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Abstract: Anticytokine autoantibodies (ACAAs) are a fascinating group of antibodies that have
gained more and more attention in the field of autoimmunity and secondary immunodeficiencies
over the years. Some of these antibodies are characterized by their ability to target and neutralize
specific cytokines. ACAAs can play a role in the susceptibility to several infectious diseases, and
their infectious manifestations depending on which specific immunological pathway is affected. In
this review, we will give an outline per infection in which ACAAs might play a role and whether
additional immunomodulatory treatment next to antimicrobial treatment can be considered. Finally,
we describe the areas for future research on ACAAs.
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non-tuberculous mycobacteria; cryptococcus

1. Introduction

The existence of anticytokine autoantibodies (ACAAs) has been known since the late
20th century when they were first discovered in patients with autoimmune disorders and
thymoma [1]. These antibodies are characterized by their ability to target and neutralize
specific cytokines (Figure 1). In the meantime, several auto-immune diseases and infectious
diseases have been associated with the presence of ACAAs, sometimes in a causative, but
most frequently in an associative role [2].

Interestingly, not all ACAAs have neutralizing capacities and titers differ greatly be-
tween subjects [3]. Even in a healthy population, individuals with ACAAs can be found [4].
In a Danish study, in almost 9000 blood donors, 86% of the participants demonstrated at
least one ACAA, which shows that low titers of ACAAs are relatively common, but also
major differences between different types of ACAAs were observed. ACAAs against IL-6
were most common (65%), compared to only 10% of the participants showing antibod-
ies against GM-CSF [4]. It is believed that in healthy individuals ACAAs play a role in
fine-tuning the immune response, ensuring proper regulation of cytokine activity during
disease. After infection, antibody titers slowly decline and might even become negative
again. For anti-GM-CSF autoantibodies, it has been shown for example that only high
titers correlate with the development of pulmonary alveolar proteinosis and susceptibility
to opportunistic infections [5,6]. However, in a follow-up study on Danish blood donors,
it was shown that even in this healthy population the cumulative presence of ACAAs
correlated with several proxies for immune function, such as a self-reported health score
and antibiotic prescriptions [7].
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and antibiotic prescriptions [7]. 

 
Figure 1. Overview of most important ACAAs and their suggested mode of action. Central to the 
process of auto-antibody production are B lymphocytes and plasma cells, which can be targeted 
with host-directed therapies, such as rituximab (anti-CD20). (A) The cytokines IL-17 and IL-22 are 
essential in the interaction between epithelial barrier and Candida. IL-17 induces production of 
antimicrobial peptides and IL-22 enforces epithelial cell proliferation and repair, both through the 
IL-17-receptor and IL-22-receptor present in epithelial cells. This process is disrupted by anti-IL-17 
and anti-IL-22 auto-antibodies. (B) IFNγ produced by Th1-cells is an essential activator of 
macrophages. It improves killing of intracellular pathogens, such as NTMs and several fungi, and 
induces IL-12 production, which in turn stimulates IFNγ production by Th1-cells. Anti-IFNγ auto-
antibodies disrupt this proinflammatory loop. (C) GM-CSF is essential in the activation of, among 
others, alveolar macrophages, and the induction of production of reactive oxygen species. Anti-GM-
CSF auto-antibodies therefore increase the risk for specific pulmonary infections with Nocardia and 
cryptococcal species and apart from local infection also increase the risk for disseminated disease 
such as Nocardia brain abscesses and cryptococcal meningitis. APECED, Autoimmune 
polyendocrinopathy-candidiasis-ectodermal dystrophy; GM-CSF, Granulocyte-macrophage 
colony-stimulating factor; IFN, Interferon; IL, Interleukin; Mϕ, macrophage; NTM, Non-
tuberculous mycobacteria; Th, T-helper cell. 

The presence of ACAAs has been implicated in a wide range of diseases, including 
autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus, and 
psoriasis [2]. Additionally, ACAAs have been associated with immunodeficiencies and 
infectious diseases, where their presence can impact the immune response against 
pathogens. Understanding the mechanisms behind the production and function of 
ACAAs is an active area of research, as it holds promise for the development of novel 
therapeutic interventions [2]. By targeting these autoantibodies or inhibiting their 

