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Abstract: ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play
a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent
post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread
dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human
cancer. We comprehensively review ADARs’ function as pattern recognizers and their capability to
contribute to mediating immune-related pathways. We also highlight the potential role of site-specific
RNA editing in maintaining homeostasis and its relationship to various diseases, such as human
cancers. More importantly, we summarize the latest cutting-edge computational approaches and data
resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement
in site-directed ADAR editing tool development. This review presents an up-to-date overview
of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease
pathology, and how they could be harnessed for therapeutic applications.

Keywords: ADAR; RNA editing; immune-related disease; computational resources

1. Introduction

ADAR (Adenosine Deaminases Acting on RNA) is a deaminase family specifically
targeting adenosine in the double-stranded RNAs [1], which replaces an amino group of
adenosines with a keto group, thus contributing to the adenosine to inosine (A-I) conversion.
Inosine is further recognized as guanosine (G), which has a similar structure to inosine.
This conversion forms a wobble RNA loop or leads to A-G RNA substitutions during
further processes [2–4].

ADARs are presumed to originate in the early ancestors of metazoans because they
are conserved in most major phyla of extant metazoans. A-G substitutions are far more
dominant in these species than the other 11 possible nucleotide substitution types [5].
ADAR-mediated A-I RNA editing sites (RESs) are abundant in eukaryotes and mainly in
the nascent nuclear mRNA [6]. Across 16 representative metazoan species, ADAR-mediated
RNA editing is generally conserved [7], and these post-transcriptional RNA editing events
could be considered the hallmark of the metazoan transcriptional regulation [8,9]. In mice
and humans, large-scale A-I RNA editing sites are observed in the non-coding regions,
while a few editing sites occur in the coding region, such as conserved recoding sites of
FlnA, CyFip2, Blcap, and IGFBP7 [10]. In Bilateria, the ADAR-edited recoding sites tend to
accumulate in neural and cytoskeleton genes [5].

Abnormal expression of ADAR has been detected in numerous diseases, such as mul-
tiple autoimmune diseases and human cancers, and the abnormal expression of ADAR1/2
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was positively correlated with the degree of RNA editing [11]. Apart from the pathogenetic
global changes in editing levels, many specific RNA editing sites play opposite roles at
various stages of cancers; some are strongly associated with high aggressiveness and poor
tumor prognosis [12–15], while some RESs are related to tumor suppression [16,17]. In
addition to non-synonymous substitutions on coding sequences [18], there are other types
of pathogenic editing sites, such as RESs on 3′ untranslated region (UTR) [19], intron [13],
and microRNA (miRNA) [20]. RES is also associated with anti-tumor drug resistance [18].
In the context of human genetics, many editing quantitative trait loci (edQTLs) were sig-
nificantly enriched in genome-wide association study (GWAS) signals for autoimmune
and immune-mediated diseases. RNA editing sites near these edQTLs often exhibited a
reduced editing state in disease-associated samples, which might activate the melanoma
differentiation-associated gene (MDA5) pathway-mediated interferon response [21,22]. Fur-
thermore, RESs are also believed to contribute to the pathogenesis of other immune-related
neurodegenerative diseases, including schizophrenia [23].

To further study the functions of ADAR-mediated RNA editing, the broad spectrum of
RNA editing sites is necessary. Developing computational tools that efficiently predict RNA
editing sites across the transcriptome is now plausible using high-throughput sequencing
technology [24–26]. Large-scale RNA editing sites have been identified in both human
tissues and animal models, thus providing ample opportunity to explore site-specific
editing functions [27–29].

Recently, there has been growing interest in recruiting endogenous ADAR for in vivo
engineered site-directed RNA editing (SDRE) [30,31]. Exogenous ADAR was also employed
to operate precise editing. Along with A-I editing, engineered C-U editing has also been
developed [32]. Based on the understanding of the recognition and regulation mechanism
of ADAR enzymes, various ADAR recruitment methods have been adopted to improve the
efficiency of SDRE, including adding hairpin structures, R/G motifs, or introducing Cas13
proteins to guide RNAs [33].

In this review, we first introduce the concept of ADAR-mediated, pattern-recognized
RNA editing and its critical relevance to immune-related pathways. We further explore the
regulatory rules of site-specific editing in maintaining cellular homeostasis and the effects of
disease-related dysregulated RNA editing events. We also highlight recent computational
approaches that predict transcriptome-wide RNA editing sites from high-throughput RNA
sequencing data. We discuss the identification of site-specific RNA editing and its editing
frequency using various prediction tools. In addition, we present interactive web servers
for functional analysis of RNA editing sites and data resources that contain large-scale
RESs detected in human and animal models. The last section discusses the laboratory
applications and therapeutic potentials of engineered site-directed ADAR editing.

2. ADAR Proteins as Pattern Recognizers in Immune-Related Pathways
2.1. ADAR Proteins Are Cross-Species Conserved Pattern Recognizers

In mammals, ADAR enzymes have three main subtypes: ADAR1, ADAR2, and
ADAR3 [34]. ADAR1 and ADAR2 are expressed in multiple organs, while ADAR3 is
mainly expressed in the brain [9]. ADAR1 is widely expressed almost throughout the
human body except for skeletal muscle. Although ADAR1 and ADAR2 are expressed in
most tissues, the identified edited pre-mRNA typically encodes receptors in the central
nervous system [35]. ADAR2 exhibits exceptionally high expression in the central nervous
system. It is thought to be primarily responsible for site-specific editing of adenosine in
shorter RNA hairpins of central nervous system transcripts [36]. In contrast to ADAR2,
which is located mainly in the nucleus, the p150 isoform of ADAR1 can shuttle between
the nucleus and cytoplasm by binding to transportin-1 or exportin-5 [8,35,37–39]. The
translocation of p110 was not as regular as p150 but was observed under stress to block the
stress-induced Staufen1-mediated mRNA degradation [40,41]. Intracellular localization
analyses of ADAR revealed that ADAR1 and ADAR2 were dynamically moving in nuclei
in vivo. The transient sequestration of ADAR1 and ADAR2 in the corners of the nucleus
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may be caused by the rich endogenous dsRNA structures from the small nucleoli RNA
in these corners. In contrast, ADAR homologous protein ADAT (primarily edited tRNA),
which lacks a dsRNA binding domain, has not been observed to accumulate dynamically
in the nucleus [38]. To activate the A-I RNA editing activity, the homodimerization of
ADAR1 and ADAR2 is required [42]. Mammalian ADAR3 is catalytically inactive and acts
predominantly as a dsRNA binding protein. ADAR3 is a brain-specific protein and might
work as an inhibitor to regulate the process of ADAR1/2-mediated RNA editing [43,44].
According to some studies, the expression of ADAR1 or ADAR2 alone did not correlate
with the editing level. In contrast, the combined value of ADAR1 + ADAR2-ADAR3 was
positively correlated with the editing level of RNA [45].

The ADAR enzymes exhibit a regional preference to catalyze specific sites by recogniz-
ing nearby sequences, as confirmed in Drosophila and humans [46–48]. ADAR1 and ADAR2
catalyze their preferred characteristic dsRNAs [45,49,50]. There is no significant difference
between ADAR1 and ADAR2 in the global editing sites or regional preference [50]. The val-
ues fluctuated slightly between studies, but introns or 3′UTR always cover the most editing
sites, and 5′UTR or coding sequences account for only a tiny fraction [50,51]. In humans, the
RNA editing sites (more than 80%) are dominantly located in repeat regions, such as short
interspersed nuclear elements (SINE), long interspersed nuclear elements (LINE), long
terminal repeats (LTR), etc. Only a tiny fraction of RNA editing sites happened on exons.
Globally, most of these sites occur in primate-specific, small 140–300 bp Alu elements—a
class of repeating SINE (short interspersed nuclear element) inverse elements. The Alu
element covers the most editing sites relative to other repetitive elements in humans. Alu
was observed mainly in introns and 3′UTRs, which are regions of the RNA molecule that
are not translated into protein sequences but have regulatory functions [52–55]. This shows
that ADAR1 primarily edited the Alu element in mRNA transcribed by RNA polymerase
II, but not the putative pol-III-transcribed Alu elements [55]. In addition, although both
ADAR1 and ADAR2 enzymes target dsRNA hairpins and there are some overlapping
editing substrates between ADAR1 and ADAR2 in cells expressing both of these two
enzymes, ADAR1 is particularly biased towards catalyzing around 300-base-long hairpins
formed from paired inverted copies of Alu elements in the pre-mRNA [10]. ADAR1 has
also been proven to contribute to hyper-editing in the repeat element, and ADAR2 tends to
be responsible for non-repetitive coding sites [45], which may be induced by the formation
of the sense–antisense structure on these non-repeat regions [5,56].

