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Abstract: Accurate staging of bladder cancer assists in identifying optimal treatment (e.g., transurethral
resection vs. radical cystectomy vs. bladder preservation). However, currently, about one-third of
patients are over-staged and one-third are under-staged. There is a pressing need for a more accurate
staging modality to evaluate patients with bladder cancer to assist clinical decision-making. We
hypothesize that MRI/RNA-seq-based radiogenomics and artificial intelligence can more accurately
stage bladder cancer. A total of 40 magnetic resonance imaging (MRI) and matched formalin-fixed
paraffin-embedded (FFPE) tissues were available for analysis. Twenty-eight (28) MRI and their
matched FFPE tissues were available for training analysis, and 12 matched MRI and FFPE tissues
were used for validation. FFPE samples were subjected to bulk RNA-seq, followed by bioinformatics
analysis. In the radiomics, several hundred image-based features from bladder tumors in MRI were
extracted and analyzed. Overall, the model obtained mean sensitivity, specificity, and accuracy of
94%, 88%, and 92%, respectively, in differentiating intra- vs. extra-bladder cancer. The proposed
model demonstrated improvement in the three matrices by 17%, 33%, and 25% and 17%, 16%, and
17% as compared to the genetic- and radiomic-based models alone, respectively. The radiogenomics
of bladder cancer provides insight into discriminative features capable of more accurately staging
bladder cancer. Additional studies are underway.

Keywords: bladder cancer; radiogenomics; artificial intelligence; MRI; RNA-seq

1. Introduction

Bladder cancer is the fourth and twelfth most common cancer in men and women,
respectively, in the United States. An estimated 82,290 newly diagnosed cases of bladder
cancer and 16,710 deaths from bladder cancer are expected to occur in 2023 [1]. Bladder
cancer has one of the highest recurrence rates of any tumor type [2]. When diagnosed
early as a T0/T1 lesion or even a T2 lesion, a cure with surgical resection is possible in a
high percentage of cases, with a 5-year survival rate of >94% and >50%, respectively [3,4].
However, once the tumor extends beyond the muscle lining of the bladder, the 5-year
survival rate is <50%, while metastatic disease is almost always fatal, with an estimated
median survival of 12 to 14 months and a 5-year survival of <20% [5]. Muscle-invasive
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bladder cancer (MIBC) comprises approximately one-third of bladder cancer and is associ-
ated with significant morbidity and mortality. The treatment of patients with MIBC has
traditionally been managed through radical cystectomy [6]. However, radical cystectomy
is accompanied by significant treatment morbidity and mortality, as well as a substantive
change in the quality of life associated with the removal of the urinary bladder [7]. On the
other hand, studies have shown that for highly select patients, the outcomes of bladder
preservation with chemoradiotherapy may offer comparable survival outcomes to those of
radical cystectomy [6,8,9]. Therefore, it is important to properly select the patients suitable
for the bladder-preserving strategy. Currently, a robust staging modality (i.e., determining
the extent of cancer) is lacking, with approximately one-third of patients being under-staged
and one-third of patients being over-staged with axial imaging of the abdomen and pelvis
with computed tomography (CT) imaging [10]. Thus, accurate staging of bladder cancer is
essential to identifying the optimal treatment.

In-depth investigation of genetic and tumor-imaging information associated with
different stages of bladder cancer may provide insight into unique patterns that could
efficiently assist in distinguishing early-stage (i.e., intra-vesical) from late-stage (i.e., extra-
vesical) cancers. Validating reliable biomarkers for MIBC staging remains an ongoing
challenge [11], as bladder cancer is known for its molecular and clinical heterogeneity,
posing challenges in developing a universally applicable staging system [12]. Clinical and
pathological staging through transurethral resection of bladder tumors (TURBT) is prone
to inter-observer variability, affecting the consistency of staging results [13]. Incorporating
imaging modalities and genomic profiling can be advantageous but presents challenges in
terms of integration, interpretation, and standardization [14,15].