Figure 1. Overview of most important ACAAs and their suggested mode of action. Central to the
process of auto-antibody production are B lymphocytes and plasma cells, which can be targeted
with host-directed therapies, such as rituximab (anti-CD20). (A) The cytokines IL-17 and IL-22
are essential in the interaction between epithelial barrier and Candida. IL-17 induces production
of antimicrobial peptides and IL-22 enforces epithelial cell proliferation and repair, both through
the IL-17-receptor and IL-22-receptor present in epithelial cells. This process is disrupted by anti-
IL-17 and anti-IL-22 auto-antibodies. (B) IFNγ produced by Th1-cells is an essential activator of
macrophages. It improves killing of intracellular pathogens, such as NTMs and several fungi, and
induces IL-12 production, which in turn stimulates IFNγ production by Th1-cells. Anti-IFNγ auto-
antibodies disrupt this proinflammatory loop. (C) GM-CSF is essential in the activation of, among
others, alveolar macrophages, and the induction of production of reactive oxygen species. Anti-GM-
CSF auto-antibodies therefore increase the risk for specific pulmonary infections with Nocardia and
cryptococcal species and apart from local infection also increase the risk for disseminated disease such
as Nocardia brain abscesses and cryptococcal meningitis. APECED, Autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy; GM-CSF, Granulocyte-macrophage colony-stimulating factor; IFN,
Interferon; IL, Interleukin; Mφ, macrophage; NTM, Non-tuberculous mycobacteria; Th, T-helper cell.

The presence of ACAAs has been implicated in a wide range of diseases, includ-
ing autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus,
and psoriasis [2]. Additionally, ACAAs have been associated with immunodeficiencies
and infectious diseases, where their presence can impact the immune response against
pathogens. Understanding the mechanisms behind the production and function of ACAAs
is an active area of research, as it holds promise for the development of novel therapeutic
interventions [2]. By targeting these autoantibodies or inhibiting their production, the
delicate balance of cytokines could potentially be restored, which could serve as additional
treatment in certain infectious diseases.

In this review, we will summarize per infectious disease which ACAAs have been
associated with them, in which patients’ ACAA diagnostics should be considered, and
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which potential treatment options have been explored thus far. Here, we will provide a
practical guide for the clinician and point out potential research interests for future research.

2. Bacterial Infections
2.1. Tuberculosis

Interferon-gamma (IFNγ) has been known to play a central role in the immune defense
against Mycobacterium tuberculosis. Given this central role, in 1998, the presence of IFNγ

auto-antibodies was already examined. In this study, it was shown that neutralizing anti-
IFNγ auto-antibodies that were present in 10 out of 30 HIV-negative tuberculosis (TB)
patients, with the highest antibody titers found in patients with advanced disease, and
those with detectable IFNγ in serum [8]. In a cohort of 74 HIV-negative patients with anti-
IFNγ auto-antibodies from the USA and Thailand, with almost all the American patients
being of Asian descent, 5 diagnoses of tuberculosis were made (two pulmonary and three
disseminated cases) [9]. In addition, several case reports demonstrate the presence of
anti-IFNγ auto-antibodies in disseminated tuberculosis, often in Asian patients [10–12]. In
contrast to these findings, in a large cohort study performed in Thailand and Taiwan, only
1/9 patients with disseminated TB and 1/49 patients with pulmonary TB demonstrated
the presence of anti-IFNγ auto-antibodies, which was not significantly different from
the frequency in healthy controls (1/48). However, these auto-antibodies were present
significantly more frequently in patients with disseminated non-tuberculous mycobacterial
(NTM) infections in this study [13]. Furthermore, in a Japanese study, no anti-IFNγ auto-
antibodies were found in 189 pulmonary TB patients [14]. Therefore, it remains to be
determined how extensive the role of anti-IFNγ auto-antibodies is in TB, especially in
disseminated disease.

Autoantibodies to other potentially relevant cytokines in the immune response to TB,
such as interleukin (IL)-12 or granulocyte-macrophage colony-stimulating factor (GM-CSF),
have so far only rarely been assessed in individual patients in case reports [11,15–17], but
never systematically in larger cohorts of patients. The same holds true for potential ther-
apeutic interventions targeting ACAAs in TB. Thus far, only case reports have described
attempted treatment with IFNγ supplementation, rituximab, or cyclophosphamide com-
bined with prednisone in patients with anti-IFNγ auto-antibodies and a double infection
with TB and NTM with both positive and negative outcomes [9,18–20].

The main research aim for ACAAs in TB would therefore be to first define whether they
are functionally neutralizing IFNγ and to assess their role in pulmonary and disseminated
disease, for which a cohort analysis would be beneficial.

