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Abstract: The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary
adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the
bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence
of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU
(biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory
proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the
Deg-system of signal transduction and independent from the Spo-system.
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1. Introduction

Bacillus pumilus strain 3-19 is a derivative of the Bacillus pumilus 7P soil isolate with
acquired resistance to streptomycin, and with increased expression of some extracellular
hydrolases [1]. The metalloendopeptidase MprBp is secreted into the culture medium by
Bacillus pumilus 3-19 cells at the end of the exponential growth phase and acts as a minor
protein. The protein was purified to homogeneity, sequenced by mass spectroscopy, and
biochemically characterized [2]. Based on the primary structure of the conserved motifs
of the active centre and Met-turn the enzyme has been classified as a metalloproteinase
belonging to the metzincin clan. It combines features of two families, the astacins and
adamalysins/reprolysins. Notably, this represents the first prokaryotic homologue of the
eukaryotic adamalysins/reprolysins family [3]. Metalloproteinases from this family have
not previously been described for bacilli. Adamalysins perform protective and regulatory
functions in eukaryotic cells, controlling physiological and pathological processes in living
organisms. The functional role of the bacillary homologue is unclear due to its extremely
low content in the medium. Elucidation of the regulatory networks controlling metallopro-
teinase activity will enable the evaluation of this enzyme’s contribution to the integrated
cellular response.

Gene expression can be assessed directly through RT-qPCR, which is considered
the most reliable and informative method [4,5]. However, gene expression can also be
determined indirectly by evaluating the activity level of its product [6,7]. For this study, the
level of proteolytic activity of metalloendopeptidase was utilized as an indirect parameter
for assessing the expression of the mprBp gene. It has previously been established that the
mechanisms of carbon and nitrogen catabolite repression regulate the expression of the
metalloendopeptidase gene. The synthesis of metalloproteinase is blocked by excess glucose
in the culture medium. In experiments involving strains mutant for nitrogen metabolism
regulatory proteins, it was demonstrated that the ammonium transport proteins GlnK and
AmtB, which interact with the TnrA regulator, play a role in controlling the activity of
metalloendopeptidase [8].

Minor extracellular proteinases of bacilli may be involved in the mechanisms driving
cultural survival strategy changes, such as the transition from free-floating cells to biofilm
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formation [9,10]. Numerous studies indicate a strong link between DegU and Spo0A regulators
in adjustment procedures while bacilli transit to spore and biofilm formation [11–15]. In
addition, adaptive properties such as mobility, the production of antimicrobial molecules
and the ability to colonise plant roots may be positively or negatively regulated by the
cooperation between DegS/DegU and Spo0A [16].

The aim of this study is to elucidate the role of the Deg and Spo signalling systems in
regulating the activity of the Bacillus pumilus 3-19 metalloendopeptidase.

2. Results
2.1. Promoter Region Analysis of mprBp

The full genome sequencing data for B. pumilus strain 3-19 facilitated the study of the
mprBp metalloproteinase gene (GenBank: ACE75740.2) and its promoter region, leading to
the selection of primers for efficient cloning of the gene [1]. The gene sequence under its
own promoter, spanning 1.1 kb in total, was then inserted into the expression vector pCB22.
The newly formed vector containing the metalloproteinase gene was designated as pSA1.

In order to assess the potential control of the metalloproteinase activity, the regulatory
region of the mprBp gene was analysed for conservative binding sites with regulatory
proteins. The 400-nucleotide promoter region was aligned with canonical sequences to
allow for interaction with the Spo0A transcription factor, which is involved in spore
formation initiation, and the DegU transcription factor, which controls the expression of
biodegradation proteins. Genetic analysis identified binding sites within the mprBp gene
promoter. The degree of homology to the consensus is shown in Table 1 and Figure 1.

Table 1. Potential interaction sites with regulatory proteins in the mprBp gene promoter.

Regulatory Protein Conservative Sequence Number of Sites Homology, %

Spo0A TGTCGAA [17] 4 71–86

DegU GTCATTAN7TAAATATC [18] 0 -

DegU~P GTCATTA [18] 4 60–65
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the Spo0A protein are highlighted in dark grey, with potential binding sites for the phosphorylated 
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Possible binding sites in the promoter region of mprBp for the regulatory proteins 
DegU and Spo0A suggested that the expression of the gene is controlled by these systems. 
In order to test this hypothesis, the metalloproteinase gene was cloned into the Bacillus 
strains lacking the genes for the regular proteins mentioned above. 

