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Abstract: DNA topoisomerases are important enzymes that stabilize DNA supercoiling and resolve
entanglements. There are two main types of topoisomerases in all cells: type I, which causes single-
stranded DNA breaks, and type II, which cuts double-stranded DNA. Topoisomerase activity is
particularly increased in rapidly dividing cells, such as cancer cells. Topoisomerase inhibitors have
been an effective chemotherapeutic option for the treatment of several cancers. In addition, combina-
tion cancer therapy with topoisomerase inhibitors may increase therapeutic efficacy and decrease
resistance or side effects. Topoisomerase inhibitors are currently being used worldwide, including
in the United States, and clinical trials on the combination of topoisomerase inhibitors with other
drugs are currently underway. The primary objective of this review was to comprehensively analyze
the current clinical landscape concerning the combined application of irinotecan, an extensively
investigated type I topoisomerase inhibitor for colorectal cancer, and doxorubicin, an extensively
researched type II topoisomerase inhibitor for breast cancer, while presenting a novel approach for
cancer therapy.

Keywords: topoisomerases; irinotecan; doxorubicin; clinical trial; combination chemotherapy
regimens

1. Introduction

Cancer is expected to become the leading cause of death and the most significant
barrier to increasing life expectancy worldwide in the 21st century [1]. Cancer is an
important public health issue worldwide and ranks second among the causes of death in
the United States. In 2023, 1,958,310 new cancer cases and 609,820 cancer-related deaths are
expected in the United States [2]. Therefore, the development of novel and more specific
chemotherapeutic agents against the most aggressive tumors and the identification of new
biological targets are vital goals in cancer research [1,3]. One of the main drug targets
used in chemotherapy to inhibit the abnormal proliferation of cancer cells is topoisomerase
(TOPO) [4].

DNA TOPOs are a group of enzymes that regulate DNA topology. TOPO activity
increases especially in rapidly dividing cancer cells [5]. They are involved in many impor-
tant cellular biological processes, including DNA replication, transcription, recombination,
and chromosome condensation [6]. These enzymes covalently attach to groups of DNA
phosphorus, causing the DNA strands to split and finally recombine [5]. Depending on the
number of DNA strands cut, TOPO can be classified into types I and II. Type I enzymes
cleave only one DNA strand, whereas type II enzymes cleave both strands to prevent super-
coiling or entanglement [7]. Many anticancer drugs act as TOPO poison inhibitors that trap
covalent complexes of human TOPOs, causing DNA damage and cancer cell death [8,9].
Clinically approved TOPO-targeting drugs include the camptothecin analog irinotecan (a
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prodrug of SN-38), topotecan, and belotecan as TOPO I inhibitors and pixantrone, etopo-
side, etopophos (etopoposide phosphate), teniposide, doxorubicin, epirubicin, valrubucin,
daunorubucin, idarubicin, amrubicin, aclarubicin, amsacrine, and mitoxantrone as TOPO
II inhibitors [5,10–12]. Despite their clinical efficacy, current anticancer therapies that use
TOPO-directed agents have several important limitations and adverse effects. Traditional
TOPO I inhibitors (e.g., such as camptothecin) exhibit significant dose-limiting toxicity and
cancer cells develop resistance to these drugs. In addition, treatment with drugs targeting
TOPO II can induce secondary malignancies such as acute myeloid leukemia due to its
inhibition [13–15]. Therefore, new approaches are required to improve the efficacy of
cancer treatment with TOPO inhibitors and counteract their side effects. One approach is
combination therapy using a topoisomerase-targeting drug and another drug.

Combination therapy—the combination of two or more treatments—is the cornerstone
of cancer treatment. Combinations of anticancer agents show improved efficacy compared
to monotherapy because they characteristically target key pathways in a synergistic or
additive manner. This approach potentially diminishes drug resistance while providing
therapeutic anticancer benefits, such as reduced tumor growth, mitosis arrest, reduced
metastatic potential, reduced cancer stem cell populations, and induction of apoptosis [16].
This review presents the clinical outcomes of combination therapies for colorectal cancer
(CRC) using irinotecan, the most widely studied TOPO I inhibitor, and doxorubicin, the
most widely studied TOPO II inhibitor, for breast cancer.