2.2. Immune-Related Pathways Mediated by ADARs

ADAR1 is mainly present as two isoforms, ADAR1 p150 and ADAR1 p110, which
are named based on their molecular weight (Figure 1). ADAR1 p150 is 150 Da in size
and is crucial for protecting mammals against viral infections. It serves as a major pattern
recognition protein. It is induced by interferon [57], thus emphasizing its importance in the
body’s immune response against viruses. Both the p150 and p110 isoforms can be found in
the cytoplasm. ADAR1 p110 is a shorter isoform with a 110 Da size. These two ADAR1
isoforms are generated from alternate splicing. They share a double-strand RNA binding
domain (dsRBD) and a deaminase [58]. The double-strand RNA binding domain (dsRBD)
shared by ADAR1 p150, p110, and ADAR2, primarily recognizes common right-handed
dsRNA (A-RNA) conformations. Type-I-Interferon-inducible p150 has an additional Zα
(Z-RNA binding domain, ZBD) at the N-terminal compared to p110. Thus, p150 could bind
endogenous Z-RNA to avoid activating ZBP1 and downstream RIPK3-mediated necroptosis
by recognizing unbound Z-RNA (Figure 1A), thus mediating the innate immune system
activation caused by immunogenetic Z-RNA [59–63]. It has been discovered that ZBP1
plays a crucial role in sensing Z-RNA during influenza A virus infection. This activation
of ZBP1 leads to hyperinflammation and necroptosis, which are some of the main ways
the body fights off viral infections [64]. When ADAR1 cannot prevent the binding of
ZBP1 to Z-form RNA through editing or binding, activated ZBP1 activates downstream
Receptor Interacting Serine/Threonine Kinase 3 (RIPK3)-mediated necroptosis. The ZBD
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of ADAR1 p150 is primarily bound to endogenous left-handed dsRNA (Z-RNA) enriched
in the 3′UTR of the interferon-stimulated genes (ISGs) [59]. ADAR1 p150, unlike ADAR1
p110 and ADAR2, can recognize Z-RNAs and inhibit downstream immune responses by
independently binding (Figure 1). Overexpressed ZBD could rescue the phenotype caused
by the lack of a catalysis domain. In diseases, aberrant ADAR1 p150 may be involved
in ZBP1-mediated cell necrosis. Activation of the ZBP1 pathway may also be inhibited
by p150, thus representing a potential treatment option in cold tumors [59]. Different
Alu families contain a conserved Z-forming sequence [65]. The Z-forming sequence is
prone to forming Z-DNA conformations and could be recognized by the ZBD of ADAR1
p150 [65–67]. Different Alu families contain a conserved Z-forming sequence. The Z-
forming sequence is prone to forming Z-DNA conformations and could be recognized
by the ZBD of ADAR1 p150 [66]. In addition, p150’s extra RNA binding domain allows
for higher binding ability than p110, resulting in more editing sites [51]. Except for the
Z-forming sequence, other RNA modifications can potentially affect the binding between
ADAR and Alu, such as 2′-O-methyl and N6-methyl adenosine marks. Because these
modifications share the same substrate with ADAR, exogenous double-stranded RNA, they
may have a competing relationship with ADAR-mediated RNA editing and play similar
roles in regulating MDA5-mediated immune pathways [68,69].

ADAR-mediated RNA editing is a crucial mechanism in human cells that plays a key
role in fighting against viral infections. This mechanism helps to differentiate between
endogenous and exogenous double-stranded RNA, which is essential for the immune
system to recognize and respond effectively to viral threats. Editing of dsRNA through
co-transcriptional ADAR-mediated A-I editing prevents downstream Type-I-Interferon
activation of MDA5 (Figure 1B) by creating wobble A-I base pairs so that MDA5 cannot
recognize endogenous dsRNA [51,54,70]. ADAR is critical during mice’s embryonic devel-
opment to maintain hematopoiesis [71,72]. The mice lacking ADAR1 died at the embryonic
stage with wide apoptosis in multiple tissues, fetal liver disintegration, and defective
hematopoiesis, and mice with homozygous ADAR1 p150 deletion exhibit a similarly lethal
phenotype [73–75]. The MDA5 pathway induced by loss of ADAR1 function is associated
with the interferon (IFN) disorder of developing AGS [76,77].

It has been demonstrated that mice can tolerate the loss of global A-I editing when
the type-I IFN-induced pathway is blocked by MDA5 inhibition, thus indicating that
ADAR1-mediated RNA editing sites are not crucial for the development and homeostasis
of mice [78,79]. As a result, the MDA5-dependent interferon pathway, induced by unedited
Alu elements, could be the main feature of ADAR and probably plays a significant role in
interferon-related diseases. Both loss of function (LOF) mutations on ZBD or dsRBD of
ADAR1 have been identified in AGS patients [76,80]. The catalysis-independent competi-
tive binding of ADAR proteins against MDA5 may also achieve the same effect as the A-I
editing (Figure 1B) [81]. In addition to the MDA5 activated by un-catalyzed dsRNA, the
Z-RNA binding ability could also inhibit the MDA5 pathway, and the LOF mutation, such
as P154A or W197A on ZBD of ADAR1, could activate the MDA5 pathway without decreas-
ing the global RNA editing level [82,83]. Meanwhile, other dsRNA sensors, such as OAS
and RIG-I, acted as the immune activators when the ADAR editing was insufficient [84,85].

During the Type-I-IFN response, the Protein Kinase R (PKR) pathway (Figure 1C)
could also be activated to block translation by the endogenous dsRNA through the frag-
mentation of the ribosome. Knockdown of ADAR1 caused differentiated human neuronal
progenitor cells to exhibit both MDA5-activated interferon upregulation and PKR activa-
tion, accompanied by cell death [55]. Furthermore, the ADAR1 p110 isoform has been
discovered to possess a distinct function of preserving genomic stability through the cat-
alyzation of R-loop structures (Figure 1D). These structures represent a stable form of the
RNA/DNA hybrid on telomeres, which may sometimes occur when newly synthesized
RNA molecules fail to detach from their template DNA immediately after transcription [86].
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Figure 1. Schematic representation of the structure and functions of ADAR1. ADAR1 isoforms, p110 
and p150, possess a right-handed A-RNA bindable double-strand RNA binding domain (dsRBD) 
and a catalysis domain (deaminase). p150 also contains an additional left-hand Z-RNA binding do-
main (Z-alpha). ADAR1 performs catalysis-independent competitive binding or catalysis-depend-
ent A-I RNA editing through its distinct binding and catalysis domains. ADAR1 has multiple path-
ways of operation, (A) including binding with endogenous Z-RNA to inhibit RIPK3-induced 
necroptosis and to block the activation of ZBP1. (B) Additionally, ADAR1 prevents immunogenetic 
dsRNA from inducing MDA5-mediated Type-I interferon disorder by either binding or editing to 
impede the recognition of dsRNA. (C) Moreover, ADAR1-mediated RES inhibits the PKR pathway, 
thus facilitating translation shutdown. (D) Finally, ADAR1 catalyzes the R-loop to promote its deg-
radation and stabilize the telomere. 
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progenitor cells to exhibit both MDA5-activated interferon upregulation and PKR activa-
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also have an impact on miRNA-mediated transcript regulation, as well as altering the 
mRNA sequence, thus ultimately changing protein functions [9]. 