2.2. Non-Tuberculous Mycobacterial Infections

The role of anticytokine autoantibodies (ACAAs) in NTM infections, especially anti-
IFNγ auto-antibodies, has been widely studied. Most patients are adults, but also in
children, rare cases have been reported [21,22]. Apart from multiple case reports, sev-
eral larger cohort studies have been performed. Two systematic reviews provide a good
overview of patients with anti-IFNγ auto-antibodies. Of all patients with anti-IFNγ auto-
antibodies 83.5% and 49.2%, respectively, presented with an NTM infection [20,23]. In
52 patients with disseminated NTM infection in Thailand and Taiwan, 81% demonstrated
anti-IFNγ auto-antibodies [13]. In a Taiwanese study with patients with disseminated NTM
infections, 45 of 46 patients had anti-IFNγ auto-antibodies [24] and in another Thai study,
in all 19 patients with disseminated NTM infection, these auto-antibodies were found [25].
In an American study with 35 patients with disseminated or pulmonary NTM infections,
17% (6/35) of patients demonstrated a high titer of anti-IFNγ auto-antibodies with proven
neutralizing capacity [26]. In the previously mentioned cohort study of 74 HIV-negative
patients with anti-IFNγ auto-antibodies from the USA and Thailand, 67 were diagnosed
with a disseminated NTM infection, the majority of which involved Mycobacterium avium
complex (MAC) in the USA and Mycobacterium abscessus in Thailand [9]. In a Japanese study
with 91 patients with pulmonary and 51 with disseminated NTM infections, anti-IFNγ
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auto-antibodies were found in 37 patients, with neutralizing capacity shown in 31, all
of whom had disseminated NTM infection [14]. In 135 Australian patients with a pul-
monary NTM infection due to Mycobacterium avium, intracellulare, kansasii, or lentiflavum,
significantly increased titers of anti-IFNγ and anti-GM-CSF auto-antibodies were found
compared to controls and patients with a Mycobacterium abscessus infection. Anti-IFNγ and
anti-GM-CSF auto-antibody titers did not correlate, therefore constituting separate risk fac-
tors [27]. Anti-GM-CSF auto-antibodies were also found to predispose to pulmonary NTM
infection in pulmonary alveolar proteinosis (PAP, which is caused by these anti-GM-CSF
auto-antibodies). However, whether this is due to the ACAAs, or to the altered pulmonary
architecture (or both) remains elusive [27–30]. In conclusion, although the prevalence of
ACAAs varies greatly between different cohorts and not all studies specify whether ACAAs
found to have functionally neutralizing capacity, anti-GM-CSF and especially anti-IFNγ

auto-antibodies have been shown as a risk factor for the development of (especially dis-
seminated) NTM infections. Anti-IFNγ auto-antibodies are not routinely investigated in all
patients with NTM infections due to technical challenges. A convenient workaround could
be to perform an interferon-gamma release assay (IGRA): this test would be indeterminate
in the presence of anti-IFNγ auto-antibodies, as the positive control (a mitogenic stimulus)
would turn out negative due to the antibodies [31].

Therapeutic options targeting ACAAs in NTM infection have only been explored and
presented in case reports or case series so far [20]. Here, we will summarize the most impor-
tant findings. First, IFNγ supplementation has shown both positive and negative outcomes,
with no clear predictors for therapy failure [18,20,32,33]. Second, there are two reports of in-
travenous immunoglobulin (IVIG) therapy in patients with anti-IFNγ auto-antibodies. One
describes a 44-year-old female with disseminated MAC infection who received IVIG with
good clinical effect after 5 months of antibiotic treatment and insufficient clinical improve-
ment [34] and the other describes a 24-year-old girl with disseminated M. simiae infection
and low immunoglobulins, in whom preemptive IVIG therapy was directly started [35].
Third, a combination of plasmapheresis and cyclophosphamide was effective in a 38-
year-old female Filipino patient with MAC osteomyelitis during a 3-year-follow-up. The
antibody titer decreased and clinical symptoms improved, but antimycobacterial treatment
had to be continued to prevent relapse [36]. In a cohort study in Thailand, eight patients
with anti-IFNγ auto-antibodies and NTM infection were treated with cyclophosphamide
and corticosteroids. Five patients achieved remission—of whom two could discontinue
antimycobacterial treatment—two relapsed and one died [19]. Fourth and last, in case
reports or small case series, the effect of B cell depleting therapy with rituximab has been
described in patients with anti-IFNγ auto-antibodies whose infections were refractory
to antibiotic therapy, all with good clinical effect and little side effects and resulting in
sustained remission [37–43]. Comparably, four Asian women with treatment-refractory dis-
seminated NTM infections that were also not responsive to additional immunomodulatory
therapy with plasmapheresis (1 patient) or IFNγ supplementation (3 patients) responded to
treatment with rituximab. All patients demonstrated improvement in the first 2–6 months,
but to ensure sustained clinical improvement rituximab was continued for a least a year.
No infectious complications were observed [44]. In another cohort of Thai and American
NTM patients with anti-IFNγ auto-antibodies, eight received cyclophosphamide and ten
received rituximab, both resulting in reduced anti-IFNγ auto-antibody titers, with no re-
markable side effects in the patients receiving rituximab [9]. In a Thai study with patients
with anti-IFNγ auto-antibodies and difficult-to-treat NTM infections, eleven patients were
treated with cyclophosphamide and four with rituximab. Nine out of the eleven patients
in the cyclophosphamide group achieved remission compared to all four in the rituximab
group, although remission occurred faster in the cyclophosphamide-treated patients (after 9
versus 84 days) [45]. One case report is available on a 31-year-old Filipino woman with dis-
seminated MAC infection which was unresponsive to several lines of antibiotic treatment.
Subsequent treatment with rituximab did not reduce disease activity or anti-IFNγ auto-
antibody titers, but treatment with daratumumab (anti-CD38) was ultimately effective [46].
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The addition of bortezomib (a proteasome inhibitor used in multiple myeloma) to rituximab
when rituximab monotherapy is unsuccessful has also been suggested [47]. In another
38-year-old Filipino female patient with anti-IFNγ autoantibodies and disseminated MAC
infection, extensive antibiotic treatment, surgical debridement, and rituximab were not
effective, but following the addition of bortezomib there was a slow clinical improvement
over months [47].