2. Combination Therapy

Combination therapies increase the efficacy of cancer treatments and cope with mul-
tiple genetic changes in different cancer cells. This involves administering one or more
types of treatment simultaneously, such as two or more chemotherapies or a combination of
chemotherapy and radiation/adjuvant therapy. Occasionally, one or more natural products
with antitumor activities, such as low-molecular-weight components of herbs or fungi,
may be used in combination therapies [17]. In addition, combination therapies can be
applied in cancer cell cultures, animal xenograft models, and clinical trials of patients with
cancer. Although the monotherapy approach remains an extremely common treatment for
many types of cancer, this conventional method is usually considered less effective than
the combined therapy approach [16]. Conventional single-treatment approaches target
proliferating cells non-selectively, eventually destroying both healthy and cancer cells.
The combination of two drugs may exhibit synergistic, antagonistic, or additive effects
compared with their attributes in monotherapy. This approach is intended to minimize
the side effects of monotherapy, such as chemical drug resistance, low efficacy, final dose
reduction with biological effects, and other side effects leading to patient death [18].

3. TOPO I Inhibitors
3.1. TOPO I Mechanism and Inhibitors

TOPO I induces temporary breaks in a single strand of DNA, leading to changes in
its topology. TOPO I can be divided into three subfamilies: type IA, IB, and IC [8,11,19].
Altering the DNA topology by breaking the phosphodiester bonds between nucleotides
in DNA strands is based on the same general mechanism in all subtypes of TOPO I. The
phosphoryl group of the DNA is attacked by the tyrosyl group of TOPO I, resulting in the
formation of a covalent bond between the tyrosyl group and one side of the broken DNA.
Simultaneously, the free hydroxylated strands unwind and rotate. The hydroxyl ends of the
free DNA strand attack the produced phosphotyrosine bonds. The phosphodiester bonds
between the two strands are reconstructed, and topoisomerase is released to participate
in the next catalytic cycle [20]. In most cases, TOPO changes the phase of DNA by type
1, which does not require external energy (e.g., ATP hydrolysis) [21]. Type IA TOPOs
require a nick- or a single-stranded region to bind to the DNA. They change the DNA
topology by cleaving one strand of double-stranded DNA, covalently attaching an active
site tyrosine to a 5′-phosphoryl group and utilizing a ‘strand passage’ mechanism. In
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contrast, type IB and IC TOPOs cleave one strand of double-stranded DNA, attach with
the active site tyrosine to the 3′-phosphoryl group to form covalent bonds, and utilize a
‘controlled rotation’ mechanism to relax the DNA supercoil [8,22,23] (Figure 1A,B).
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Figure 1. Catalytic mechanism of type I DNA TOPOs and chemical structure of irinotecan. (A) Each
of the three types of DNA TOPOs has a distinct mechanism for catalyzing changes in DNA topology.
Type IA functions as a monomer, cleaving one DNA strand and creating a 5′-phospho-tyrosyl bond
within the protein-DNA complex. This creates an opening in the cleaved strand, allowing the uncut
strand to pass through for relaxation or decatenation of the DNA. The ends of the cut strand are
then reconnected, restoring the DNA backbone, and the enzyme can dissociate from the 5′-end of the
DNA. (B) Type IB and IC also act as monomers but cleave one strand of duplex DNA and form a
temporary 3-phospho-tyrosyl bond. DNA relaxation is achieved by the controlled rotation of the free
5′-end of the DNA around the uncut strand. (C) Chemical structural formula of irinotecan.

For a long time, camptothecins were the only class of compounds demonstrated to
target TOPO I. Camptothecin (CPT) was isolated from the stem and bark of Camptotheca
acuminate in 1966 by M. E. Wall and M. C. Wani in a natural product screening for anticancer
drugs [24]. CPT interacts with DNA and TOPO I enzymes via a hydrogen bond to form the
TOPO I–DNA–camptothecin ternary complex. This ternary complex collides with the DNA
replication fork causing DNA damage and eventually leading to cell death [19]. Clinically
approved TOPO I inhibitors include the camptothecin analog irinotecan (a prodrug of
SN-38), topotecan, and belotecan [5,10–12].