Figure 1. Schematic representation of the structure and functions of ADAR1. ADAR1 isoforms, p110
and p150, possess a right-handed A-RNA bindable double-strand RNA binding domain (dsRBD) and
a catalysis domain (deaminase). p150 also contains an additional left-hand Z-RNA binding domain
(Z-alpha). ADAR1 performs catalysis-independent competitive binding or catalysis-dependent A-I
RNA editing through its distinct binding and catalysis domains. ADAR1 has multiple pathways
of operation, (A) including binding with endogenous Z-RNA to inhibit RIPK3-induced necroptosis
and to block the activation of ZBP1. (B) Additionally, ADAR1 prevents immunogenetic dsRNA
from inducing MDA5-mediated Type-I interferon disorder by either binding or editing to impede
the recognition of dsRNA. (C) Moreover, ADAR1-mediated RES inhibits the PKR pathway, thus
facilitating translation shutdown. (D) Finally, ADAR1 catalyzes the R-loop to promote its degradation
and stabilize the telomere.

2.3. Regulatory Functions of Site-Specific dsRNA

RNA editing sites are predominantly found in intronic, intergenic, and 3′UTR regions,
with only a few in exons. These sites are known to affect RNA splicing and may also
have an impact on miRNA-mediated transcript regulation, as well as altering the mRNA
sequence, thus ultimately changing protein functions [9].

2.3.1. Recoding RNA Editing

Recoding editing sites (Figure 2A) were widely found in diseases with cis [48] or
trans [87] regulators. In cancers, RESs that result in non-synonymous substitution of codons
could introduce proteomic diversities [88] to affect cancer cell proliferation, migration, and
invasion, such as RES in the coding region of COPA. RES could also create neoantigens in
cancer cells to promote the activation of the immune system [17].
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on exons may cause amino acid recoding. (B) RESs located on splicing motifs may change splicing
events, and (C) RESs on pre-miRNA may affect the formation of miRNA and consequently impact
downstream mRNA regulation induced by miRNA.

2.3.2. RNA Editing Influences RNA Splicing

ADAR-mediated A-I conversion could alter RNA splicing sites (Figure 2B). As a
functional splicing element, the 5′-donor sequence is mostly conserved as GU, while the
3′-acceptor sequence is predominantly AG [89]. Additionally, the splicing element branch
point sequence (BPS) contains an adenosine residue that will accept a guanosine residue at
the 5′ end of the intron [89,90]. Because the inosine could work as guanosine, these elements
might be destroyed [91] or created [92,93] by A-I RNA editing in pre-mRNA. As a result, the
editing of pre-mRNA might contribute to multiple effects, such as exon skipping or novel
exon [94]. Except for directly editing these elements, other relationships between A-I RNA
editing and splicing should exist [95]. Kapoor et al. found that some splicing perturbations
were provided independently of the editing process through physical interaction with the
splicing machinery [96].

Knocking out ADAR1 and ADAR2 in mice experiments caused significant changes in
splicing [96]. Most splicing modulation events are associated with ADAR1, while ADAR2
is one of two subforms of catalytic RNA-editing ADAR. These two editing enzymes are not
replaceable, especially at some specific sites. For example, intron 42, which was retained in
Filamine A, has been proven to be a specific target for ADAR2 editing, with little association
with ADAR1 editing [97].

RNA editing can create alternative splicing isoforms that can be oncogenic. One
example is ADAR1 editing, which can affect splicing through the edited site, while ADAR2
binding can prevent U2AF65 from entering the 3′ splice site and subsequently blocking
the splicing [15]. Splicing changes regulated by ADARs have been reported not only as
a by-product of ADARs editing but also in relation to tumorigenesis. The dysregulation
of RNA editing and altered splicing has been reported in breast cancer, B-cell lymphoma,
and other cancers [98–100]. Alternative splicing could also be tumor-suppressive. In cancer
cells, the protoplasts of CCDC15 (including exon 9) were oncogenic, and ADAR acted as



Int. J. Mol. Sci. 2024, 25, 351 7 of 27

a tumor inhibitor by influencing the growth of cancer cells through binding or catalytic
editing, which makes the exon skip [15].

RNA editing and splicing exhibit a mutually regulatory relationship. RNA editing pre-
cedes splicing in most transcripts [93]. In some cases, splicing regulates editing by affecting
the conformation of splicing transcripts. For example, the osmosensitive cation channel
TMEM63b has interdependent exon four skipping and an ADAR2-mediated recoding site
in exon 20, Gln to Arg. Wu et al. found that if exon four is retained, it destroys the hairpin
structure in exon 20, which is prone to ADAR2 action [101]. In addition, ADAR-mediated
binding or catalytically regulated splicing may be flexibly regulated in homeostasis. A
major splicing factor, SRSF9, inhibits specific editing on novel exons. SRSF9 is a major
splicing factor that has been found to inhibit specific editing of some exons in the brain,
such as voltage-gated calcium channel CaV1.3. The physical interaction between SRSF9
and ADAR2 could decrease the editing function by preventing the dimerization of ADAR2.
In the two RNA recognition domains of SRSF9 (RRM1 or RRM2), RRM2 is mainly involved
in the interaction between ARSF9 and ADAR2 [102,103].

2.3.3. RNA Editing Regulates miRNA Binding

MicroRNAs are short RNAs of about 22 nucleotides that regulate gene expression [104].
The much longer miRNA precursors (pre-miRNAs) contain dsRNA and are potential sub-
strates for A-I RNA editing (Figure 2C). Around 20% of miRNA precursors are edited
in the adult brain [105]. It has been reported that several miRNA RESs conserved in ten
different human tissues may increase the diversity of miRNA targets and regulate miRNA
function [106]. RES on microRNA affects the processing of the miRNA. ADAR1 could form
protein complexes with endoribonuclease Dicer. The catalysis-inactivated heterodimer
promotes Dicer to recognize miRNA precursors, thereby increasing the miRNA processing
to produce more miRNA. Meanwhile, the interaction between ADAR1 and Dicer could
promote miR-155-5P maturation and further inhibit adipogenesis [107]. The catalysis-
activated homodimers (ADAR1-ADAR1) edited microRNA to block the recognition and
cleaving by the miRNA process enzyme, Dicer or Drosha, and thus reduce the miRNA
process. In addition, the influence comes from protein–protein interaction. The RES on
the miRNA could affect the multiple miRNA process stages, such as the recognition by
the Dicer–DGCR8 complex, which has been proved for several miRNA precursors of pri-
miR-142 [108], pri-miR-33, pri-miR-133a2, and pri-miR-379 [105]. In contrast, RES enhances
the Drosha cleavage for pri-miR-197 and pri-miR-203, also reported by Kawahara et al.
In addition, in human melanocytes, RES inhibited the Drosha on pri-miR-455 at the +2
and +17 positions, further decreasing miR-455-5p levels. The suppression of ADAR1 is
linked to an increase in miR-455-5p, thus leading to a decrease in cytoplasmic polyadeny-
lation element-binding protein 1 (CPEB1), a tumor suppressor. This association may be
a contributing factor to melanoma metastasis [109]. Except for Drosha, RES also affects
Dicer cleavage to inhibit miRNA expressions, such as pri-miR-151 [110] and pre-let-7g [105].
Additionally, RES on the precursor of miR-BART6-5p of the DNA virus, Epstein–Barr virus
(EBV), can disturb the binding to AGO2-containing RISC, thus inhibiting this miRNA and
blocking the specific binding to human Dicer mRNA [111].

A substitution in a single site on the pre-miRNA seed sequence can change the target
mRNA, just like the RES in miR-376 alters the target specificity [112]. This can be significant
in embryo development [113]. ADAR1 regulates miRNA-targeted mRNA by editing it, thus
preventing miR-155 from binding to MDM2 3′ UTR. This results in the non-suppression of
MDM2 and no activation of downstream p53 [14].

2.4. The Upstream Regulators of RNA Editing

Besides studying the functions of specific RNA editing sites, many studies aim to
understand the global regulation of ADAR activity. RNA editing is known to introduce
diversity in the transcriptome and proteome, but ensuring that its activity is regulated
in living organisms is essential. Studies have shown that the efficiency and specificity of
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edited sites can be controlled. Proteins that bind to ADAR can affect its activity. These
include all DZF-domain-containing proteins, such as ILF3, which can negatively regulate
RNA editing [87].

