
Citation: Bochicchio, M.T.; Marconi,

G.; Baldazzi, C.; Bandini, L.; Ruggieri,

F.; Lucchesi, A.; Agostinelli, C.;

Sabattini, E.; Orsatti, A.; Ferrari, A.;

et al. ETV6::ABL1-Positive Myeloid

Neoplasm: A Case of a Durable

Response to Imatinib Mesylate

without Additional or Previous

Treatment. Int. J. Mol. Sci. 2024, 25,

118. https://doi.org/10.3390/

ijms25010118

Academic Editor: Stella Bouziana

Received: 27 October 2023

Revised: 8 December 2023

Accepted: 18 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Case Report

ETV6::ABL1-Positive Myeloid Neoplasm: A Case of a Durable
Response to Imatinib Mesylate without Additional or
Previous Treatment
Maria Teresa Bochicchio 1,* , Giovanni Marconi 2 , Carmen Baldazzi 3 , Lorenza Bandini 3,
Francesca Ruggieri 1,4 , Alessandro Lucchesi 2 , Claudio Agostinelli 4,5, Elena Sabattini 5 , Agnese Orsatti 5,
Anna Ferrari 1 , Giorgia Capirossi 1, Chiara Servili 1, Andrea Ghelli Luserna di Rorà 6, Giovanni Martinelli 7 ,
Giorgia Simonetti 1 and Gianantonio Rosti 2,*

1 Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)
“Dino Amadori”, 47014 Meldola, FC, Italy; francesca.ruggieri@irst.emr.it (F.R.); anna.ferrari@irst.emr.it (A.F.);
giorgia.capirossi@studio.unibo.it (G.C.); chiara.servili@irst.emr.it (C.S.); giorgia.simonetti@irst.emr.it (G.S.)

2 Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)
“Dino Amadori”, 47014 Meldola, FC, Italy; giovanni.marconi@irst.emr.it (G.M.);
alessandro.lucchesi@irst.emr.it (A.L.)

3 Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna,
40138 Bologna, BO, Italy; carmen.baldazzi@gmail.com (C.B.); lorenza.bandini.92@gmail.com (L.B.)

4 Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40100 Bologna, BO, Italy;
claudio.agostinelli@unibo.it

5 Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy;
elena.sabattini@aosp.bo.it (E.S.); agnese.orsatti@studio.unibo.it (A.O.)

6 Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, PI, Italy; a.ghelli@fpscience.it
7 Scientific Directorate, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)

“Dino Amadori”, 47014 Meldola, FC, Italy; giovanni.martinelli@irst.emr.it
* Correspondence: teresa.bochicchio@irst.emr.it (M.T.B.); gianantonio.rosti@irst.emr.it (G.R.)

Abstract: ETV6::ABL1 rearranged neoplasms are rare hematological diseases. To date, about 80 cases
have been reported, including myeloid and lymphoid leukemias. The ETV6 gene codes for an ETS
family transcription factor and several fusion partners have been described. When translocated,
ETV6 causes the constitutive activation of the partner genes. Here, we report the case of a 54-year-old
woman with a cryptic insertion of the 3′ region of ABL1 in the ETV6 gene. The patient was first
diagnosed with idiopathic hypereosinophilic syndrome, according to the clinical history, conventional
cytogenetics, standard molecular analyses and pathologist description. Next generation sequencing
of diagnosis samples unexpectedly detected both ETV6::ABL1 type A and B fusion transcripts, which
were then confirmed by FISH. The diagnosis was Myeloid/Lymphoid neoplasm with ETV6::ABL1
fusion, and the patient received imatinib mesylate treatment. In a follow-up after more than one year,
the patient still maintained the molecular and complete hematological responses. This case highlights
the importance of timely and proper diagnostics and prompt tyrosine kinase inhibitor treatment.