All in all, several attempts of host-directed immune-modulating therapy in patients
with NTM infections and anti-IFNγ auto-antibodies have been described, with positive out-
comes, especially for rituximab. The time now seems right to perform the first randomized
clinical trial to define the exact beneficial effects of immunomodulation in NTM infections.

2.3. Nocardia

Nocardia infections were first described in association with pulmonary alveolar pro-
teinosis (PAP), which is caused by anti-GM-CSF autoantibodies, in 1960 [6,29,48]. Since
then, in a cohort of 104 PAP patients with a mean follow-up duration of 3.4 years, the most
commonly identified opportunistic infection was nocardiosis (10%), which was found in
the patients with the highest anti-GM-CSF auto-antibody titers [49]. Disseminated Nocar-
dia infections are also more common in PAP patients [6,50,51]. However, anti-GM-CSF
auto-antibodies have now also been associated with pulmonary and disseminated Nocardia
infections in patients without PAP. In five patients with disseminated or cerebral abscesses
due to Nocardia, all patients possessed high titer anti-GM-CSF auto-antibodies [52–54].
Apart from anti-GM-CSF auto-antibodies, anti-IFNγ auto-antibodies have also been re-
ported in one case report of a severe disseminated Nocardia infection [55].

Therapeutic immunomodulatory options, such as GM-CSF supplementation or rit-
uximab, have not yet been explored in patients with ACAAs in Nocardia infection. IFNγ

supplementation has been applied in three patients with severe disease, in whom ACAAs
were not assessed [56]. The necessity for prophylactic treatment for new Nocardia infections
or cryptococcosis, screening for recurrence of infection or screening for PAP in these pa-
tients remains elusive. Establishing cohorts of non-PAP patients with Nocardia infection to
assess the presence of anti-GM-CSF auto-antibodies and long-term follow-up data in this
group of patients are essential to answer these questions.

2.4. Miscellaneous

In literature, three cases of severe staphylococcal infection have been described in the
presence of neutralizing anti-IL-6 auto-antibodies, with the observation that low/normal
CRP values were measured despite clinically severe disease. The cases concern an 11-
month-old boy from Haiti with recurrent cellulitis and abscesses due to Staphylococcus
aureus [57], a 56-year-old Japanese woman with severe recurrent Staphylococcus aureus
soft tissue infections [58], and a 20-month-old Czech girl with a presumed Staphylococcus
aureus septic shock [59]. There is also a fourth case of a 67-year-old Japanese man anti-IL-6
auto-antibodies with no S. aureus-related infection. He presented with an empyema due to
E. coli and S. intermedius [17]. Hence, a low CRP in severe disease should result in clinical
suspicion of the presence of anti-IL-6 auto-antibodies.

In ten patients with hidradenitis suppurativa (where superinfections with S. aureus
are common), no ACAAs against IL-1α, IL-6, IL-10, IL-17, or IFNα were found [60].

The literature also provides multiple case reports and patient cohorts in which Salmonella
infections occur in patients with anti-IFNγ auto-antibodies, consistent with Salmonella’s
intracellular life cycle. These include a 65-year-old German woman with a disseminated
MAC infection who suffered from Salmonella typhi sepsis [61], a 45-year-old Thai patient
with recurrent mycobacterial infections also suffering from recurrent Salmonella infections
(which were ultimately controlled with co-trimoxazole prophylaxis) [12]. A Chinese study
describes three patients with anti-IFNγ auto-antibodies with recurrent Salmonella bac-
teremia and two other patients with a single infection [62]. A Taiwanese study describes
four patients with neutralizing anti-IFNγ auto-antibodies, all of whom developed NTM dis-
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ease and three of whom developed Salmonella-related infections (besides two with systemic
Talaromyces marneffei infection, one patient with pulmonary TB, one with Legionella pneumo-
nia, one with herpes zoster, one with oral herpes simplex and one with Epstein–Barr virus
(EBV) associated disease) [63]. Furthermore, in a cohort of 46 patients with NTM infections
and anti-IFNγ antibodies, 40% also had a history of salmonellosis [24]. In addition, in
several patient cohorts with NTM infections and anti-IFNγ auto-antibodies, coinfection
with Salmonella has been reported [9,14,19,61,64–66]. In some, immunomodulatory therapy
has been applied for treatment of the NTM coinfection, but also demonstrated a beneficial
effect on the Salmonella infection [13,14,19].