The RNA editing site shows some specific primary sequence preferences. The 5′

neighbor of the sites mostly influences the catalysis of ADAR1 and ADAR2 [114–116]. The
3′ neighbor affects ADAR2 more. Thus, ADAR2 prefers certain trinucleotides, such as UAU,
AAG, UAG, and AAU [115]. Based on the primary sequence, by learning the structural
characteristics of the nearby sequence, there is the possibility of predicting the RESs [116].
Stabilizing the hairpin covering the RES influences the editing efficiency, and the decreased
hairpin stabilization could reduce the editing frequency [46]. The cis-regulation is conserved
in Drosophila species. Also, the earlier RESs in the species’ evolutionary tree tend to have
higher editing efficiency, and these sites are enriched in neuronal genes [117]. The secondary
structure of the substrate (hairpin or sense–antisense structure) could interfere with the
access of the enzyme, and the binding of the enzyme would, in turn, open around ten base
pairs for further catalysis [1]. In addition, tertiary structure in vivo could influence RNA
editing efficiency [118]. Moreover, it is plausible that remote sequence structures may affect
RNA editing events [119]. Quantitative trait loci analysis in Drosophila melanogaster showed
that functional edQTLs may work by changing the secondary structure and affecting
nearby RNA editing levels [1]. In addition, only a tiny fraction of dsRNAs must be edited
to change their immunogenic secondary structure [120,121]. Sun and colleagues showed
that immunogenic hairpins have shorter loops between stems than other dsRNAs [121].

In addition, other types of RNA modifications may affect ADAR-mediated RNA
editing. The deamination activity of ADAR2 is sensitive to RNA modification at the 2′-
carbon ribose. Methylation on 2′-OH would lead to a significant decrease in deamination
efficiency, while 2′-deoxyadenosine and 2′-deoxy-2′-fluoroadenosine would not change the
rate much [122]. The 2′-O-methylation on the ribose of eukaryote mRNAs 5′ cap could,
similarly to ADAR-mediated self/non-self dsRNA, distinguish and avoid coronavirus by
activating the MDA5-mediated IFN pathway [68].

The RNA editing sites often cluster closely in specific genome regions, especially in
aging or diseased samples. This phenomenon is referred to as hyper-editing. Hyper-editing
regions exist in the aging human brain, and these hyper-editing sites remove the loops
in hairpins and make the dsRNA structure more stable [123]. Hyper-editing also occurs
in the 3′UTR of MDM2 mRNA, and these RESs block the related miRNA, miR-155, and
binding, which stabilizes the MDM2 mRNA and is finally involved in promoting the
malignant progenitor propagation [14]. Emerging RES hotspots were further found in
cancers. Hyper-editing sites block the recognition between miR-200b and the 3′UTR of
ZEB1/ZEB2 mRNA, thus reducing the inhibition of ZEB1/ZEB2 to promote cell invasion
and migration. Also, the hyper-edited miR-200b could target new mRNA, such as LIFR, a
metastasis suppressor [124].

3. ADAR-Mediated RNA Editing in Homeostasis and Immune-Related Diseases
3.1. RNA Editing in Maintaining Homeostasis

RNA editing plays a crucial role in the widespread editing of MDA5-recognized dsRNA
and the specific editing of sites that serve diverse functions. ADAR1 is vital for the survival
of mouse embryos by deleting Adar1, which could result in a lethal IFN disorder. Meanwhile,
ADAR2 is also necessary in mammals. The lack of ADAR2 may result in death with seizures
in mice, but artificial single-site A-I editing of GluR2 pre-mRNA can rescue the condition by
mimicking ADAR2 activity in vivo [125]. Although ADAR1 and ADAR2 edited an amount
of overlapped RESs, these two proteins were not redundant in mice [126]. Notably, the
tremendous difference in RES was observed in humans and mice mainly because of their
different repeat elements [127]. No abundant Alu elements are present in mice, which are
the primary substrate for ADAR1 in humans. Therefore, the animal experiment could not
entirely identify the ADAR1 function in humans [50,127,128]. However, it is worth noting
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that most ADAR-mediated RNA editing is not vital for mammalian homeostasis because
of the survival of the mouse with both knockouts of ADAR1 and MDA5 [126].

A series of efficient and highly specific RNA editing sites have been found in exons
in healthy or diseased mammals [22,129,130], and these RNA editing sites are usually
formed by pairing exons with nearby introns in a sense–antisense structure [131]. It is
important to note that RES exhibits strong tissue specificity, thus forming distinct RES
clusters specific to various human body tissues. Analysis of Genotype-Tissue Expression
(GTEx) data shows that 3710 sites exist primarily in only one of these tissues [45]. Within
coding regions, single-cell RNA-seq data revealed that 1517 RESs were identified and
exhibited significant differences in editing levels across human tissues, thus contributing to
protein diversity among cell subpopulations [130]. The cells related to the brain and nerves
exhibit the highest ADAR editing in human beings, while RNA editing is remarkably low
in skeletal muscles. In comparison to the brain, the arteries, colon, and esophagus are
much more likely to undergo recoding RNA editing. However, the recoding sites of these
tissues are mainly in a small number of targets with high editing frequency (especially
FlnA and IGFBP7), while editing in the brain is more diverse and affects more target genes.
Although RESs vary significantly between tissues, clustered RESs across species can be
clearly distinguished by species [45]. In a genome-wide association study of inflammatory
diseases, 30,319 cis-RNA editing quantitative trait loci (cis-edQTLs) were identified in 49
human tissues [22], partially explaining the genetic basis of RNA editing sites. The number
of cis-edQTLs shows high variabilities among different tissues, from a few hundred to a
few thousand. The highest number of cis-edQTLs in the thyroid is close to 10,000. In the
nerve (tibial), it is close to 8000. Meanwhile, in lymphocytes, it is only around 1000 to 2000.

Most research on ADAR’s ability to adjust to dynamic environmental conditions is
carried out using animal models. Nevertheless, these experiments are also relevant to
ADAR’s role in humans. Octopuses could utilize specific RESs to alter kinesin motility and
calcium-binding affinity of synaptotagmin to quickly adapt to water temperature shifts
with a rapid increase in the global editing level [132]. Garrett and Rosenthal also reported
a recoding site editing of Octopuses on an ion channel to increase the speed of gating
kinetics to adapt to environmental temperature shifts [133]. The temperature-dependent
RES changes were also detected in Drosophila in different living temperatures or when
facing an acute temperature change [134–136].

In humans, the hippocampus-specific low-edited glutamine site on GluR-B (an AMPA,
α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, receptor), GluR-B Q/R site, was
found in Alzheimer’s disease. In ADAR2-/- mice, a similar lethality and seizure phenotype
resulted from the under-editing of this site [125]. The calcium permeability of AMPA recep-
tors (AMPARs) in mammalian brain excitatory neurons could be blocked by a co-assembly
of GluR-B subunits whose arginine (R) residues at crucial sites in the channel pore could be
created by ADAR2-mediated selective adenosine deamination of glutamine (Q) at the pre-
mRNA level at more than 99 percent [125,137–139]. In most of the 24 RESs across different
transcripts, a significant reduction was observed in editing frequencies in ADAR2-/- mice.
However, it is important to note that these editing changes are not considered the leading
cause of symptoms, and how they function and can be controlled is still unknown [125]. In
addition, in relation to human neural development, Chen and Yang proposed that ADAR1
regulates the differentiation of human embryonic stem cells and affects neural formation
through miRNA interaction in an editing-independent manner [140]. Moreover, editing
could also affect cell renewal and differentiation, such as in the case of the RES on the
3′UTR of AZIN1 [141].

Generally, for global patterns in mouse models, knockdown of ADAR1 results in early
death, but it can be rescued by knockout of the MDA5 pathway. Knockout of ADAR2
causes seizures and premature death, which can be rescued by introducing Q/R editing
sites on GluR-B. Apart from inhibiting the immune pathway caused by immunogenetic
dsRNA, another key role of ADAR may be related to site-specific editing in most sites,
which could be ineffective in maintaining homeostasis. Therefore, ADAR enzymes play



Int. J. Mol. Sci. 2024, 25, 351 10 of 27

a significant role in modifying the editing frequency at specific sites impacting cellular
homeostasis. Of course, changes in the global level of ADAR editing may also indicate the
disease status.