3.2. Irinotecan Combination Therapy

Irinotecan is an extensively studied TOPO I inhibitor. The approval for the use of
irinotecan (Camptosar®) as a treatment for cervical, lung, and ovarian cancer was granted
in Japan in 1994, and in 1995 and 1996, it was approved for use in Europe and the United
States, respectively [25] (Figure 1C). Irinotecan is a prodrug that is metabolically active in
the body, similar to 7-ethyl-10-hydroxycamptothecin (SN-38) [26]. Irinotecan is used in the
treatment of advanced CRC and other solid tumors, including pancreatic and non-small
cell lung cancer, biliary tract cancer, and advanced gastric and cervical cancer. To date,
various clinical trials have revealed the survival advantages of irinotecan-based therapy
in patients with metastatic CRC, making it one of the main drugs used for the treatment
of metastatic CRC [26]. It is used in pediatric and adult oncology. Although irinotecan
can be used as monotherapy, it is used in combination with other cytotoxic agents, such
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as oxaliplatin and 5-fluorouracil, and monoclonal antibodies, such as bevacizumab and
cetuximab. Experimental and clinical studies have shown that irinotecan can be combined
with kinase inhibitors, such as apatinib, fruquintinib, dasatinib, regorafenib, and sunitinib,
as well as cell cycle checkpoint inhibitors [27]. Irinotecan-based combinations vary widely.
These drugs can be appropriately combined with DNA repair inhibitors, agents affecting
epigenetic modifications, signal modulators, and immunotherapies [10].

3.3. Clinical Status of Irinotecan Combination Therapy in CRC

According to clinical trial reports, clinical studies on combination therapy with irinote-
can are the most common in CRC. Therefore, we summarized the studies that reported the
results of clinical trials of combination therapy with irinotecan in CRC (Table 1).

Table 1. Clinical status of irinotecan combination therapy in CRC.

Drugs Target Cancer Purpose of Study Clinical Trials
Status

Clinical Trials
Identifier Refs.

Capecitabine,
Irinotecan CRC A study on the combined effect of

capecitabine and irinotecan Phase 2 NCT00022698 [28–30]

Ascorbic acid,
Irinotecan Stage IV CRC

Phase I/II study of ascorbic acid
infusion versus irinotecan

monotherapy combined with
irinotecan treatment in patients
with relapsed or advanced CRC

who have failed at least one
treatment regimen with a

fluorouracil-based regimen

Phase 1
Phase 2 NCT01550510 [31]

Pemetrexed,
Irinotecan Metastatic CRC

To determine the efficacy and safety
of the combination of pemetrexed

and irinotecan
Phase 2 NCT00191984 [32,33]

ISIS 183750,
Irinotecan

Colorectal
neoplasms
Colorectal
carcinoma

Colorectal tumors

Testing the safety and efficacy of
irinotecan against ISIS 183750 and

advanced solid or CRC
Phase 1 Phase 2 NCT01675128 [34–36]

MM-121,
Irinotecan,
Cetuximab

CRC

To evaluate the safety and
tolerability of escalating doses of

MM-121 + cetuximab and MM-121 +
cetuximab + irinotecan

combinations

Phase 1 NCT01451632 [37,38]

S-1,
Irinotecan,

Bevacizumab
CRC

To determine if it is safe to treat
unresectable or recurrent

colorectal cancer
Phase 2 NCT00569790 [39,40]

Tivantinib,
Cetuximab,
Irinotecan

Metastatic CRC
ARQ 197 or placebo plus irinotecan

and cetuximab, defines the
recommended dose for phase 2

Phase 1 Phase 2 NCT01075048 [41,42]

Guadecitabine
(SGI-110),

Regorafenib,
Lonsurf

(TAS-102),
Irinotecan

Previously treated
metastatic CRC

Enrollment in phase 1 study of
SGI-110 combined with irinotecan

and
after the MTD was determined,
patients were enrolled in a 2:1
randomized phase 2 study of
SGI-110 and irinotecan versus
standard-of-care regorafenib

or TAS-102

Phase 1
Phase 2 NCT01896856 [43,44]

Cetuximab,
FOLFIRI

EGFR expressing
metastatic CRC

To investigate the effect of
cetuximab in combination with

chemotherapy (FOLFIRI) compared
to the same chemotherapy for

patient EGF receptors

Phase 3 NCT00154102 [45–49]
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Table 1. Cont.

Drugs Target Cancer Purpose of Study Clinical Trials
Status

Clinical Trials
Identifier Refs.