Keywords: myeloid/lymphoid neoplasm; ETV6::ABL1; fusion genes; imatinib mesylate; next generation
sequencing; diagnostic RNA panels

1. Introduction

ETV6::ABL1 (also known as TEL::ABL1) is a rare fusion that has been found in different
types of hematological diseases. To date, about 80 cases of hematological neoplasms
(more frequently, acute lymphoblastic leukemia (ALL), myeloproliferative neoplasms
(MPNs), Philadelphia-negative chronic myeloid leukemia (CML) [1], atypical (a)CML and
chronic myelomonocytic leukemia (CMML)) carrying ETV6::ABL1 translocation have been
reported [2–6]. ETV6::ABL1 chimeric protein has been found in less than 1% of ALL cases;
however, due to the lack of a systematic screening for this fusion transcript, its overall
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incidence in hematological neoplasms cannot be precisely defined [2]. The ETV6 (ETS
variant 6) gene encodes for an ETS family transcription factor containing two functional
domains: the N-terminus PNT (exons 3–4) and the C-terminus ETS (exons 6–7) domains,
flanking the central domain coded by the exon 5 [7]. ETV6 is involved in the maintenance
of the vascular network, hematogenesis, embryogenesis and development of different
tissues [7]. The ABL1 gene encodes for a non-receptor tyrosine kinase containing different
structural domains, including SRC-homology domains (SH1, SH2 and SH3) responsible
for the regulation of their own activity, DNA-binding (DB) domains and actin-binding
(AB) domains, in addition to a nuclear translocation signal (NTS) sequence, sites for
phosphorylation by protein kinase C (PKC) and a proline-rich sequence [8]. Two types
of ETV6::ABL1 in-frame fusion isoforms have been described: the so-called “type A”,
involving exon 4 of ETV6 and exon 2 of ABL1, and the “type B” translocation, involving
exon 5 of ETV6 and exon 2 of ABL1. The ETV6::ABL1 fusion protein retains both the
SH domains and the tyrosine kinase domain of ABL1 [9], leading to the loss of ABL1
autoinhibitory activity, thus resulting in a constitutive active enzyme. Both transcripts
encode for a chimeric non-receptor tyrosine kinase resembling the BCR::ABL1 structure.
Moreover, in vitro studies have demonstrated that ETV6::ABL1 phosphorylates the same
substrates activated by BCR::ABL1 chimeric proteins, suggesting that ETV6 may replace
the BCR role and activate ABL1 [10], and explaining why patients harboring ETV6::ABL1
translocation are sensitive to TKI treatment [9]. Here, we present the case of a patient who
received a diagnosis of Myeloid/Lymphoid neoplasm with ETV6::ABL1 fusion and reached
a durable response by imatinib mesylate treatment.

2. Case Description

In January 2019, a 54-year-old Caucasian woman was referred to our institution for
leukocytosis. She had a mild increase in white blood cell (WBC) count over one year (mean
WBC 12 × 109/L, mean neutrophils 8 × 109/L), basophilia (5%) and eosinophilia (14%).
JAK2, CALR and MPL mutations and BCR::ABL1 rearrangements were negative (peripheral
blood). The patient was asymptomatic and was not receiving any chronic treatment. She
had no significant medical history, no history of smoking, no ongoing infections, negative
inflammation markers, a normal chest and abdomen examination, and a normal abdomen
ultrasonography (US). The patient underwent a regular follow-up (every 4 months) and did
not receive any treatment. In the following 18 months, the WBC counts fluctuated around
11–13 × 109/L and the clinical patients’ conditions were stable. In June 2020, the WBC
count was raised to 32 × 109/L (basophilia 4%, eosinophilia 11%), while hemoglobin and
platelets count were within the normal range, spleen was not palpable and the abdomen
US results were normal. BCR-ABL1 translocation and JAK2, CALR, and MPL mutations
were confirmed to be negative (peripheral blood). Furthermore, no PDGFRA, PDGFRB
or FGFR1 rearrangements were detected. A trephine biopsy showed hypercellular bone
marrow (95%) with a diffuse eosinophilic infiltration, slightly reduced erythropoiesis,
normal CD34+ cells and mastocytes (Figure 1). Cytogenetic examination showed a unique
clone characterized by 47, XX, +12 (on 20 metaphases, Figure 2A). Chest X-ray and heart
US excluded any significant organ involvement. Therefore, the patient was disagosed with
idiopathic hypereosinophilic syndrome.

