 

Each excursion chain included five successive SA and MD blocks with maximum 
temperatures of 700, 600, 500, 400, and 350 K for the SA blocks. The relaxation time for 
each MD block was set to 120 ps and the last 100 ps were used to generate representative 
structures. In the next step, an average (mean) structure over the MD trajectory was ob-
tained, and the root mean deviation (RMSD) was used as a criterion to identify the con-
figuration in the MD trajectory that is structurally closest to the average structure. The 
selected structure was then energy minimized using the conjugate gradient method and 
used as a representative structure. As a result, for each MD block (five blocks in each ex-
cursion chain) one representative structure was derived. The final structural library in-
cluded a total of 10,000 representative structures. Scheme 1 summarizes the procedure. 
For more technical details and a complete description of the BES protocol see [75,76]. 

For this study, we selected five main catechins found in green tea: (1) (+)-catechin (C), 
(2) (-)-epicatechin (EC), (3) (-)-epigallocatechin (EGC), (4) (-)-epicatechin-3-gallate (ECG), 
and (5) (-)-epigallocatechin-3-gallate (EGCG). Their chemical structures are shown in Fig-
ure 8 and their initial structures were taken from the ZINC database [108]. This was fol-
lowed by optimization of the molecular geometries for all of them using the B3LYP ex-
change and correlation functional [109] and the 6-31+G(d,p) basis set. The GAMESS pack-
age [110] was used for geometry optimization. 

Figure 7. A random structure of Amyloid β42. Aβ42 sequence: 1DAEFRHDSG 10YEVHHQKLVF
20FAEDVGSNKG 30AIIGLMVGGV 40VI42A. Asp1 (N-terminus) and Ala42 (C-terminus) are shown
using van der Waals radii. Other residues are represented in licorice. Acidic, basic, polar, and
non-polar amino acids are shown in red, blue, green, and white, respectively.

Each excursion chain included five successive SA and MD blocks with maximum
temperatures of 700, 600, 500, 400, and 350 K for the SA blocks. The relaxation time for
each MD block was set to 120 ps and the last 100 ps were used to generate representative
structures. In the next step, an average (mean) structure over the MD trajectory was
obtained, and the root mean deviation (RMSD) was used as a criterion to identify the
configuration in the MD trajectory that is structurally closest to the average structure. The
selected structure was then energy minimized using the conjugate gradient method and
used as a representative structure. As a result, for each MD block (five blocks in each
excursion chain) one representative structure was derived. The final structural library
included a total of 10,000 representative structures. Scheme 1 summarizes the procedure.
For more technical details and a complete description of the BES protocol see [75,76].
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Scheme 1. Flowchart of steps taken in this study.

For this study, we selected five main catechins found in green tea: (1) (+)-catechin
(C), (2) (-)-epicatechin (EC), (3) (-)-epigallocatechin (EGC), (4) (-)-epicatechin-3-gallate
(ECG), and (5) (-)-epigallocatechin-3-gallate (EGCG). Their chemical structures are shown
in Figure 8 and their initial structures were taken from the ZINC database [108]. This was
followed by optimization of the molecular geometries for all of them using the B3LYP
exchange and correlation functional [109] and the 6-31+G(d,p) basis set. The GAMESS
package [110] was used for geometry optimization.

3.2. Docking Setup

Docking simulations were performed with AutoDock Vina (version 1.1.2) software [111].
The docking search space for exploring ligand binding conformations around each rep-
resentative Aβ42 structure was defined using a rectangular box centered at the center of
mass of Aβ42 with a minimal distance of 12 Å from Aβ42 to the edges of the box. Therefore,
depending on the size and shape of Aβ42 configuration, an optimized docking box was de-
termined individually for each Aβ42. Each docking run generates nine optimal Aβ42-ligand
bound conformations and overall, a total of 90,000 (10,000 × 9) poses were generated for
each catechin compound. The different poses in each run are rank-ordered by the Vina
score, a quantity that correlates with the binding free energy. The top-scoring pose in each
run achieves the lowest free energy of binding in the complex.