Fortunately, artificial intelligence (AI) offers numerous tools and techniques to thor-
oughly examine genomic and imaging data, as well as the integration of the genomic
and imaging data with the expressed purpose of improving the accuracy of current
staging [16,17]. In recent years, a range of automated analysis and modeling techniques
have been developed, particularly for genomic and radiomic data, including tools for
extracting precise measurements of biomarkers and organs, unveiling complex features,
and quantifying tissue characteristics [18–20]. The advancements in radiomic, machine
learning, and deep learning approaches have tremendously scaled up AI-based cancer
management in several aspects. Although genetics and imaging have not been combined
explicitly for bladder cancer staging, AI-based radiogenomic analysis has increased the
accuracy in the diagnosis, prediction, and staging of many other cancers, such as breast
and lung cancer [21–23]. Taken together, we hypothesize that the state-of-the-art process-
ing techniques and analysis tools associated with radiogenomics can be the foundation
for a sophisticated staging system to more accurately stage bladder cancers. Therefore,
in this study, we (1) identified genetic signatures that significantly help characterize the
stages of bladder cancer, (2) analyzed the morphological and textural properties of the
bladder tumors in magnetic resonance (MR) scans to seek out unique features that are not
appreciated by the human eye but can potentially assist in identifying the stage of cancer,
and (3) developed an automated system that integrates both genetic and MR features and
characterizes the bladder cancer as intra-vesical (T1 and T2), tumors still stay within the
bladder vs. extra-vesical (T3 and T4), and tumors have grown through the muscle layer of
the bladder and into the layer of fatty tissue.

2. Results
2.1. Identification of Genomics Features

The analysis revealed nine common genes, three of which exhibited higher expression
levels in low-stage cases (lower expression levels in high stage): HOXB5, DHRS3, and
FABP4, whereas six had higher expression levels in high-stage cases (lower expression
levels in low stage): TAGLN2, HIST1H1D, HIST1H2BD, H2AFX, CLDN3, and PLAUR, as
shown in Figure 1.
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Figure 1. Intersection analysis of differential genes across three datasets. The upset plot illustrates 
the intersecting differential genes from train, test, and public databases. (A) represents the intersect-
ing downregulated genes when comparing high- and low-stage samples. (B) demonstrates the in-
tersecting upregulated genes when comparing high- and low-stage samples. The red color and dots 
symbolize the intersecting differential genes derived from the train, test, and public databases. 

Based on the analysis using the single-sample Gene Set Enrichment Analysis 
(ssGSEA) algorithm, we successfully identified and corroborated 15 significant signatures 
related to the various stages of bladder cancer (as shown in Figure 2A). Among the iden-
tified signatures, some exhibited a decreasing trend from NU (normal urothelium) to UC 
(urothelial carcinoma), with the highest expression in normal urothelium and progres-
sively decreasing through mild, moderate, and severe dysplasia stages and carcinoma in 
situ. These signatures were Luminal, Luminal differentiation, Neuroendocrine differenti-
ation, Normal Basal Intermediate, and Normal CDH12. In contrast, other signatures 
demonstrated the opposite trend, being lowest in normal urothelium and increasing as 
dysplasia severity increased, reaching their peak in urothelial carcinoma, as given in Fig-
ure 2B. The results from these analyses were subsequently confirmed using comprehen-
sive histological and genomic mapping data from two patients (one basal and one lu-
minal), as shown in Figure 2C. The findings obtained using DataK were validated using 
DataW and DataB. The statistical significance test was performed on DataW and DataB, where 
the identified 9 and 15 genes were found to be significantly different in intra- vs. extra-
vesical bladder cancer. 

Figure 1. Intersection analysis of differential genes across three datasets. The upset plot illustrates the
intersecting differential genes from train, test, and public databases. (A) represents the intersecting
downregulated genes when comparing high- and low-stage samples. (B) demonstrates the inter-
secting upregulated genes when comparing high- and low-stage samples. The red color and dots
symbolize the intersecting differential genes derived from the train, test, and public databases.

Based on the analysis using the single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm, we successfully identified and corroborated 15 significant signatures related to
the various stages of bladder cancer (as shown in Figure 2A). Among the identified signa-
tures, some exhibited a decreasing trend from NU (normal urothelium) to UC (urothelial
carcinoma), with the highest expression in normal urothelium and progressively decreasing
through mild, moderate, and severe dysplasia stages and carcinoma in situ. These signa-
tures were Luminal, Luminal differentiation, Neuroendocrine differentiation, Normal Basal
Intermediate, and Normal CDH12. In contrast, other signatures demonstrated the opposite
trend, being lowest in normal urothelium and increasing as dysplasia severity increased,
reaching their peak in urothelial carcinoma, as given in Figure 2B. The results from these
analyses were subsequently confirmed using comprehensive histological and genomic
mapping data from two patients (one basal and one luminal), as shown in Figure 2C.
The findings obtained using DataK were validated using DataW and DataB. The statistical
significance test was performed on DataW and DataB, where the identified 9 and 15 genes
were found to be significantly different in intra- vs. extra-vesical bladder cancer.