Next generation sequencing (NGS) was performed on the diagnosis peripheral blood
sample, on both DNA and RNA, using the Oncomine Myeloid Assay (Thermo Fisher
Scientific, Waltham, MA, USA), surprisingly revealing the presence of both ETV6::ABL1
type A and B fusion transcripts (Figure 2B and Table S1), while confirming the absence
of the Philadelphia chromosome. The ETV6::ABL1 fusions were confirmed by RT-PCR
(Figure 2C) and Sanger sequencing (Figure 2D,E). No additional DNA variants were found.
Further information on the sample collection, nucleic acids isolation, library preparation
and RT-PCR are reported in the Supplementary Methods. The variants and fusions tested
are reported in Tables S2–S4.
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Figure 1. Morphological characterization. Hematoxylin and eosin (H&E, 200×) and Giemsa stain 
(GM, magnification 200×; GM1, magnification 400×); immunohistochemistry (IHC) stains for CD34 
and CD117 (magnification 200×) and Gomori stain for reticulin fibers (Reticulin, magnification 200×). 

 

Figure 1. Morphological characterization. Hematoxylin and eosin (H&E, 200×) and Giemsa stain
(GM, magnification 200×; GM1, magnification 400×); immunohistochemistry (IHC) stains for CD34
and CD117 (magnification 200×) and Gomori stain for reticulin fibers (Reticulin, magnification 200×).
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ing the chromosome 12 (red arrow). (B) Overview of the ETV6::ABL1 fusion transcripts detected
by NGS and involving exon 5 of ETV6 and exon 2 of ABL1, or exon 4 of ETV6 and exon 2 of ABL1,
respectively. (C) RT-PCR revealing the 706 bp ETV6exon5::ABL1exon2 fusion transcript (upper band)
and the 160 bp ETV6exon4::ABL1exon2 fusion transcript (lower band). A 100 bp molecular weight
marker was used. (D,E) Electropherograms of the sequences spanning the breakpoint confirming
in-frame fusions involving ETV6 exon 5 or ETV6 exon 4 and ABL1 exon 2. The dashed lines indicate
the breakpoint regions. Each peak represents a single nucleotide in the DNA sequence, and each
nucleotide has a different colour; A is green, T is red, C is blue and G is black. MM: Molecular Marker;
A: diagnosis; B: 3 months follow-up; C: 6 months follow-up; D: 12 months follow-up; E: RT negative;
F: PCR negative.

In order to confirm the fusion transcripts revealed by NGS, we performed fluorescent
in situ hybridization (FISH). FISH analysis using an ETV6 break-apart probe revealed
three copies of the ETV6 gene without evidence of ETV6 rearrangement (Figure 3A). On
the contrary, FISH analysis with a BCR::ABL1 Tricolor Color Dual Fusion (TCDF) probe
confirmed the presence of the ABL1 rearrangement with ABL located on one chromosome
12 (Figure 3B). In order to confirm the ETV6::ABL1 fusion, we performed FISH analysis
combining ETV6::RUNX1 ES Dual Color Dual Fusion and BCR::ABL1 TCDF. FISH analysis
showed the presence of the ETV6::ABL1 fusion on chromosome 12 (Figure 3C). Therefore,
we concluded that the ETV6::ABL1 fusion was the result of a cryptic insertion of the 3′ of
ABL1 (q34) into the ETV6 locus (12p13). Details on chromosome banding analysis (CBA)
and FISH are described in the Supplementary Methods. Based on the results, the diagnosis
was modified to Myeloid/Lymphoid neoplasm with ETV6::ABL1 fusion, and the patient
started imatinib mesylate treatment at the dose of 200 mg QD (8 September 2020).
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Figure 3. FISH analyses (100× magnification). (A) FISH analysis with ETV6 break-apart on previ-
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ETV6. (B) FISH analysis with BCR-ABL1 TCDF probes on previously G-banded metaphase showing 
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Figure 3. FISH analyses (100× magnification). (A) FISH analysis with ETV6 break-apart on previ-
ously G-banded metaphase showing 3 fusion signals on 3 chromosomes 12, indicating 3 copies of
ETV6. (B) FISH analysis with BCR-ABL1 TCDF probes on previously G-banded metaphase showing
2 green signals on chromosome 22, two blue/red signals on chromosome 9 and an extra red signal
on the short arm of chromosome 12, indicating ABL1 rearrangement. (C) FISH analysis combining
ETV6-RUNX1 DCDF and BCR-ABL1 TCDF probes on metaphase showing a fusion between ETV6
marked in spectrum green and ABL1 marked in spectrum orange on derivative chromosome 12,
confirming ETV6::ABL1 rearrangement. The arrows indicate the derivatives chromosome.