Very recently, it has been shown that the correct pose (the pose with the lowest RMSD
from the corresponding experimental pose) is usually predicted by Vina but sometimes,
does not get the top score in the Vina ranking [112,113]. To avoid the problem and to
capture the correct poses, it is recommended that except for the top-ranked pose, some
important lower-ranked poses for each docking run should be identified and selected for
post-docking analysis. For more discussions about ranking, see also [114–117]. For this
purpose, the differences in the binding free energies between the top-ranked pose and
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lower-ranked poses were calculated for selected high-ranked modelled complexes for each
docking run, ∆∆Gbinding (= ∆Gtop pose – ∆Glower-ranked pose). Different cutoff values for the
∆∆Gbinding threshold (0.1, 0.2 and 0.3 kcal.mol−1) were used for selecting docking complexes,
since the optimal selection of complexes is not known. For larger ∆∆Gbinding cutoff values,
more complexes were selected. For example, with the cutoff value of 0.1 kcal.mol−1,
17,431 (10,000 × 1 (top-ranked poses from each run) + 7431 (lower-ranked poses near top
poses with the cutoff)) complexes were selected for docking of EGCG, while 29,923 and
42,833 complexes were selected with the cutoff values of 0.2 and 0.3 kcal.mol−1, respectively.
The number of selected docking complexes for all ligands and the corresponding cutoff
values of ∆∆Gbinding are provided and labelled as “set-n” in Table 4. Since the results for
different sets are very similar, we only present the results of set-1 (with the cutoff value
of 0.1) and the results for the other two sets can be found in the Supporting Information.
It should be emphasized that we employed the Vina ranking score just for selecting high-
ranked docking poses for the structural analyses. The binding energies associated with
these poses do not provide further insights.
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Table 4. The number of selected docking complexes for each ligand with the different
∆∆Gbinding cutoffs.

∆∆Gbinding
(kcal.mol−1) Cutoff C EC EGC ECG EGCG

Set-1 0.1 13,495 13,478 15,646 15,027 17,431
Set-2 0.2 20,768 20,722 24,811 23,327 29,923
Set-3 0.3 30,544 30,712 35,758 34,105 42,833

3.3. MD Simulation Setup

All-atom MD simulations were performed on the peptide with five different lig-
ands. The force field parameters for each ligand were created using the Antechamber pro-
gram in the Ambertools19 package [118] and described by the General Amber Force Field
(GAFF) [119] using AM1-BCC charges [120]. The Amberff99SB*-ILDNP force field [121]
and the TIP3P water model [122] were adopted for the protein and water, respectively.
Each protein was placed in a dodecahedral box such that the distance from the edges of
the box to every atom in the protein was at least 1 nm and 150 mM of KCl was added to
reproduce physiological conditions. Overall charge neutrality was preserved by adding
3 K+ counterions. The GROMACS 2016.3 [123]. package was used for all simulations. Each
system was energy minimized using the method of steepest descents. This was followed by
a pre-equilibration in the canonical ensemble, i.e., at constant particle number, volume, and
temperature, for 100 ps. The Lennard–Jones potential was truncated using a shift function
between 1.0 and 1.2 nm. Electrostatic interactions were calculated using the particle-mesh
Ewald method (PME) [124,125] with a real space cutoff of 1.2 nm. The temperature was
set to 310 K with the V-rescale algorithm [126] and pressure was kept at 1 atm using the
Parrinello–Rahman barostat [127]. Bonds involving hydrogens were constrained using the
linear constraint solver (P-LINCS) algorithm [128]. Pre-equilibration was followed by a
production run of 3 µs with a time step of 2 fs for each of the five peptide-ligand systems.

4. Conclusions

In this work, binding of various well-known catechins present in green tea to the
amyloid-β peptide (Aβ) has been predicted and analyzed. For this purpose, a computational
pipeline in the framework of the ensemble docking strategy has been proposed in which
a structurally heterogeneous ensemble of conformations of Aβ42 is used. The ensemble
is generated by the Blockwise Excursion Sampling (BES) protocol [75,76] in which the
conformational sampling is performed on the basis of many uncorrelated short-time MD
simulations starting from different reasonable points of the accessible phase space.

It was observed that all green tea catechins compounds tended to interact with the
aromatic residues through stacking and/or T-shaped interactions and, because of this,
all compounds show a high tendency to interact with the hydrophobic region of Aβ42
spanning residues from Tyr10 to Phe20, the region with the highest number of the aromatic
residues in full-length Aβ42. This region also encompasses the central hydrophobic core
(CHC, residues 16–20) that, based on many experimental and computational studies, plays
a key role in the aggregation process of Aβ42. Therefore, the docking results indicate that all
studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation
by blocking the central hydrophobic core. Additionally, it has been suggested that both
hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of
catechins to Aβ42.

To evaluate the obtained findings in binding of catechin compounds to Aβ42, long
multi-microsecond MD simulations were performed. It was shown that the present docking
protocol is highly successful in identifying catechins’ binding sites in monomeric Aβ42,
in agreement with previous MD simulations and some recent experimental observations
for similar Aβ42–catechin complexes [28,77–79,83–85,87,93]. Finally, we suggested that
our proposed pipeline with low computational cost in comparison with MD simulations
is a suitable approach for high-throughput structure-based virtual screening of ligand
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libraries against the intrinsically disordered proteins (IDPs), such as Aβ. The execution of
our proposed docking protocol for each ligand took up to a week using a standard Intel
Core i7 desktop computer, while MD simulations for each ligand required, on average,
approximately six weeks on a single compute node of the Compute Canada clusters,
containing 24 CPU cores and 4 NVIDIA Tesla P100 GPUs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms24098161/s1, Reference [129] are cited in the Supplementary Materials.
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