Figure 1. Sequence of the B. pumilus 3-19 mprBp gene promoter region. Possible sites for binding to
the Spo0A protein are highlighted in dark grey, with potential binding sites for the phosphorylated
form of the DegU~P protein in light grey. The −10 and −35 regions of the promoter, transcription
initiation codon GTG (+1) and ribosome binding site (RBS) are depicted in bold and italics, translation
initiation codon ATG is represented in bold.

Possible binding sites in the promoter region of mprBp for the regulatory proteins
DegU and Spo0A suggested that the expression of the gene is controlled by these systems.
In order to test this hypothesis, the metalloproteinase gene was cloned into the Bacillus
strains lacking the genes for the regular proteins mentioned above.
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2.2. Effect of DegU Transcription Factor on Metalloendopeptidase Activity

The mprBp metalloproteinase gene was cloned into several B. subtilis strains with
mutations in the genes of the DegS-DegU regulatory system. The study of MprBp activity
in B. subtilis strain 8g5∆degS∆degU pSA1, which lacks the DegS and DegU regulatory
proteins, showed an average reduction of 80% in the productivity of metalloproteinase
synthesis compared to B. subtilis strain 8g5 pSA1 with a fully functional DegS-DegU system
(Figure 2). Nonetheless, the lack of the regulatory pair did not fully suppress mprBp gene.
Therefore, while the Deg-system plays a role in controlling proteinase synthesis, it is not
the sole regulator of mprBp gene function.
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Figure 2. MprBp metalloproteinase productivity. 1—B. subtilis 8g5 pSA1 (control); 2—B. subtilis
8g5∆degS∆degU pSA1, DegS and DegU regulatory protein deficient strain, 3—B. subtilis 8g5 DegU32
(Hy) pSA1 with stabilization of the DegU~P protein phosphorylated form.

MprBp activity was studied in the mutant B. subtilis strain 8g5 degU32(Hy), which
has a mutation in the degU gene, responsible for the stabilisation of the phosphorylated
form of DegU~P protein [19]. This mutation is known to cause a significant increase in the
expression of genes positively regulated by the DegS-DegU system. The data indicate a
tenfold increase in the metalloproteinase productivity of the recombinant B. subtilis strain
8g5DegU32 (Hy) pSA1 (Figure 2). We concluded that it is the phosphorylated form of
the DegU protein that stimulates the activity of MprBp. The DegS-DegU regulatory pair
facilitates the activity of the metalloproteinase, which contributes to the cell’s adaptation
during the transition to the stationary growth phase wherein numerous signal transduction
systems are triggered [20].

2.3. Effect of Spo- Regulatory Proteins on MprBp Activity

The metalloproteinase gene was cloned into several strains with deleted genes of
Spo-system regulatory proteins, derived from B. subtilis strain 168 (trpC2). It was found
that the productivity of the metalloendopeptidase in the recombinant strain with a deficient
Spo0A regulatory protein was maintained at the level of the strain with the complete Spo0A
gene (Figure 3). The MprBp productivity level showed consistent results in strains with
defective spore-specific regulatory proteins, namely Spo0B, Spo0F, Spo0K, and Spo0J, and
SigF, SigH, and SigK. None of the spo-regulated mutants showed an altered activity level
of the MprBp compared to the control strain B. subtilis 168 (trpC2) that expressed the full
complement of the corresponding protein. These results suggest that the mprBp gene is
independent of Spo-regulatory proteins.
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3. Discussion

The results obtained reliably demonstrate that the DegS-DegU signalling system subcon-
trols the work of the metalloproteinase and its independence from the regulatory Spo-system.
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It is clear that this minor exoenzyme is not involved in spore formation, as deletion
of regulatory proteins had no effect on metalloproteinase production. The Spo0F protein
is phosphorylated by several kinases, transferring phosphate to the Spo0B protein, then
to the transcription factor Spo0A via a phosphotransfer system [21]. The Spo0K protein
is involved in the formation of the competence state [22]. Spo0J protein is implicated in
the process of catabolic repression of spore formation [23]. During sporulation, a set of
sporulation-specific σ factors remain persistently active after septation in the following
order: σH → σF → σE → σG → σK. Each sigma factor is a transcription activator of a
different gene. Sigma transcription factor SigH is a key sigma factor at the sporulation
initiation stage and triggers the expression of the spo0A gene. SigF works in the prospore
during differentiation. Finally, SigK plays a crucial role in the sporulation process as the
final regulator in the sigma factor cascade [24–26]. Metalloproteinase activity was not
affected by inactivation of any of these genes.