Regorafenib,
FOLFIRI CRC metastatic

Comparison of PFS between
regorafenib + FOLFIRI

chemotherapy and placebo +
FOLFIR in mCRC patients

previously treated with
FOLFOX therapy

Phase 2 NCT01298570 [50–52]

ABT-165,
Bevacizumab,

FOLFIRI

Previously treated
metastatic

adenocarcinoma
of the colon or

rectum

Study evaluating efficacy and
tolerability of ABT-165 + FOLFIRI

compared to bevacizumab +
FOLFIRI

Phase 2 NCT03368859 [53,54]

Encorafenib,
Binimetinib,
Cetuximab,

FOLFIRI

BRAF
V600E-mutant
metastatic CRC

To evaluate encorafenib plus
cetuximab plus or minus

binimetinib versus choosing either
irinotecan/cetuximab or

FOLFIRI/cetuximab as control in
patients with BRAFV600E mCRC

Phase 3 NCT02928224 [55–60]

Napabucasin,
Bevacizumab,

FOLFIRI
CRC

Trial of cancer stem cell pathway
inhibitor napabucacin plus standard
biweekly FOLFIRI versus standard

biweekly FOLFIRI

Phase 3 NCT02753127 [61]

FOLFIRI,
Panitumumab

Recurrent
colorectal
carcinoma

Stage IVA CRC
Stage IVB CRC

A study on how well FOLFIRI
works in combination with

panitumumab in the treatment of
CRC patients

Phase 2 NCT02508077 [62]

Ramucirumab,
FOLFIRI CRC

Comparing overall survival of
participants with metastatic CRC
treated with ramucirumab plus

FOLFIRI or placebo plus FOLFIRI

Phase 3 NCT01183780 [63–70]

Bevacizumab,
FOLFOXIRI

Colorectal
neoplasms

Efficacy and safety evaluation of
FOLFOXIRI/bevacizumab regimen
(concurrent and sequential) versus

FOLFOX/bevacizumab

Phase 2 NCT01765582 [71–73]

Panitumumab,
FOLFOXIRI CRC

A plan to determine the ORR of the
combination of FOLFOXIRI

and panitumumab
Phase 2 NCT01226719 [74,75]

EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FOLFIRI, folinic acid, fluorouracil, and
irinotecan; FOLFOX, folinic acid, fluorouracil, and oxaliplatin; FOLFOXIRI, folinic acid, fluorouracil, oxaliplatin,
and irinotecan; ORR, objective response rate; PFS, progression-free survival.

According to the 2023 United States cancer statistics, CRC is the third most commonly
diagnosed cancer in both males and females and the third leading cause of estimated
deaths in both sexes [2]. The treatment of CRC typically involves a combination of surgery,
chemotherapy, and radiation therapy, depending on the stage and location of the cancer
and the patient’s overall health and other individual factors [76]. Surgery is the primary
treatment for CRC and involves the removal of the tumor and surrounding tissue. In some
cases, the entire colon may require removal (colectomy). After surgery, chemotherapy can
be administered to kill any remaining cancer cells and reduce the risk of cancer recurrence.
The National Comprehensive Cancer Network (NCCN) guidelines recommend the use of
chemotherapy regimens, including CAPOX (capecitabine and oxaliplatin), FOLFIRI (folinic
acid, fluorouracil, and irinotecan), FOLFOX (folinic acid, fluorouracil, and oxaliplatin),
or FOLFOXIRI (folinic acid, fluorouracil, oxaliplatin, and irinotecan), for unresectable
metastatic CRC [77]. The most commonly used chemotherapeutic regimens for CRC are
FOLFOX and FOLFIRI [78].