3.2. Targeting Dysregulation of RNA Editing in Immune-Related Diseases
3.2.1. Multiple Roles of ADAR-Mediated RNA Editing in Cancers

Site-specific RNA editing is associated with various immune-related complex diseases.
In human cancers, RNA editing abnormalities are strongly associated with high aggres-
siveness and poor prognosis in many malignant tumors. ADAR was considered to affect
the immune microenvironment, such as by stimulating T lymphocytes and promoting
the presence of more abundant M1 macrophages [142]. Many specific sites have been
identified to play roles at different stages of cancer, such as tumor-promoting RES on the
intronic region of the CCDC15, which affects the splicing process. In addition to influencing
the structure of RNA during splicing in a catalytically independent or non-independent
manner, the effect of ADAR on splicing can also be achieved in an SR protein-dependent
manner. In vitro cell experiments with point mutations have demonstrated that the degree
of editing of a RES upstream CCDC15 exon9 enhances the binding of SR protein, thus
repressing the exon9 inclusion and producing a potentially oncogenic CCDC15 isoform [15]
(Figure 3A). RNA editing also often occurs in the 3′ UTR of mRNA. Multiple RNA editing
sites on the 3′UTR of the MDM2 (Figure 3B) stabilize its mRNA by decreasing regula-
tory miRNA binding, and over-existing MDM2 protein could enhance the propagation
of the blast crisis progenitor, which might be involved in the malignant transformation
of progenitors [14]. Cancer-associated RNA editing sites are also commonly found on
regulatory miRNAs. ADAR1 could also be tumor-suppressing by introducing RES on
miR-378a–3p (Figure 3C) to preferentially bind to the 3′UTR of oncogene PARVA, thus
inhibiting its expression and preventing melanoma progression [16]. Also, recoding RES
could create neoantigens to induce an immune response, such as RES on cyclin I. Peptides
resulting from RNA editing can be presented by human leukocyte antigen molecules. In
cell-based experiments, overexpression of the edited cyclin I protein can even lead to the
cytotoxicity of tumor-infiltrating lymphocytes (Figure 3D) [17]. Most particular RESs were
found to be specific to different types of cancer and lacked robust universal features across
multiple cancer types [143]. Oncogenic recoding site S to G in AZIN1, which participates
in cancer growth, invasion, and migration, was detected in various cancers, such as liver
hepatocellular carcinoma (LIHC), esophageal squamous cell carcinoma (ESCC), non-small
cell lung cancer (NSCLC), and colorectal cancer (CRC) [144–147].

Except for non-synonymous substitutions on coding sequences (CDS) [17], other
types of editing sites, such as those on 3′UTRs (on GM2A) [19], Intron (FAK) [13], miRNA
(miR-222) [20], long non-coding RNA (PCA3) [148], and circular RNA [149], have also
been implicated in the progression of cancer. In addition, RES could improve anti-tumor
drug resistance, such as by editing the 3′UTR of DHFR [150] and a recoding editing
site on GLI1 [18]. Another study conducted a single-cell sequencing analysis of lung
adenocarcinoma and found that cancer cells undergo more ADAR-like RNA editing than
other cells. In the single-cell RNA sequencing data of tumors and adjacent tissues from
30 non-small cell lung cancer patients, an average of 672 sites were edited per cell and
50,576 RESs in at least 50 cells [151]. Furthermore, genes associated with drug treatment
were enriched with RESs, suggesting that ADAR-mediated RNA editing may contribute to
drug resistance in lung cancer [151]. RES on miR-378a-3p [16] and miR-455-5p [12] could
prevent or promote tumor metastasis. Martínez-Ruiz et al. indicated that the transcriptional
editing pattern of metastatic tumor cells originated from the primary tumor, thus showing
a possibility of gaining continued evolution [152].
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Figure 3. Molecular mechanisms of aberrant ADAR-mediated RNA editing lead to the pathogenesis
of multiple diseases. Cases of ADAR editing sites contribute to immune-related diseases in various
ways. A-I editing sites are shown in red. Arrows in red represent decrease and green arrows represent
increase. (A) An A-I editing site affects the splicing of Coiled-Coil Domain Containing 15 (CCDC15)
related to tumorigenesis. (B) Multiple A-I editing sites on the 3′ untranslated region (3′UTR) of
Mouse Double Minute 2 (MDM2) prevent microRNA binding to promote malignant transformation.
(C) A-I editing on the microRNA increases its affinity to the 3′UTR of Parvin Alpha (PARVA) to
suppress tumors. (D) ADAR editing creates neoantigen in cyclin I, resulting in an induced immune
response. (E) Decreased editing on the immunogenic dsRNA in autoimmune diseases leads to an
MDA5-mediated immune response. (F) The RNA editing on the transcript 3′UTR of the catherpsin S
protein recruits the HuR protein to make the transcript more stable and encode more catherpsin S,
thus increasing the risk of atherosclerosis.

3.2.2. Immunogenic dsRNA RNA Editing may Regulate Autoimmune Diseases

A recent genotype–phenotype association study using GTEx (27 normal human tissue
types from GTEx v7) and Geuvadis (64 immortalized B cell lines) sample data found
that human A-I RNA editing sites are enriched in genome-wide association study (GWAS)
signals for autoimmune diseases, such as Crohn’s disease, inflammatory bowel disease, and
asthma [21]. Another study identified 30,319 cis-RNA-edited QTLs (edQTLs) in 49 human
tissues. The study found that common genetic variants associated with RNA editing levels
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were significantly enriched in GWAS signals for common inflammatory diseases and that
genetic risk variants associated with GWAS were generally associated with reduced levels
of nearby dsRNA editing [22]. Decreased RNA editing sites on putatively immunogenic
dsRNAs, including inverted-repeat Alu elements and cis-natural antisense transcripts,
could induce MDA5 activation and therefore increase the immune response in autoimmune
diseases (Figure 3E) [79].

In the meantime, research has shown dysregulation of ADAR-mediated RNA editing
in multiple autoimmune diseases. In rheumatoid arthritis patients, ADAR1 was signifi-
cantly overexpressed in the synovium, and the expression of the ADAR1 p150 isoform
in the blood was significantly increased, with a significant increase in A-I RNA editing.
ADAR1 p150 expression and individual adenosine RNA editing rates for cathepsin S AluSx+

decreased in patients with an excellent clinical response [153]. Blood samples from patients
with systemic lupus erythematosus also have high levels of RNA editing, some of which
affects proteins and may produce new autoantigens, thus increasing the antigen load [154].
In patients with primary Sjögren’s syndrome, there was a significant increase in overall
RNA editing associated with ADAR1 p150. The top 10 differential editing sites were found
in 9 unique genes involved in the inflammatory response or the immune system, and these
RESs can potentially be disease-specific biomarkers [155].

3.2.3. RNA Editing in Other Immune-Related Diseases

In cases of schizophrenia, a neuropsychiatric disorder that may be caused by abnormal-
ities in the immune system [156], researchers have identified two adjacent and interrelated
RNA editing sites on the MFN1 protein. MFN1 encodes a mitochondrial membrane protein
that is necessary for mitochondrial fusion. One of these sites is a C-T site, which APOBEC3B
could edit, while the other is an A-G site that ADAR could edit. These editing sites are
conserved in multiple species, such as macaques, mice, and zebrafish. Mouse models
have shown that both of these recoding sites in Mfn1 could reduce the ability of MFN1 in
mitochondrial fusion, which could lead to defective cellular responses to adaptive stress.
At the same time, these two editing sites could also increase the level of apoptosis. The
editing levels of MFN1 C-T and A-G are correlated, and dual editing could lead to a higher
degree of mitochondrial fusion and apoptosis [23].

In patients with immune-related atherosclerotic vascular disease, the degree of RES
editing on the 3′UTR of cathepsin S (CTSS) is related to the ADAR1 level. The altered
editing degree may regulate cathepsin S expression level by recruiting HuR protein to the
3′UTR of CTSS to stabilize the mRNA and increase the encoding level of cathepsin S to
participate in the occurrence and development of atherosclerosis (Figure 3F) [157].