The DegS-DegU signalling pathway primarily regulates the synthesis of MprBp met-
alloproteinase, a common feature among various exoenzymes [27–29]. It should also be
noted that the minor protein is also regulated by other factors, as shown by the significant
but incomplete inhibition of protein production by the deactivation of the principal reg-
ulatory proteins DegS and DegU. When the two-component DegS-DegU system fails to
exert control, additional regulatory mechanisms are able to compensate and activate the
metalloproteinase. This suggests that the regulation of this gene is complex, which is com-
mon to genes activated during stationary phase of growth. Similar to MprBp, the partial
absence of DegS and DegU proteins preserves the activity of an extracellular subtilisin-like
proteinase from the same B. pumilus strain 3-19 [30]. However, their total absence abolishes
the expression of B. subtilis QB4624 subtilisin [31].

The Spo and Deg regulatory systems are globally and frequently closely interlinked.
When sporulated, only a fraction of the cells in the B. subtilis population form endospores,
resulting in a bistable state [32]. As a result, the bacterial culture separates into two
distinct subpopulations-sporulating and vegetative cells. In the first group, the Spo0A
transcription factor is active (Spo0A+ cells), while it remains inactive in the second group
(Spo0A− cells). It has been discovered that the degU regulon is functionally active within
the vegetative subpopulation [32]. Cells from the Spo0A+ subpopulation synthesize killer
factors that cause Spo0A− cell lysis. The disrupted cell components act as a nutrient source
for Spo0A+ cells, prolonging the sporulation process [33].

4. Materials and Methods
4.1. Plasmids, Bacterial Strains and Media

The strains and plasmids utilised in this study are outlined in Table 2.

Table 2. Strains and plasmids used in the work.

Strains/Plasmids Description Source

Bacillus pumilus 3-19 StrR [1] Laboratory collection (“Agrobioengineering”
research laboratory, KFU, Kazan, Russia)

B. subtilis 8g5 trpC2; tyr; his; nic; ura; rib; met; ade; sip [34] Professor Dr. Jan Maarten van Dijl University
of Groningen. Department of Medical
Microbiology, Netherlands

B. subtilis 8g5 ∆degS∆degU ∆degS; ∆degU KmR

B. subtilis 8g5 degU32(Hy) Hy- phenotype KmR

B. subtilis 168 (trpC2) [35]

Professor D. Zeigler, Bacillus Genetic Stock
Center (BGSC), The Ohio State
University, USA

B. subtilis 168 (trpC2) ∆spo0A ∆spo0A

B. subtilis 168 (trpC2) ∆spo0B ∆spo0B

B. subtilis 168 (trpC2) ∆spo0E ∆spo0E

B. subtilis 168 (trpC2) ∆spo0K ∆spo0K
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Table 2. Cont.

Strains/Plasmids Description Source

B. subtilis 168 (trpC2) ∆spo0J ∆spo0J

B. subtilis 168 (trpC2) ∆sigF ∆sigF

B. subtilis 168 (trpC2) ∆sigH ∆sigH

B. subtilis 168 (trpC2) ∆sigK ∆sigK

pCB22 Expression vector EU19035, AmpR, EmR [36] Kostrov S.V., IMG RAS, Moscow, Russia

pSA1 With mprBp 1,1 kb, EmR This work

Bacteria were cultured using the following media: LB medium comprising of 1.0%
tryptone, 0.5% yeast extract and, 0.5% NaCl, with a pH of 8.5 [37]. The agar medium (LA)
included an additional 2% agar. The media used for transformation of B. subtilis strains
included Spitzeisen salt base medium, Spitzeisen medium I and Spitzeisen medium II [34].

Antibiotics were added to the medium for recombinant strains, with a final 20 µg/mL
concentration of erythromycin for B. subtilis strains containing plasmid pSA1, and 20 µg/mL
concentration of kanamycin for B. subtilis strains with DegS and DegU protein mutations.
No antibiotics were added to the medium for untransformed Spo-regulatory mutants.