Many clinical studies on FOLFIRI and FOLFOXIRI combined with irinotecan for
CRC treatment have been reported. The aim of the NCT01183780 trial, which has been
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referenced the most among clinical trials on FOLFIRI, was to evaluate the overall survival
of metastatic CRC patients who received either ramucirumab plus FOLFIRI or placebo plus
FOLFIRI [63]. Ramucirumab is a human IgG-1 monoclonal antibody that interacts with
the extracellular part of the vascular endothelial growth factor (VEGF) receptor 2, which is
important for blood vessel growth. Targeting angiogenesis is crucial for CRC treatment.
Ramucirumab has been proven effective in treating several types of cancer, including
gastric, lung, urothelial, colorectal, and advanced liver cancers [79]. The NCT01183780
study, which involved 1072 patients, showed that ramucirumab, in combination with
FOLFIRI, as a second-line treatment for metastatic CRC, significantly enhanced the overall
survival rate compared to placebo with FOLFIRI. Moreover, no unexpected negative events
were observed, and the adverse effects were controllable [64]. In CRC, the identification of
activating RAS/RAF mutations early in the disease is a crucial molecular discovery, and
these mutations have been suggested as biomarkers for predicting treatment outcomes
and disease prognosis [80]. In the NCT01183780 study, adding ramucirumab to FOLFIRI
resulted in improved patient outcomes, regardless of RAS/RAF mutation status or tumor
location [65,68].

4. TOPO II Inhibitors
4.1. TOPO II Mechanism and Inhibitors

TOPO II are enzymes that cleave both strands of the DNA double helix at the same
time and are used to untangle and relieve supercoils in DNA [81]. There are two subtypes of
TOPO II, TOPO IIA and TOPO IIB, which are found in different organisms. TOPO IIA exists
in bacteria, eukaryotes, and a small number of archaea species, whereas TOPO IIB is mainly
found in archaea, plants, and some algae [5]. TOPO IIA is primarily involved in DNA
replication and mitosis, whereas TOPO IIB regulates gene expression during transcription.
The activity of TOPO II (or TOPO IIA) during mitosis is crucial for the survival of cells [82].
The main mechanism through which TOPO II alters DNA topology involves cutting both
DNA strands using Mg2+ and ATP hydrolysis. These enzymes can relax both positive and
negative supercoils in DNA and pass a second DNA duplex through a gap after covalently
attaching tyrosine to the 5′-end of broken DNA and releasing a free 3′-end (Figure 2A).
TOPO II plays a vital role in various nuclear processes, including transcription, replication,
and recombination, because of its exceptional ability to untangle double strands of DNA.
Loss of TOPO II activity results in double-stranded DNA breaks and cell death, whereas
increased DNA cleavage can lead to DNA translocation [5].

TOPO II inhibitors are categorized into two types based on their mode of action:
catalytic inhibitors and TOPO II poisons. Catalytic inhibitors of TOPO II hinder its enzy-
matic functions. They obstruct the enzyme either before the cleavage of DNA or after the
re-ligation of DNA is completed. As a result, these inhibitors do not cause the accumula-
tion of TOPO II-DNA cleavage complexes. The lack of TOPO II activity in relaxing DNA
supercoils or disentangling sister chromatids during mitosis can lead to unsuccessful cell
division and, ultimately, cell death [83]. TOPO II poisons prevent TOPO II from completing
the catalytic cycle after DNA cleavage. As a result, they increase the accumulation of
TOPO II-DNA cleavage complexes, which can cause DNA damage that the cell’s DNA
repair system cannot handle. This leads to the accumulation of DNA breaks, ultimately
triggering programmed cell death. TOPO II poisons include etoposide, doxorubicin, and
amsacrine [84].
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Figure 2. Catalytic mechanism of type II DNA TOPOs and chemical structure of doxorubicin.
(A) (1) DNA binding: The enzyme’s homo-dimer preferentially binds to catenated, knotted, and
supercoiled DNA segments. The segment of double-stranded DNA that is cleaved during the
enzymatic reaction cycle is referred to as the “G segment” (with “G” for gate), and the segment
of double-stranded DNA that passes through the cleaved G segment is referred to as the “T seg-
ment” (with “T” for transported). The enzyme binds to the G segment and then to the T segment.
(2) ATP binding: The binding of two ATP molecules in the ATPase domains alters the conformation
of the ATPase domains from an open to a closed state. Novobiocin prevents ATP binding. (3) DNA
cleavage: In the presence of Mg2+ ions, the enzyme temporarily cleaves the G segment of DNA by
initiating a nucleophilic attack and forming two 5′-phosphotyrosyl bonds with the DNA backbone.
(4) Strand passage: After the G segment is cleaved, the T segment is threaded through it. (5) T segment
release and re-ligation: Once the T segment has passed through, it is released from the enzyme, and
the cleaved G segment is rejoined. Etoposide and doxorubicin prevent the rejoining process. (6) G
segment releases when the ATPase domain is opened: After the T segment is released, the enzyme
stays in a closed clamp shape. Hydrolysis of ATP causes the closed clamp to open, allowing the G
segment to be released and preparing the enzyme for the next reaction cycle. Bisdioxopiperazines,
such as ICRF187 and ICRF193, inhibit the ATPase activity of the enzyme. (B) Chemical structural
formula of doxorubicin.