3.2.4. Therapeutic Implication of ADAR-Mediated RNA Editing

In recent years, by regulating the global RNA editing level, research has increasingly
indicated the therapeutic potential of ADAR-mediated RNA editing in treating human
cancers. The silence of ADAR in mouse models can transform cold tumors into hot tumors
by activating interferon-associated immunity in the tumor microenvironment, and reducing
ADAR expression in tumors could increase sensitivity to checkpoint inhibitors in melanoma
mouse models [158]. ADAR silent treatment could bypass the typical resistance of small-
molecule anticancer drugs against the immune checkpoint blockade (ICB), such as the PD-1
checkpoint blockade, in tumor molecules together with PKR and MDA5 activation, thus
resulting in tumor cell growth inhibition and inflammation [59,159–161].

ADAR-related tumor therapy could also rely on the ZBP1 pathway inhibited by
ADAR. A small molecular curaxin CBL0137 was found to activate the immune pathway
by triggering the formation of Z-RNA, which could induce ZBP1-mediated necrosis in
cancer-associated fibroblasts in a mouse melanoma model [59].

In addition, complete or partial inhibition of ADAR1 may enhance the apoptosis
and/or cytotoxic effects of splicing inhibitors in anticancer therapy. Dysregulated ADAR-
mediated RNA editing and RNA splicing are both commonly observed in many cancers [94].
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In an MYC-driven triple-negative breast cancer model, spliceosome-targeted therapy (STT)
has been shown to induce aberrant RNA splicing to produce immunogenic mRNA. By
accumulating mis-spliced mRNA containing large amounts of endogenous dsRNA in the
cytoplasm, downstream immune and tumor cell apoptosis would be stimulated [162].
Inhibition of ADAR1 likewise increases the accumulation of dsRNA to activate type I
interferons, and a synergistic effect between ADAR1 inhibition and STT has been shown to
increase the effect [163]. Further research is necessary to better understand the contribution
of ADAR in STT.

4. Emerging Computational Resources for RNA Editing Data Analysis
4.1. Characterizing RNA Editing from High-Throughput Sequencing Data

Identification of RNA editing sites for high-throughput RNA sequencing data has
become a popular approach due to the increasing recognition of the importance of global or
site-specific RNA editing. A large number of available data sources are provided by large
database resources and more convenient sequencing methods in the laboratory (Figure 4A).
Over the past two decades, various computational tools for predicting RNA editing sites
have been developed with multiple methods to increase accuracy and efficiency (Table 1).
Raw high-throughput RNA sequencing data first undergo quality control, which usually
dumps or trims low-quality reads, thus yielding high-quality data for subsequent reads
aligning on the reference genome, such as hg38 for humans. Then, RNA editing sites could
be identified as one specific type of genomic mutation indicated by annotating a single
base substitute on high-quality mapped reads (Figure 3). The precise RES detection is the
foundation of the subsequent analysis of the RES functions. A series of software take multi-
ple strategies to filter out false-positive sites and could be classified into several categories.
Various tools [25,164–168] adopt approaches like statistical modeling or machine learning
techniques, such as the Generalized Linear model (L-GIREMI), random forest classifier
(RDDpred), Logistic Regression (RED-ML), and Support Vector Machine (RDDSVM), to
increase the sensitivity of detecting RESs. Others further used deep learning to increase
detection accuracy [26,169]. Other tools design specific mapping schemes for repetitive
genomic regions to increase the accuracy of RES detection [170]. Some tools primarily focus
on hyper-editing sites to further characterize RESs that cannot be detected from the typical
mutation detection method [171,172]. These tools use unmapped reads to call clusters
with hyper-editing via the global A-G mask with a series of filtrations. Some tools are
advantageous in identifying reads with spliced junctions [170].

Methods use different strategies to reduce false positives caused by mapping artifacts.
In the case of JACUSA, sequence features will be numerically included to filter out false
positives caused by sequencing [165]. Although RES prediction tools are becoming more
accurate, it is still recommended to experimentally validate them through PCR amplification
or Sanger Sequencing before further functional analysis of essential RESs. (Figure 4B).
Differential RNA editing analysis between disease and control samples is usually performed
before subsequent functional analysis. To perform differential RNA editing analysis, most
studies adopt a nonparametric Wilcoxon rank sum test of editing frequencies of RESs
between groups [11,173,174], while a few approaches are based on modeling of editing
levels or discrete NGS read counts [173].
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Figure 4. Workflow of ADAR editing site prediction and potential therapeutic application. (A) Data
sources can be obtained from publicly available RNA-seq databases or from sequencing in-house
samples from human and animal models. (B) Predicting RNA editing sites from RNA-seq data
involves multiple steps to increase accuracy. Several databases collect RNA editing sites that can
be used for prediction reference and RES annotation. The function of these predicted editing sites
can be analyzed using downstream methods, such as differential modification, regulatory impact on
gene expression, gain/loss of miRNA binding, or peptide recoding. Some of these analyses can be
performed via interactive web servers. (C) ADAR-based in vivo site-direct RNA editing could be
classified into two types. Methods based on exogenous ADAR, such as RESCUE, as an example, using
modified ADARdd (the adenine deaminase domain of ADAR2 was evolved) fused with catalytically
inactivate RNA-targeting CRISPR-Cas13 (dCas13) delivered by designed vehicles to edit target RNA
sites. RESCUE has been used to dephosphorylate β-catenin through a C-U conversion, thus leading
to T41I substitution and resulting in β-catenin accumulation and increased Wnt/β-catenin signal and
cell growth. Endogenous ADAR, such as CLUSTER, was tested on mutated IDUA, which recovers a
premature stop codon through A-I editing. A-I RNA editing or C-U RNA editing are shown in red.
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Table 1. Computational tools for RNA editing site (RES) prediction and analysis.

Tool Feature Model Programming
Language

Input
Format

URL [Accessed on 12
December 2023]

AEI [174] • Global editing level on the Alu element. C bam https://github.com/a2
iEditing/RNAEditingIndexer

DeepEdit [26]
• Detect RNA editing site (RES) on a single

Nanopore read.
Neural
network model Python fastq https://github.com/weir12/

DeepEdit

DeepRed [169] • Predict RES using primitive RNA sequences. Deep learning MATLAB https://github.com/
wenjiegroup/DeepRed

JACUSA v1.2.0 [165] • Filter RES with sequence characteristics. Java fastq https://github.com/dieterich-
lab/JACUSA

L-GIREMI v0.1.12 [25]

• Detect RES on a single long read.
• Detect rare allele-specific RES.
• Detect hyper-edited Alu.
• Predict RES-altered RNA secondary structure.

Generalized
linear model Python bam https://github.com/gxiaolab/

L-GIREMI

RASER v0.5.2 [170]
• An accurate read aligner with novel mapping

schemes and index tree structure. C++ fastq
fasta

https://github.com/
jaegyoonahn/RASER

RDDpred [164]
• Distinguish between false-positive sites in

RNA editing events.
Random
forest classifier Python bam https://github.com/vibbits/

RDDpred

RDDSVM [168]
• Use experimentally verified RES to predict

novel RES.
Support Vector
Machine R https://github.com/

huseyintac/RDDSVM

RED-ML [166]
• Detect new RES with confidence scores in a

user-friendly way.
Machine
learning C bam https://github.com/BGIRED/

RED-ML

REDItools v1/2 [24]
• Characterize large-scale RES in dataset

repositories, such as TCGA or GTEx. Python bam https://github.com/
BioinfoUNIBA/REDItools2

RES-Scanner [175] • Infer genomic locus genotype. Bayesian model Perl bam
fastq

https://github.com/
ZhangLabSZ/RES-Scanner

RESIC [172]
• Integrate detection and classification

approaches into a pipeline.
• Identify hyper-edited regions.