Three reports of recurrent or severe Burkolderia infections in patients with ACAAs
have been reported in the literature. The first one concerns a 45-year-old Cambodian
woman with anti-IL-12p70 autoantibodies which resulted in a recurrent Burkholderia gladioli
lymphadenitis [67]. The second patient had proven neutralizing anti-IFNγ auto-antibodies
and developed disseminated infection with Burkholderia gladioli, later followed by dissemi-
nated infection with Mycobacterium chelonae. She died due to sepsis [68]. The third patient
also demonstrated anti-IFNγ auto-antibodies and suffered from recurrent infections with
different species of NTM, Talaromyces, and Burkholderia pseudomallei [62].

Additionally, infection with Legionella has sporadically been described in patients with
the presence of anti-IFNγ auto-antibodies [63,66].

In a cohort of 35 acute respiratory distress syndrome (ARDS) and 13 sepsis patients,
3 patients showed anti-IL-6 auto-antibodies, two anti-IFNω auto-antibodies, two anti-IFNγ

auto-antibodies, and one anti-IL-1α auto-antibodies. Unfortunately, these auto-antibodies
were not stratified by pathogen, and it was not known whether they were already present
before the onset of sepsis [69].

No human data are available on the role of ACAAs in bacterial meningitis. However, in
two rat studies with Haemophilus influenzae meningitis induced by intraperitoneal injection,
it was shown that both in serum and in cerebrospinal fluid, ACAAs against IFNγ and
tumor necrosis factor (TNF)-α were induced during the infection [70,71].

3. Viral Infections
3.1. Herpes Viruses

The most commonly described association of ACAAs with viral infections is with
herpes viruses, especially varicella zoster virus (VZV). A 26-month-old girl with partial
recombination activating gene (RAG) deficiency suffered from a prolonged VZV infection
with proven auto-antibodies against IL-12, IFNα, and IFNω [72]. Anti-IFNα and IFNω auto-
antibodies were also described in an 18-year-old female with common variable immune
deficiency and severe facial herpes vegetans with recurrent herpes simplex viremia [73].
A 68-year-old Chinese woman with anti-IFNγ auto-antibodies suffered from recurrent
herpes zoster infections in addition to an NTM infection [74]. In a group of 83 patients with
postherpetic neuralgia, 12% showed high-titer neutralizing anti-IFNγ auto-antibodies [75].
A 45-year-old-male with anti-IFNγ auto-antibodies and recurrent TB also suffered from
recurrent herpes zoster episodes [12]. In a cohort of 28 patients with NTM infections, about
a quarter also suffered from oral herpes simplex virus, and a quarter from herpes zoster [63].
In a cohort of 45 patients with NTM infections and anti-IFNγ auto-antibodies, 62% also
had a history of herpes zoster infection [24]. Among a Taiwanese cohort of 17 patients with
disseminated NTM infection and anti-IFNγ auto-antibodies, 71% also suffered from herpes
zoster [66]. Interestingly, in the largest cohort study on anti-IFNγ auto-antibodies to date,
5/52 patients with disseminated NTM infection and 10/45 patients with opportunistic
infections with or without NTM infection (both groups with the highest titers of these
antibodies) also suffered from local VZV infections and 3/45 in the latter group also had
disseminated VZV infection [13].

Furthermore, cytomegalovirus has also been described as a coinfection with NTM infec-
tions in two Asian women with neutralizing anti-IFNγ auto-antibodies [42,76]. All in all, the
exact prevalence of ACAAs in herpes virus infections is unknown, but given the presented
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case reports and patient cohorts, there seems to be a possible correlation with auto-antibodies
directed against IFNγ, a correlation that should be further assessed in larger cohorts.

3.2. Human Immunodeficiency Virus (HIV)

Little research has been performed on ACAAs in HIV, whereas it could be an inter-
esting topic for future research with regards to their influence on HIV progression and as
an additional risk factor for (opportunistic) infections. Thus far, it has been shown that
anti-TNF-α auto-antibody titers are significantly higher in slow/non-progressing people
living with HIV (PLHIV) than in seronegative healthy controls and correlate positively with
viral load and CD8+ cell count; they correlate inversely with the CD4+ cell count, however.
Whether there is an association with certain opportunistic infections is unknown [77]. In
an observational study, anti-IFNγ auto-antibodies have been shown in PLHIV. However,
further assessment did not show any neutralizing capacity [78]. In contrast, in a follow-up
study, in 40 asymptomatic PLHIV with a CD4 count > 400 cells/mm3, all of whom were
intravenous drug users, showed that the anti-IFNγ auto-antibodies in these patients did
have a high neutralizing capacity [79]. However, whether these ACAAs play a role in
opportunistic infections or the immunological defense against HIV remains unknown.