We monitored the most abundant fusion transcript, ETV6exon5::ABL1 exon2, using
both RT-PCR and Nested PCR. Follow-up peripheral blood samples were collected and
analyzed at 3 months (time point B), at 6 months (time point C), at 12 months (time point
D) and at 18 months (time point E) of therapy, according to clinical practice. RT-PCR
results were negative in all the follow-up samples (Figure 4A). Negativity was confirmed
by NGS at time points B and C using the Myeloid Plus Solution panel (Sophia Genetics).
Nested-PCR negativity was reached at time point D, while samples at time points B and C
were still weakly positive (1/2 replicates, Figure 4B). The complete hematological response
was assessed by blood count, revealing all the parameters to be within the normal range.
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The last evaluation—after 3 years of imatinib mesylate treatment—showed a WBC count of
around 5 × 109/L and a neutrophils count of 3.70 × 109/L (basophilia 0.6%, eosinophilia
2.4%). The main clinical and laboratory information are summarized in Figure 5.
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Figure 4. Monitoring of ETV6exon5::ABL1exon2 fusion overtime on peripheral blood samples.
(A) RT-PCR revealing the 421-bp ETV6exon5-ABL1exon2 fusion transcript. (B) Nested PCR revealing
the 321-bp ETV6exon5::ABL1exon2 fusion transcript. A 100 bp molecular weight marker was used.
(C) Electropherogram of the sequence spanning the breakpoint that confirmed in-frame fusion
involving ETV6 exon 5 and ABL1 exon 2. The dashed lines indicate the breakpoint regions. Each peak
represents a single nucleotide in the DNA sequence, and each nucleotide has a different colour; A is
green, T is red, C is blue and G is black. MM: Molecular Marker; A: diagnosis; B: 3 months follow-up;
C: 6 months follow-up; D: 12 months follow-up; E: 18 months follow-up; F: RT negative; G: PCR
negative; H: Nested-PCR negative.
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3. Discussion

In this study, we report the case of an ETV6::ABL1 rearranged patient with a diagnosis
of Myeloid/Lymphoid neoplasm, who received imatinib mesylate treatment and achieved
a durable response.

The formation of an in-frame ETV6::ABL1 fusion gene involves complex genomic
rearrangements because ETV6 and ABL1 genes have opposite chromosome orientations.
Conventional diagnostic techniques (such as conventional cytogenetics) sometimes fail
to detect this rearrangement because of its cryptic nature due to the similar G-banding
pattern of the distal long arm of chromosome 9 and the distal short arm of chromosome 12.
Moreover, no ready-to-use ETV6::ABL1 FISH probes are commercially available, suggesting
that the ETV6-ABL1 fusion may remain undetected in a number of patients [5,11].

In the case we present, the use of next generation sequencing allowed us to overcome
the above-mentioned limitations and to detect this fusion transcript, which changed the ini-
tial diagnosis of hypereosinophilic syndrome into the proper diagnosis of Myeloid/Lymph-
oid neoplasm with ETV6::ABL1 fusion.