Python fastq

SPRINT v0.1.8 [171] • Hyper-RES detection. Python bam https://github.com/
jumphone/SPRINT

4.2. Web Resources for RNA Editing Site Collection and Functional Analysis

Extensive sequencing of human tissues and animal models has resulted in the pub-
lication of numerous databases containing information regarding A-I editing sites. This
information is highly beneficial for conducting research on specific sites (Table 2). Most of
these come from healthy human samples and animal models, such as mice, fruit flies, pigs,
and rhesus. For instance, RADAR and REDIportal are widely used RES databases that gen-
erate site information from the RNA sequencing data [28,53]. DbRES is a database covering
96 organisms, such as plants, metazoans, protozoa, fungi, viruses, etc., with 5437 RNA
editing sites and 251 transcripts [176]. Considering the tissue-specific characteristics of
A-I RNA editing, most databases allow for separate querying and analysis of RESs from
different tissues. Apart from describing the tissue-specific distribution of editing sites, other
data types, such as genomic mutations and cross-species conservations, were included
to classify and explore the genetic basis of editing sites [22,29,177–179]. Other databases
focus on RESs on coding regions, microRNAs (miRNAs), or long non-coding RNAs (lncR-
NAs) [27,180–182]. To uncover the potential clinical impact of RES, researchers are building
data resources covering editing sites associated with human diseases, such as cancer and
inflammatory disease [11,22,29,177,183,184]. Differential RNA editing analysis between
disease and control samples is usually performed before subsequent functional analysis. To
perform differential RNA editing analysis, most studies adopt a nonparametric Wilcoxon
rank sum test of editing frequencies of RESs between groups [11,173,174], while a few
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https://github.com/a2iEditing/RNAEditingIndexer
https://github.com/weir12/DeepEdit
https://github.com/weir12/DeepEdit
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https://github.com/dieterich-lab/JACUSA
https://github.com/gxiaolab/L-GIREMI
https://github.com/gxiaolab/L-GIREMI
https://github.com/jaegyoonahn/RASER
https://github.com/jaegyoonahn/RASER
https://github.com/vibbits/RDDpred
https://github.com/vibbits/RDDpred
https://github.com/huseyintac/RDDSVM
https://github.com/huseyintac/RDDSVM
https://github.com/BGIRED/RED-ML
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approaches are based on modeling of editing levels or discrete NGS read counts [173]. In
addition, there are also some interactive web servers published for functional interpretation
and visualization of RESs [183–185].

Table 2. Databases and web servers for documenting and analyzing RNA editing sites (RESs).

Database Description RES Amount Species URL

dbRES [176] Collection of known RNA editing sites
with comprehensive annotations. 5437

96 species covering plant,
metazoan, protozoa,
fungi, and virus

http://bioinfo.au.tsinghua.edu.
cn/dbRES [Accessed on
12 December 2023]

e23D [27]
Database of RES mapped to
evolutionary-related 3D protein
structures.

2,576,459 (human)
8823 (mouse)
5025 (fly)

Human
Mouse
Fly

GPEdit [29] Collection of RNA Editing quantitative
trait loci (edQTL) in cancers. 320,029 (edQTLs) Human (33 cancer types)

https:
//hanlaboratory.com/GPEdit/
[Accessed on 12 December 2023]

LNCediting v1.0 [181]
RES in lncRNAs with their effects on
lncRNA secondary structures and
lncRNA–miRNA interactions.

199,991 (human)
1922 (mouse)
165 (rhesus)
1829 (fly)

Human
Mouse
Rhesus
Fly

http://bioinfo.life.hust.edu.cn/
LNCediting/ [Accessed on 12
December 2023]

miR-EdiTar [180] Predicted A-I-edited miRNA
binding sites. 10,571 Human

miREDB [182] RNA editing on miRNAs.
4162 in around 80% of
pre-miRNAs and 574 in
mature miRNAs

Human
Mouse
Drosophila

PRES [185] Web server for downstream functional
perturbations at RES. - Human

http://bio-bigdata.hrbmu.edu.cn/
PRES/ [Accessed on
12 December 2023]

PRESDB [179] Pig genome-wide RNA-editing
investigation. 59,472 Pig https://presdb.deepomics.org/

[Accessed on 12 December 2023]

RADAR v1/2 [53] Collection of RESs, including
tissue-specific editing levels.

Humans (1,379,403)
Mouse (8108)
Drosophila (2698)

Human
Mouse
Drosophila

http://rnaedit.com/ [Accessed on
12 December 2023]

REDIportal v1/2 [28,186] ATLAS of RESs in human tissues and
other organisms.

16 million (human)
107,094 (mouse)

Human (31 tissues)
Mouse (2 tissues)

http:
//srv00.recas.ba.infn.it/atlas/
http://srv00.recas.ba.infn.it/
atlas/index.html [Accessed on
12 December 2023]

REDR [187] Potential regulation of RNA editing in
drug resistance to 18 anticancer drugs.

7157 DESs from 98,127
informative RESs Human (6 cancer types) http://www.jianglab.cn/REDR/

[Accessed on 12 December 2023]

REIA [183] Interactive web server that analyzes
and visualizes RESs in cancers. 8,447,588 Human (34 cancer types) http://bioinfo-sysu.com/reia

[Accessed on 12 December 2023]

5. Application of Endogenous ADAR-Mediated Precise RNA Editing

RNA editing enzymes have been used to create site-direct RNA editing tools based on
recent years of interpretation of ADAR substrate sequences and understanding of RNA edit-
ing at specific sites (Table 3). Reversible RNA editing in living cells has excellent application
prospects in treating diseases and studying RNA or proteins. Unlike DNA editing, RNA
editing does not introduce mutations directly into the genome but edits the transcribed
RNA to gain a reversible and dose-dependent way to manipulate genetic information. Such
properties make RNA editing significantly safer in gene-drug development [188].

Site-directed RNA editing tools can be categorized into two types: those that employ
exogenous ADARs and those that recruit endogenous ADARs. ADAR2 is typically used
in the former, while both ADAR1 and ADAR2 are recruited for editing in the latter [189].
In the SDREs using exogenous ADAR, to increase the precision of the editing, Cas13 [190]
was introduced as a guide system. Because the deaminase domain of ADAR2 could be
relaxed to accept other bases to possess cytidine deamination activity, it could be extended
for C-to-U RNA editing, which allows RNA editing to target more sites and enable the
regulation of post-translational protein modifications, such as phosphorylation, to regulate
residues associated with phosphorus signaling. On the transcript of β-catenin (CTNNB1),
dCas13 and exogenous ADAR could increase ACC to AUC editing, thus resulting in T41I.
T41I is located at a critical phosphorylation site, which could prevent phosphorylation

http://bioinfo.au.tsinghua.edu.cn/dbRES
http://bioinfo.au.tsinghua.edu.cn/dbRES
https://hanlaboratory.com/GPEdit/
https://hanlaboratory.com/GPEdit/
http://bioinfo.life.hust.edu.cn/LNCediting/
http://bioinfo.life.hust.edu.cn/LNCediting/
http://bio-bigdata.hrbmu.edu.cn/PRES/
http://bio-bigdata.hrbmu.edu.cn/PRES/
https://presdb.deepomics.org/
http://rnaedit.com/
http://srv00.recas.ba.infn.it/atlas/
http://srv00.recas.ba.infn.it/atlas/
http://srv00.recas.ba.infn.it/atlas/index.html
http://srv00.recas.ba.infn.it/atlas/index.html
http://www.jianglab.cn/REDR/
http://bioinfo-sysu.com/reia
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from proceeding normally. As a result, β-catenin would increase and lead to nearly
five-fold activation of Wnt/β-catenin signaling, ultimately leading to faster cell growth
(Figure 4C) [32].

Most endogenous SDREs recruit ADAR1 or ADAR2 to catalyze. Methods improve
the recruitment of ADAR by adding hairpin structures and R/G domains to guide RNAs.
In Hurler syndrome, a monogenetic disease, CLUSTER was tested on mutated Alpha-
L-iduronidase (IDUA). By recovering a premature stop codon through A-I editing, the
expression of IDUA could be repaired (Figure 4C). By using endogenous ADAR to encode
effecter RNA in the cell that is expressing cell-specific target RNA, cell classification and
manipulation could be operated, such as the cellREADR [31,191].