4.2. DNA Techniques

The genomic DNA of B. pumilus 3-19 was used to amplify the regulatory region and
the mprBp gene sequence by polymerase chain reaction using Phusion polymerase (Thermo
Scientific). mprBpDir oligonucleotide (TAACCTGGATCCAATCAAAGGAGGGATAGG)
together with mprBpRev (CATAAAGGATCCCAAGCACATAGGTGTTTG) were used
for the BamHI restriction site (marked in bold). The primers were selected using Vector
NTI Suite 8.0 software. The amplification product, treated with BamHI restriction enzyme
(NEB), was purified using the GeneJET PCR Purification Kit (Fermentas) and cloned into the
plasmid pCB22, pre-treated with BglII restriction enzyme (NEB). The correct incorporation
of the mprBp gene was subsequently validated by amplifying this gene using the flanking
primers, mprBpDir and mprBpRev, followed by sequencing. The resulting recombinant
plasmid was named pSA1.

B. subtilis cells were transformed using the protocol described by Anagnostopol-
ous et al. [38]. DNA electrophoresis was performed in 1% agarose gel in Tris-acetate buffer
(PanEco, Moscow, Russia). The 1 Kb kit from Fermentas was used for markers (Fermentas,
Vilnius, Lithuania).

4.3. Proteolytic Activity

The metalloproteinase’s proteolytic activity was determined through azocasein hy-
drolysis (Sigma-Aldrich, St. Louis, MO, U.S.), according to the method outlined in [39]. The
activity unit is based on the hydrolysis of 1 µg substrate per minute under experimental
conditions. Productivity expressed in conventional units (c.u.) was determined by dividing
the activity with the optical density gauged at a wavelength of 600 nm.

Intrinsic proteolytic activity of B. subtilis 8g5 strains was observed at trace levels and
could be neglected when assessing metalloproteinase activity in recombinant strains.

B. subtilis 168 (trpC2) strains with inactivated genes of regulatory proteins of the spore
formation system had their own level of proteolytic activity. Therefore, when working with
these strains carrying the pSA1 plasmid, the proteolytic activity of MprBp was calculated
as the difference between the level of proteolytic activity in the presence of the specific
metalloproteinase inhibitor 1,10-phenanthroline (5 mM final concentration) and the level of
activity without inhibitor. The presence of 1,10-phenanthroline did not affect the intrinsic
proteolytic activity of non-transformed B. subtilis 168 (trpC2) strains.
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4.4. Bioinformatic Analysis

Bioinformatic analysis of the promoter sequence for the B. pumilus 3-19 metallopro-
teinase was carried out using the BLAST algorithm “https://blast.ncbi.nlm.nih.gov/Blast.
cgi (accessed on 13 December 2023)”, in addition to the Vector NTI Suite 8.0 program.
The SignalP 6.0 algorithm “https://services.healthtech.dtu.dk/services/SignalP-6.0/ (ac-
cessed on 13 December 2023)” was employed to ascertain the probable cleavage site of
the signal peptide. This particular algorithm is capable of detecting a functionally active
signal peptide within an amino acid sequence. The putative regions recognised by σA for
the transcription factor were detected within the promoter of the metalloproteinase gene
through the use of the Softberry BPROM network server. The Vector NTI Suite 8.0 program
determined potential binding sites for regulatory proteins DegU and Spo0A in the mprBp
gene’s regulatory region.

The sequences of bacilli genome fragments freely available on the NCBI server
“http://www.ncbi.nlm.nih.gov (accessed on 13 December 2023)” were used for comparative
analysis: B. pumilus SAFR-032 (YP_001488604.1), and B. pumilus ATCC 7061 (ZP_03055196.1),
B. licheniformis ATCC 14,580 (YP_081058.1).

4.5. Statistical Analysis

All analyses were performed at least on four biological replicates. The obtained data
were processed using Statgraphics Plus 5.0. and GraphPad Prism 7.05 statistical software,
and were presented as the mean ± standard deviation (SD). Student’s t-test analysis was
used to calculate the data variance with p < 0.05 representing a significant difference.

5. Conclusions

We hypothesise that the mprBp gene, which is positively regulated by post-exponential
regulatory systems, is associated with the DegU regulon in the vegetative subpopulation of
Spo0A cells. The genes expressed in these cells are controlled by DegU regulatory proteins.
We have demonstrated that metalloendopeptidase activity is partially dependent on the
DegS-DegU regulatory system and independent of the Spo-system of sporulation.
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