4.2. Doxorubicin Combination Therapy

Doxorubicin is one of the most widely studied TOPO II inhibitors (Figure 2B). Dox-
orubicin was isolated from Streptomyces peucetius actinobacteria in the 1960s and was
subsequently developed as a cancer drug [85]. Doxorubicin is a chemotherapeutic drug
belonging to the anthracycline antibiotic family, with the trade name adriamycin. It is
widely recognized as one of the most effective treatments for solid tumors and is used
to treat several types of cancers, including breast cancer, bladder cancer, Kaposi’s sar-
coma, lymphoma, and acute lymphocytic leukemia [86]. Doxorubicin is widely used for
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the treatment of breast cancer [87,88]. Doxorubicin was approved for medical use in the
United States in 1974 [12]. It is considered an essential medicine by the World Health
Organization [89]. Although doxorubicin is an effective chemotherapy for various types of
malignant tumors, its application is limited owing to the risk of cardiotoxicity [90]. There-
fore, doxorubicin is often used in combination with other drugs or therapies to increase its
efficacy and reduce its side effects or the risk of drug resistance. One of the most commonly
used doxorubicin-based combination therapies is the AC-T regimen, which involves a
combination of doxorubicin and cyclophosphamide (AC), followed by taxane drugs, such
as paclitaxel or docetaxel (T). This combination effectively reduces the risk of recurrence in
early-stage breast cancer [91]. Doxorubicin can also be used in combination with targeted
therapies, such as trastuzumab (Herceptin®) or pertuzumab (Perjeta®), in breast cancers
that overexpress the human epidermal growth factor receptor 2 (HER2) protein. These
targeted therapies function by blocking HER2 protein, which promotes the growth of cancer
cells. When used in combination with doxorubicin, these targeted therapies can improve
treatment effectiveness [92,93].

4.3. Clinical Status of Doxorubicin Combination Therapy in Breast Cancer

According to clinical trial reports, combination therapy with doxorubicin is the most
widely studied treatment for breast cancer. Therefore, we have summarized the studies
reporting the results of clinical trials on doxorubicin combination therapy for breast cancer
(Table 2).

Table 2. Clinical status of doxorubicin combination therapy in breast cancer.

Drugs Target Cancer Purpose of Study Clinical Trials
Status

Clinical Trials
Identifier Refs.

Cisplatin, AC Breast cancer

To evaluate cisplatin, a
chemotherapy drug that has been

shown to be active in the treatment
of breast cancer and women with

BRCA mutations

Phase 2 NCT01670500 [94–97]

Eribulin, AC

Inflammatory
breast cancer

HER2-negative
carcinoma
of breast

Studying a drug called eribulin
combined with standard therapy as
a possible preoperative treatment
for HER2-negative inflammatory

breast cancer

Phase 2 NCT02623972 [98]

Bevacizumab,
Paclitaxel,

Gemcitabine
hydrochloride,
Pegfilgrastim,

AC

HER2-negative
breast cancer
Stage II breast

cancer
Stage IIIA breast

cancer
Stage IIIB breast

cancer
Stage IIIC

breast cancer

To investigate the efficacy and side
effects of adding bevacizumab to
the chemotherapy regimen in the

treatment of stage 2 or 3 HER2-neu
negative breast cancer in women

Phase 2 NCT00679029 [99]

AC,
Paclitaxel,
Tipifarnib

Breast cancer
Male breast cancer

To study the side effects and
optimal dose of tipifarnib when

given with combination
chemotherapy and how effective it
is in treating patients with stage 2 or

3 breast cancer

Phase 1
Phase 2 NCT00470301 [100,101]

AC-T
(Docetaxel) Breast cancer

Comparison of disease-free survival
after TAC versus AC-T in HER2-neu
negative breast cancer patients who

are eligible for surgery

Phase 3 NCT00312208 [102–104]

AC-T
(Paclitaxel),
Ixabepilone

Breast cancer
Comparison of patients receiving
AC and ixabepilone and patients

receiving AC and weekly paclitaxel
Phase 3 NCT00789581 [105,106]
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Table 2. Cont.