The patient showed the presence of both type “A” and “B” fusion transcripts, first
detected by NGS and then confirmed by RT-PCR and Sanger sequencing. FISH analysis
combining ETV6::RUNX1 DCDF and BCR-ABL1 TCDF probes performed on metaphases
showed a cryptic insertion of the 3′ region of ABL1 in the ETV6 gene on one chromosome
12, in addition to a signal consistent with trisomy 12.

ETV6::ABL1 rearrangements have been reported in different hematological malignancies
and, in particular, in ALL, followed by MPNs and acute myeloid leukemia (AML) [11,12].
Eosinophilia represents a common clinical feature and a hallmark of all ETV6::ABL1 rearranged
MPNs cases reported in the literature [2], while the most frequent molecular alterations
observed in ALL or in lymphoid blast crisis (LCB) patients are deletions of CDKN2A/CDKN2B,
IKZF1 or PAX5 [2].
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ETV6::ABL1 rearranged hematological neoplasms share many clinical features with
CML. Indeed, the ETV6::ABL1 fusion protein functionally resembles the BCR::ABL1 ones,
being characterized by a constitutive activation of the chimeric transcript [13], and sensitiv-
ity to both first- [14] and second-generation tyrosine kinase inhibitor (TKI) treatments [15].
For these reasons, the patient received imatinib therapy. Imatinib competitively binds the
ABL1 ATP binding site in the ETV6::ABL1 fusion protein by the same mechanism of action
described for the BCR::ABL1 protein.

Despite this, in the literature, few patients have received TKI treatment at first man-
ifestation of the disease and/or at the first progression, and most of them died or re-
lapsed/evolved [2]. Schwaab et al. presented data on ETV6::ABL1 rearranged MPN
patients that received imatinib, nilotinib or dasatinib after a prior treatment with hydrox-
yurea and/or cytarabine or intensive chemotherapy. Patients receiving imatinib did not
achieve a complete cytogenetic (CCR) or molecular (CMR) response, which was instead
obtained by patients under nilotinib or dasatinib treatment [16]. Accordingly, previous
reports showed that imatinib allowed only an initial reduction of disease followed by a
mild neutrophilia, basophilia and eosinophilia after 6 months, with persistent ETV6::ABL1
positivity in FISH and nested PCR [13], or a transient response followed by transformation
into ALL [17]. Moreover, most patients reported in the literature were diagnosed as atypical
AML or Ph-like ALL.

Conversely, our patient presented without any blast excess at the diagnosis, and the
clinical features were consistent with chronic diseases. She started TKI treatment as a
frontline therapy after receiving the correct diagnosis and is still maintaining complete
hematological and molecular responses after 36 months of imatinib mesylate. To our
knowledge, this is the first case reporting a follow-up longer than one year without any
additional [13] or previous chemotherapy treatment [18]. Our data likely rule out the
co-occurrence of genomic events accounting for resistance in our patient and suggest a
potential driver role for the ETV6::ABL1 rearrangement. Studies accounting for differ-
ent sensitivity profiles, gene expressions and BCR-ABL1-like signatures are warranted
in this case; however, an accurate and multicenter sample collection is needed to meet
this endpoint.

4. Conclusions

The detection of the ETV6::ABL1 rearrangement remains difficult, due to its
cryptic nature.

A deeper genomic characterization of patients with ETV6::ABL1 fusion transcripts may
improve our understanding of the biological complexity behind this disease. Although this
could represent a limitation of our study, overall, our results underline the importance of
timely and proper diagnostics, and the need to revise the current screening algorithms—for
example, by recommending NGS RNA panels—in order to detect and monitor ETV6::ABL1
rearrangements. In this case, molecular biology was instrumental in the diagnosis and,
consequently, in the selection of an appropriate therapy. Notably, in the absence of molecu-
lar biology results, supportive therapies would have been the only ones administered to
the patient.
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