Moving RNA editing to the clinic is still a challenging task. Firstly, the efficiency of
RNA editing needs improvement [30,189]. Secondly, the current RNA tools prefer specific
substrate sequences, which limits their practical applications. More breakthroughs are re-
quired to overcome these limitations and extend the scope of substrates [189]. Additionally,
editing accuracy is a significant challenge, as current methods can only partially eliminate
off-target editing [190,192]. For editing based on exogenous ADAR, there is also the issue
of trafficking in vivo [189,192]. Improving editing tools is not the only challenge in RNA
editing. Another challenge is selecting targeted sites. For diseases, the genetic causes of
occurrence are often complicated and involve adaptive drug resistance or pathway bypass.
Therefore, RNA editing still needs a lot of development before it can be widely applied in
clinical settings.

Table 3. Collection of site-directed RNA editing tools.

Name Year ADAR Source Description

AD-gRNA [193] 2017 Endogenous Use reprogrammable antisense region to target specific RNA sites
and a hairpin structure on the guide RNA to recruit hADAR2.

Novel guideRNA [194] 2017 Endogenous Use R/G-guide RNAs as trans-acting guide RNA.

REPAIR 2017 Exogenous Catalytically inactive Cas13 (dCas13) is fused to the ADAR2 to edit.

SNAP-ADAR [195] 2018 Exogenous
SNAP-tagged ADARs with chemically stable guide RNAs allow
simultaneous editing in multiple target transcripts with high
efficiency and lower off-target rates.

CIRTS [196] 2019 Exogenous An all-human protein RNA editing tool.

RESTORE [33] 2019 endogenous Combine an ADAR recruitment domains (R/G motif) and a
chemically modified guide region.

LEAPER [197] 2019 Endogenous Recruit ADAR1 or ADAR2 through short-engineered
ADAR-recruiting RNAs (arRNAs).

RESCUE [32] 2019 Exogenous Programmable C-to-U RNA editing using ADAR2 fused to
CRISPR-Cas13.

miniCas13X-ADAR2dd [198] 2021 Exogenous Use mini Cas13X.1 protein to efficiently target RNA for A- I and
C-U editing.

shAD-gRNA [199] 2021 Exogenous/
Endogenous

Use shAD-gRNA to have as short a sequence as possible to induce
editing activity.

CellREADR [191] 2022 Endogenous Utilize ADAR-mediated RNA editing to translate effector proteins
in cell with the target RNAs.

CLUSTER [30] 2022 Endogenous Utilize the recruitment sequence and R/G-binding domain.

cadRNA [200] 2022 Endogenous Use circular ADAR recruitment guide RNA (cadRNA).

LEAPER 2.0 [192] 2022 Endogenous Use covalently closed circular ADAR-recruiting RNAs
(circ-arRNAs).

RADAR [31] 2023 Endogenous RNA sensing in living cells using ADAR editing.
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6. Conclusions

The ADAR enzyme catalyzes Adenosine to Inosine (A-I) conversion, a hallmark of
RNA modification in metazoans via double-stranded RNA (dsRNA) deamination. Meta-
zoans adopt A-I RNA editing for various physiological activities, such as adaptive mech-
anisms in Octopuses and Drosophila in response to changing environments. Although no
RNA editing mechanism that responds to the environment has been identified in humans,
RNA editing exhibits complex patterns in various human diseases, such as global editing
landscape alterations in cancer and autoimmune diseases. ADAR-like RNA editing has a
distinct regional preference, with most sites distributed on introns and 3′UTR, especially
on Alu elements (one of SINE, short interspersed nucleic elements), which would form
hairpins with dsRNA. The aberrant functioning of ADAR may result in either an escalation
or reduction of the editing sites on a global scale. Such alterations can consequently impact
the immune pathways, such as MDA5 or PKR-mediated pathways. Also, the ADAR1 p150
solely binds to endogenous Z-RNA, which is necessary to achieve cellular homeostasis by
preventing the antivirus-like apoptosis pathways induced by the binding between unbound
Z-RNA and ZBP1.

Apart from globally distributed immunogenic dsRNA or hairpin editing, a site-specific
RNA editing site could also directly impact protein functions. For instance, a recoding
site located on an ion channel protein can control the rate of ion passage [132,136]. This
highlights the significance of RNA editing in maintaining cellular homeostasis and pre-
venting diseases. A-I RNA editing may affect protein degradation and exon splicing by
disrupting microRNA interaction with 3′UTR and blocking splicing complex formation.
It is worth noting that ADAR-mediated editing may have varying effects in different dis-
eases. On the one hand, dsRNA editing ameliorates the immune response in autoimmune
diseases. On the other hand, it can be oncogenic by introducing an immune-suppressive
microenvironment in human cancers. ADAR can be a potential target in the development of
anti-tumor therapy. Inhibiting ADAR can help prevent cancer cells from becoming resistant
to anti-tumor drugs. Additionally, converting endogenous RNA to ADAR-target Z-RNA
may increase the amount of unbound Z-RNA, which can stimulate cancer cell apoptosis.
In addition to regulation at the overall ADAR editing level, modification at the editing
level at specific sites can also be exploited as a potential treatment for diseases, such as T41I
on beta-catenin and exon inclusion on CCDC. According to validation experiments and
analytic methods, such as GWAS-edQTL colocalization and Mendelian Randomization,
some key editing sites may have a causal relationship with specific diseases.

It is important to note that RNA editing sites in mammals are dynamically changing,
and such changes are regulated under environmental stress. A linkage reaction has been
observed in two nearby sites in schizophrenia, one of which was edited by a DNA editing
enzyme, APOBEC. In contrast, the other site was edited by ADAR [23]. This finding may
suggest that the change in these two sites is under non-randomly adaptive selection. Fur-
thermore, it has been discovered that ADAR-mediated editing is under stress, and a series
of sites are specially edited with cis or trans regulators. This phenomenon indicates that
other forms of RNA modifications in certain diseases, such as epigenetic or RNA secondary
structure changes, lead to specific sites being edited. By exploring the linkage effect of
editing sites under disease conditions, it may be possible to determine the importance of
specific RNA editing sites.

Based on the knowledge of ADAR and with the advancements in sequencing technol-
ogy, it is now possible to fully characterize the whole spectrum of specific RNA editing
sites in many immune-related diseases. However, it is crucial to exercise caution when
interpreting RNA editing sites, particularly recoding sites, from sequencing data. This
is because current analytical methods are susceptible to a high false-positive rate [201].
If these differentially edited sites in diseases are experimentally validated, they could
potentially be targeted for engineered RNA editing as a therapeutic approach. Unlike DNA
editing, engineered site-directed RNA editing is more morally sound and biologically safe
in medical applications. Recently, site-directed methods for RNA editing in living organ-
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isms have been developed, thus opening new possibilities for RNA therapeutic approaches.
RNA-based therapeutics have proven effective in targeting multiple cells or organs to
restore genetic function, and many of them are already FDA-approved [202]. A recent
study indicated that an AAV-mediated RNA editing tool with improved efficiency and
specificity is viable for Hurler syndrome treatment in a humanized mouse model [203]. In
conclusion, site-directed RNA editing holds considerable promise in the clinical application
of therapeutic diseases, though many challenges remain to be resolved.
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CCDC15 Coiled-Coil Domain Containing 15
COPA COPI Coat Complex Subunit Alpha
CyFip2 Cytoplasmic FMR1 Interacting Protein 2
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FAK focal adhesion kinase
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GLI1 GLI Family Zinc Finger 1
GM2A Ganglioside GM2 Activator
IGFBP7 Insulin Like Growth Factor Binding Protein 7
ILF3 Interleukin Enhancer Binding Factor 3
ILFR LIF Receptor Subunit Alpha
MDM2 Mouse Double Minute 2
MFN1 Mitofusin 1
MYC MYC Proto-Oncogene, BHLH Transcription Factor
PARVA Parvin Alpha
PCA3 Prostate Cancer Associated 3
RISC RNA-induced Silencing Complex
SRSF9 Serine And Arginine Rich Splicing Factor 9
TMEM63b Transmembrane Protein 63B
U2AF65 U2 small nuclear ribonucleoprotein auxiliary factor 65
ZEB1/2 Zinc Finger E-Box Binding Homeobox 1/2
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