Drugs Target Cancer Purpose of Study Clinical Trials
Status

Clinical Trials
Identifier Refs.

AC-T
(Paclitaxel),
Epoetin alfa,
Filgrastim,
Epirubicin

hydrochloride,
Fluorouracil

Breast cancer

Comparing the effectiveness of
chemotherapy with or without
epoetin alfa for the treatment of
women who have undergone

surgery for stage I, II, or III
breast cancer

Phase 3 NCT00014222 [107]

AC-T
(Docetaxel),

Trastuzumab,
Carboplatin

Breast neoplasms

Comparing the treatment outcomes
of women with HER2-positive
breast cancer who had positive

lymph nodes or high-risk negative
lymph nodes and were treated with

adjuvant therapy including
doxorubicin, cyclophosphamide,
and docetaxel, with or without
trastuzumab, versus those who

received trastuzumab, docetaxel,
and carboplatin

Phase 3 NCT00021255 [104,108–113]

FAC,
Docetaxel Breast cancer

Comparison of disease-free survival
rates after TAC combination therapy

and FAC combination therapy
Phase 3 NCT00688740 [114–116]

FAC,
Paclitaxel,
Eribulin,

Epirubicin

Breast cancer

To find out if and how well eribulin
given in combination with standard
chemotherapy can treat early-stage
breast cancer compared to paclitaxel
given in combination with standard

chemotherapy

Phase 2 NCT01593020 [117,118]

Doxorubicin, FEC Breast cancer

Two combination chemotherapy
regimens were studied to compare
how effective they were in treating
women who had surgery for breast

cancer that had not spread to the
lymph nodes

Phase 3 NCT00087178 [119]

TAC Breast cancer
To see if we can find out if taxotere
and/or adriamycin/cytoxan can

make tumors smaller
Phase 2 NCT00206518 [120]

TAC Breast cancer
To find out what effect (good or

bad) TC or TAC has on early-stage
HER2- breast cancer

Phase 3 NCT00493870 [121,122]

TAC,
Paclitaxel,

Gemcitabine
Breast cancer

Studying three different
combination chemotherapy

regimens and comparing how
effective they are in treating women

who have had surgery for
node-positive breast cancer

Phase 3 NCT00093795 [123,124]

AC-TH,
Carboplatin Breast cancer

To evaluate the safety of
trastuzumab for the treatment of
HER2-positive nodule-positive or

high-risk nodule-negative

Phase 4 NCT02419742 [125]

AC-THP,
Atezolizumab,
Trastuzumab

emtansine

Breast cancer

To evaluate the efficacy and safety of
atezolizumab compared with placebo

when given in combination with
neoadjuvant dose-dense doxorubicin

+ cyclophosphamide followed by
paclitaxel + trastuzumab +

pertuzumab in patients with early
HER2-positive breast cancer

Phase 3 NCT03726879 [126,127]

AC, doxorubicin and cyclophosphamide; AC-T, sequential doxorubicin–cyclophosphamide and paclitaxel or docetaxel;
AC-TH, doxorubicin plus cyclophosphamide, followed by paclitaxel plus trastuzumab; AC-THP, doxorubicin and
cyclophosphamide, followed by paclitaxel, trastuzumab, and pertuzumab; FAC, fluorouracil, doxorubicin and cy-
clophosphamide; FEC, fluorouracil, epirubicin and cyclophosphamide; HER2, human epidermal growth factor receptor
2; TAC, docetaxel, doxorubicin, and cyclophosphamide; TC, docetaxel and cyclophosphamide.
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According to 2023 cancer statistics in the United States, breast cancer accounts for
31% of new diagnoses in women, ranking first, and is also the second leading cause of
estimated deaths in women [2]. The primary objectives of treatment for breast cancer that
has not spread to other parts of the body (non-metastatic) are to eliminate the tumor from
the breast and nearby lymph nodes and prevent cancer from returning and spreading to
other areas. Local treatment for nonmetastatic breast cancer typically involves surgery to
remove the tumor and nearby lymph nodes; radiation therapy may also be considered
after surgery [128]. The use of adjuvant chemotherapy is crucial in lowering the likelihood
of breast cancer recurrence and enhancing the survival rate of patients. The NCCN’s
guidelines for breast cancer treatment suggest several adjuvant chemotherapy plans, such
as AC-T (sequential doxorubicin–cyclophosphamide and paclitaxel or docetaxel), ACT
(concurrent doxorubicin–cyclophosphamide and paclitaxel or docetaxel), AC (doxorubicin–
cyclophosphamide), CMF (cyclophosphamide, methotrexate, and fluorouracil), and TC
(docetaxel and cyclophosphamide). Sequential AC-T therapy is the most widely used
regimen [91].