3.3. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

During the recent coronavirus disease 2019 (COVID-19) pandemic, several studies to
determine the role of ACAAs in this infection have been published, mainly pointing towards a
role for auto-antibodies directed against type I interferons, but also ACAAs to other cytokines
such as IL-12, IL-17, and IL-22 were found [80–82]. It was shown that auto-antibodies against
IFNα and IFNω (and not IFNβ) were present in up to 20% of life-threatening COVID-19
infections and COVID-19 deaths (in comparison to less than 5% of healthy controls), and were
more common in elderly male patients [83–87]. The presence and concentration of ACAAs
correlated with the disease severity [84,85] and anti-type I IFN auto-antibodies were also
present in the nasal mucosa of COVID-19 [88,89]. In a Spanish cohort of 46 patients with
severe COVID-19, autoantibodies to IFNα and IFNω were found in 10%. As no anti-IFNβ

auto-antibodies were found, these patients were treated with IFNβ supplementation. This
did, however, not result in faster clinical improvement [90]. In an American clinical trial, the
effect of adding IFNβ to COVID-19 treatment (but not specifically in patients with ACAAs)
was assessed, but in this trial, too, without clinical effect [91].

As there appears to be a central role of type I interferons in the immune defense
against COVID-19, four patients with a severe infection in the ICU were treated with
plasmapheresis. It was shown that concentrations of anti-IFNα auto-antibodies were ef-
fectively reduced in blood and tracheal aspirates. Two of these patients died and two
patients survived [92]. Also, a single patient with autoimmune polyendocrine syndrome
type 1 (APS1) with known neutralizing auto-antibodies to IFNα was treated with plasma-
pheresis, which resulted in the reduction of autoantibodies [93]. However, as patients with
APS1 often have autoantibodies to type I interferons and not all APS1 patients develop
severe COVID, other factors than auto-antibodies against type I interferons in determining
COVID-19 severity seem likely [94]. Finally, as no controlled trials have been performed to
assess the role of plasmapheresis (or other anti-ACAA therapy) in COVID-19, this remains
a field for further research.

In the multisystem inflammatory syndrome in children (MIS-C), which occurs in a
small group of children after COVID-19, the effect of ACAAs was determined. It was
reported that in 21 children with MIS-C, 62% showed auto-antibodies against IL-1 receptor
antagonist (IL-1RA) [95], which could explain the severe proinflammatory reaction in
these patients. In another study, mainly anti-IFNγ auto-antibodies (in more than 80% of
patients) were found, followed by auto-antibodies directed against IL-17, IFNα, IL-6, and
IL-22 [96]. However, in a third study, no anti-IFNα auto-antibodies were found in 199
MIS-C patients [97]. Hence, major differences in findings between studies render it difficult
at this point in time to determine whether there is a causative role of ACAAs in MIS-C.



Int. J. Mol. Sci. 2024, 25, 515 8 of 17

3.4. Other Respiratory Infections

In 267 patients from five different cohorts with severe respiratory symptoms (due to
viral, bacterial, or fungal infection, or non-infectious critical illness) that screened negative
for COVID-19, more than 50% demonstrated ACAAs. The majority of ACAAs were found
in patients with an infection, of whom the majority were infected with influenza. The
most frequently found neutralizing ACAAs were directed against type I interferons, with
anti-GM-CSF and anti-IL-6 auto-antibodies in second and third place, respectively [98].

4. Fungal Infections
4.1. Candida

The role of ACAAs has most extensively been studied in patients with chronic muco-
cutaneous candidiasis (CMC) where auto-antibodies against IL-17 and IL-22 play a role.
CMC can be caused by several underlying disease processes and mutations, but ACAAs
are most commonly seen in autoimmune polyendocrinopathy-candidiasis-ectodermal dys-
trophy (APECED, also known as APS1). APS1 is caused by mutations in the autoimmune
regulator (AIRE) gene, resulting in the loss of thymic deletion of autoreactive T cells with
multiple autoimmune features such as endocrinopathies as a result. Neutralizing autoanti-
bodies against IL-17A (41%), IL-17F (75%), or IL-22 (91%) were found in a cohort of over
150 APECED patients. In addition, neutralizing antibodies against type I interferons were
found in APECED patients. Antibodies were mainly found in patients with CMC [99–101].
ACAAs were infrequent in patients with other genetic causes of CMC [102]; however, one
study also reports IL17F autoantibodies in 11 out of 17 patients with a signal transduc-
tion and activator of transcription (STAT) 1 gain of function mutation [103]. Especially
anti-IL-17A auto-antibodies seem to be correlated with the highest risk of CMC [104].
One study in 17 patients with thymic malignancies found that 12 demonstrated ACAAs
directed against one or more cytokines, including type I IFN, IL-12, IL-17A, B cell activating
factor (BAFF), IL-1α, TNF-α, IL-6, IL-18, A proliferation-inducing ligand (APRIL), and C-C
chemokine receptor 7 (EBI1/CCR7). Five of these patients had opportunistic infections (three
with CMC, two with disseminated VZV, one with disseminated cryptococcosis and one with
additional infections with Scedosporium apiospermum and M. avium). Interestingly, the two
patients with the highest titers of anti-IL-17A auto-antibodies and whose antibodies had
neutralizing activity, had CMC [105]. Proven treatment is currently limited to intermittent
azole therapy. Experimental data have been gathered about intravenous immunoglobulin
(IVIG) therapy, but no trials have been performed in patients with ACAAs and CMC [106].
Experience with other immunomodulatory therapies such as rituximab or cyclophosphamide
has not been reported.