Numerous clinical studies have reported the use of doxorubicin-based AC-T regimens
for breast cancer treatment. The aim of the NCT00312208 study was to compare the disease-
free survival of patients with operable breast cancer with positive axillary lymph nodes
who were HER2-neu negative and treated either with docetaxel combined with doxorubicin
and cyclophosphamide (TAC) or with doxorubicin and cyclophosphamide, followed by
docetaxel (AC-T) [102]. The NCT00312208 study, which included 3299 patients, analyzed
the data after 10 years and found that TAC was not more effective than AC-T in women
with early-stage breast cancer and positive lymph nodes. The toxicity profiles of the two
treatment groups were different, which is consistent with previous reports [103].

The aim of NCT00021255, which has the highest number of references among the
studies of doxorubicin-based AC-T therapy, was to evaluate the disease-free survival
of women diagnosed with operable breast cancer and showing HER2-neu expression
with positive or high-risk node-negative lymph nodes. In this study, the researchers
compared the effectiveness of two adjuvant treatment regimens during the treatment
period: doxorubicin, cyclophosphamide, and docetaxel with or without trastuzumab,
docetaxel, and carboplatin [108]. HER2 (ERBB2) is a member of the human type 1 receptor
tyrosine kinases [109]. In a certain percentage of breast cancers (approximately 15–20%),
this gene is amplified, leading to the overexpression of the HER2 protein, resulting in the
transformation of normal cells to cancerous cells [129,130]. Normally, HER2 is activated
only when a ligand binds to one of the other three members of the HER family—epidermal
growth factor receptor (EGFR)/HER1, HER3, or HER4)—leading to the formation of
heterodimers with HER2 and the activation of its kinase activity [131]. However, when
HER2 is overexpressed, it associates with itself and other HER family members in a ligand-
independent manner [109]. Trastuzumab is a monoclonal antibody used to treat breast
cancer overexpressing HER2 [132]. The NCT00021255 study, which involved 3222 patients,
showed that the addition of adjuvant trastuzumab for one year resulted in significant
improvements in disease-free and overall survival rates among women diagnosed with
HER2-positive breast cancer [113]. Additionally, the loss of the tumor suppressor gene
phosphatase and tensin homolog (PTEN) is associated with a worse prognosis in patients
with HER2-amplified breast cancer; however, this is not related to trastuzumab resistance.
This study demonstrated that PTEN deficiency is not a predictive factor for trastuzumab
resistance in HER2-positive breast cancer [109].

5. Conclusions

In this review, we described the clinical status of combination chemotherapy for CRC,
primarily using irinotecan, the most extensively studied TOPO I inhibitor, and for breast
cancer, primarily using doxorubicin, the most extensively studied TOPO II inhibitor. DNA
replication, transcription, and repair are essential for every cell, and TOPOs play crucial
roles in these processes. Owing to their significant biological functions, enzyme structures,
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and mechanisms of action, TOPOs have been a major focus in the development of novel
anticancer agents. Combination chemotherapy with TOPO inhibitors induces cellular stress
and cell death by causing cell cycle arrest, apoptosis, autophagy, and necroptosis pathways
(Figure 3). However, TOPO inhibitors are subject to drug resistance, have significant
dose-limiting toxicity, and can induce secondary cancers. Therefore, clinical studies on
combination chemotherapy using TOPO inhibitors, together with other cancer therapeutic
agents, are continually evolving to decrease these phenomena. Examples of current studies
include ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) for Hodgkin’s
lymphoma, CBV (cyclophosphamide, carmustine, and etoposide) for lymphoma, and CAV
(cyclophosphamide, doxorubicin, and vincristine) for small cell lung cancer. These studies
demonstrate new potential for cancer treatment using TOPO inhibitors.
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