4.2. Cryptococcus

Cryptococcal infections, comparable to Nocardia infections, have mainly been as-
sociated with anti-GM-CSF auto-antibodies [16,107,108]. However, one paper reported
10 non-HIV positive patients with cryptococcosis and disseminated NTM infection, in
whom anti-IFNγ auto-antibodies were shown [109]. Also, in patients with anti-IFNγ auto-
antibodies with or without coinfections with NTM, cryptococcal infections are sometimes
shown [13,24,25,109–112]. In a Taiwanese cohort of 39 otherwise healthy patients with
pulmonary, cerebral, or disseminated cryptococcosis, high titers of anti-GM-CSF auto-
antibodies were found in 15 patients, 14 of whom presented with central nervous system
(CNS) involvement. Interestingly, in 11 out of these 14, the causative microorganism was
found to be Cryptococcus gattii [113]. In another Taiwanese study, slightly lower numbers
of anti-GM-CSF auto-antibodies were found: out of 23 HIV-negative patients, two with
disseminated (including CNS infection), three with exclusively pulmonary, and one patient
with exclusively musculoskeletal involvement were found to have anti-GM-CSF autoan-
tibodies. Five out of five patients with auto-antibodies and speciation of Cryptococcus
available were shown to be infected with C. gattii. ACAA serum concentrations were higher
in the three patients with extrapulmonary cryptococcosis than in those with exclusively
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pulmonary infection [114]. Several case reports or small case series with cryptococcal
disease in over 30 patients with GM-CSF autoantibodies are currently available in the
literature. C. gattii infections are more frequently reported than infections due to C. neofor-
mans. Interestingly, reported cases frequently demonstrate cerebral involvement [17,115].
No reports on additional immunomodulatory treatment are available from the literature.
Although limited long-term follow-up data are available for patients with anti-GM-CSF
auto-antibodies, it has been suggested that they should be counseled for the development of
PAP later in life (although the exact risk is unknown) [116]. Whether these patients should
receive prophylactic treatment remains unknown, although recurrence was relatively rare
in the few papers with longer follow-up data [114,115].

4.3. Histoplasma

Infection with the dimorphic endemic fungus Histoplasma capsulatum has mainly been
associated with anti-IFNγ auto-antibodies, although three cases in patients with PAP
(and, therefore, likely positive for anti-GM-CSF auto-antibodies) have been reported as
well [117]. In addition, in a murine study with pulmonary Histoplasma infection, mortality
was approximately four times higher in mice treated with anti-GM-CSF antibodies [118].
Most of the patients with anti-IFNγ autoantibodies and histoplasmosis also presented
with an NTM infection [13,25,111,112], but some reports also concern solitary Histoplasma
infection [9,119,120]. No systematic analysis of cases is available and no data on recurrence
and the potential beneficial effect of prophylactic treatment are available.

4.4. Talaromyces

Talaromyces (formerly Penicillium) marneffei is a dimorphic fungus, which is mainly
endemic in Southeast Asia. This fungal infection is seen in advanced HIV infections but
has also been described in patients with anti-IFNγ auto-antibodies with or without NTM
infection [13]. In as case series of eight Chinese patients with anti-IFNγ auto-antibodies,
all eight showed serological evidence of (previous) Talaromyces infection [62]. In a cohort
of 58 HIV-negative patients with severe talaromycosis, in 55 anti-IFNγ auto-antibodies
were found. No neutralizing auto-antibodies against GM-CSF, IL-6, IL-17A, IL-12, and
IL-23 were found [121]. In another cohort of 42 patients with talaromycosis, 22 were
positive for anti-IFNγ auto-antibodies [122]. In patients with positive anti-IFNγ auto-
antibodies, disseminated disease was more common, as well as coinfections with other
pathogens (such as NTM) and they demonstrated a higher mortality [24,39,122–125]. In two
systemic reviews of patients with anti-IFNγ auto-antibodies, 18.3%, respectively, 16.3% of
these patients with anti-IFNγ auto-antibodies were diagnosed with talaromycosis [20,23],
the second most common infection after NTM infections. In one study, five patients
with anti-IFNγ auto-antibodies and therapy-refractory talaromycosis were treated with
cyclophosphamide. All patients were able to stop antimicrobial therapy 3–12 months
later, with only one relapse during a 2-year follow-up time [126]. No other studies on the
potential role of immunomodulatory therapy are available at this time.

5. Parasitic Infections

Data on ACAAs in parasitic infections are limited. There are two case reports that
describe cerebral toxoplasmosis in patients with anti-IFNγ autoantibodies. One reports on
a German patient who also suffered from infection with Mycobacterium avium complex and
Salmonella sepsis [61], and the other on a Japanese patient with an additional disseminated
NTM infection and recurrent herpes infections [127]. In a murine toxoplasmosis infec-
tion model, it was shown that treatment with anti-IFNγ antibodies resulted in increased
brain and lung parasitic loads compared to control [128]. In a murine model for African
trypanosomiasis, it was shown that during the infection anti-IFNγ autoantibodies were in-
duced. Whether this also occurs in humans, whether these auto-antibodies are functionally
neutralizing, and whether the natural existence of anti-IFNγ auto-antibodies would result
in other disease outcomes remains elusive [129].
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6. Discussion

In this review, we provide an overview of the role of different ACAAs in several infectious
diseases. However, although many case reports and patient cohorts have been presented,
many important questions remain, both diagnostic and therapeutic (Table 1). In some cases,
the causative role of ACAAs in disease appears more straightforward (e.g., anti-IFNγ auto-
antibodies in NTM infections), but in most infections, it remains unknown whether the
ACAAs are indeed the cause or a result of the infection and how big their role exactly is. Also,
long-term data on the natural course of these ACAAs are lacking (Table 1). Furthermore, not
for all ACAAs, the neutralizing capacity has been unequivocally demonstrated. Whether
the titer of ACAAs is predictive of their effect remains elusive in most cases, just as whether
ACAAs only play a role in the dissemination of an established infection or are already at the
time of acquiring the primary (most often pulmonary) infection. In several case reports and
case series, immunomodulatory therapies, such as rituximab or cyclophosphamide, have been
employed, in many cases with good effect, but until now not in a randomized and controlled
fashion. However, this could be the result of biased publishing, with only the presentation
of cases with a positive outcome. Furthermore, it is yet unknown whether patients with
ACAAs would benefit from secondary prophylaxis or extended consolidation treatment after
completing initial antimicrobial treatment, which are essential questions to be answered. Last,
the main focus in ACAAs has thus far been on ACAAs against proinflammatory cytokines,
but one of the studies on MIS-C in COVID-19 also shows a role for antibodies against IL-1RA,
an anti-inflammatory cytokine. ACAAs against anti-inflammatory cytokines could therefore
also play a role in hyperinflammatory reactions in certain infections and should also be a topic
of future research.

Table 1. Overview of ACAA targets and current evidence. ACAA, Anti-cytokine auto-antibody;
APECED, Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; COVID-19, Coro-
navirus disease 2019; GM-CSF, Granulocyte-macrophage colony-stimulating factor; HIV, Human
immunodeficiency virus; IFN, Interferon; IL, Interleukin; NTM, Non-tuberculous mycobacteria.

Disease ACAA Target Evidence Future Directions for Research

Bacterial

Tuberculosis IFNγ Case reports Define role in larger cohorts

GM-CSF/IL-12 Case reports Define role in larger cohorts

NTM IFNγ Proven in larger cohort studies Therapeutic interventions

GM-CSF Case reports Define role in larger cohorts

Nocardia GM-CSF Clear association in PAP patients
Only case reports in non-PAP patients

Define role in larger cohorts and
provide long-term follow-up data

Viral

Herpes simplex/zoster Type I and II IFNs Multiple case reports Define role in larger cohorts

HIV IFNγ Two older cohort studies Evaluate ACAAs in a new cohort

COVID-19 IFNα and -ω Large cohort studies
No effect of IFNβ supplementation Therapeutic interventions

Fungal

Candida (in APECED/APS1) IL-17/IL-22/IFNα Shown in several cohort studies Therapeutic interventions

Cryptococcosis (especially C.
gattii, but also C. neoformans) GM-CSF Shown in small cohort studies Define role in larger cohorts and

provide long-term follow-up data

IFNγ Case reports Define role in larger cohorts

Histoplasmosis IFNγ/GM-CSF Case reports Define role in larger cohorts

Talaromycosis IFNγ Proven in cohort studies Therapeutic interventions

Parasites

Toxoplasmosis IFNγ Two case reports Define role in larger cohorts
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In order to address the questions above, two issues are of major importance for current
clinical practice. First, testing for ACAAs should become more readily available, making
it easier to diagnose these conditions. Currently, it is highly likely that many diagnoses
of ACAAs are missed due to limited diagnostic availability and limited knowledge about
ACAAs in general. Furthermore, testing for ACAAs in clinical circumstances where op-
portunistic infections are expected, such as in advanced HIV or patients with immune
suppressive therapy, should be performed more frequently as well. Potentially, ACAAs
could at least constitute an additional risk factor for these infections under these circum-
stances. Second, ideally, all patients diagnosed with ACAAs should become part of an
international study cohort. By improving diagnostic availability, these cohorts will become
larger over time. Long-term observation will shine a light on the natural course of ACAAs,
the risk for recurrence of disease, and the need for prophylaxis. Moreover, large patient
cohorts could make stratified therapeutic intervention studies possible.
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