2.2. Identification of Radiomics Features

Several statistical tests were performed on the extracted features from all 28 images of
DataK using different analysis tools, including R, Matlab, and SPSS. Three major tasks were
completed in the following order: (1) obtain a set of clean and uniform features (e.g., by
eliminating nonzero or inoperable values), (2) reduce the redundancy of the feature sets,
and (3) identify the most significant features in terms of the statistical difference between
extra- and intra-vesical tumors. The statistical Student’s t-test and Bhattacharya coefficient
were performed on the filtered set of features to identify the significantly different features
between the two groups. About 33% of the total number of extracted radiomic features
showed significance at a p-value of 0.05. The findings supported the primary hypothesis,
as the analysis identified MR features distinguishing extra-vesical and intra-vesical bladder
tumors. The Manhattan plot in Figure 3 is a pictorial description of the p-values obtained
for all the usable features. Most of the identified significant features were texture-based.
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Figure 2. (A) Luminal, Luminal_differentiation, Neuroendocrine_differentiation, Normal_Basal_
Intermediate, and Normal_CDH12 signatures, Basal, Basal_differentiation, Base_excision_repair, Cell_cycle,
Homologous_recombination, MicroRNAs_in_cancer, Oocyte_meiosis, p53_signaling_pathway,
Progesterone-mediated_oocyte_maturation, Proteasome, and Pyrimidine_metabolism. (B) List
of significant signatures: Basal, Basal_differentiation, Base_excision_repair, Cell_cycle, Homolo-
gous_recombination, MicroRNAs_in_cancer, Oocyte_meiosis, p53_signaling_pathway, Progesterone-
mediated_oocyte_maturation, Proteasome, and Pyrimidine_metabolism. The red frame accentuates
15 significant signatures associated with different stages of bladder cancer. *: p < 0.05, **: p < 0.01,



Int. J. Mol. Sci. 2024, 25, 88 5 of 15

***: p < 0.001, ****: p < 0.0001 and ‘ns’: not significant. (C): NU, normal urothelium; MD, mild
dysplasia; MdD, moderate dysplasia; SD, severe dysplasia; CIS, carcinoma in situ; UC, urothelial
carcinoma. For analytical purposes, samples of MD and MdD were combined and referred to as
LGIN. Samples of SD and CIS were combined and referred to as HGIN, normal urothelium (NU),
and low- and high-grade intra-urothelial neoplasia (LGIN and HGIN).
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2.3. Integration of Radiomics and Genomics Features Improves Bladder Cancer Staging

The performance of the proposed radiogenomic model for automated bladder cancer
staging was evaluated by considering the staging as a binary classification problem where
one MIBC case categorized as a false stage is considered a failure. The model was evaluated
using three matrices, including sensitivity (true positive rate, i.e., TP/P), specificity (true
negative rate, i.e., TN/N), and accuracy, i.e., (TP + TN)/(P + N). For the current evaluation,
P (positive) referred to extra-vesical bladder cancer, whereas N (negative) referred to
intra-vesical bladder cancer. Also, the model was designed to maximize sensitivity, as it
is clinically more important to identify cases if they have already turned from an intra-
vesical (early stage) to an extra-vesical (late stage) bladder tumor. In other words, a
false-positive (intra-vesical bladder tumor wrongly classified as an extra-vesical bladder
tumor) is relatively more manageable than a false-negative (extra-vesical tumor wrongly
identified as an intra-vesical tumor).

The radiogenomic staging model (RGs) was trained on all 28 cases of DataK using
the method explained in the previous section. The external validation was performed
using all 12 test cases of DataN. During external validation, the model used the same
set of genetic and radiomic predictors identified in the training phase. The five machine
learning classifiers generated satisfactory results, whereas the NB generated the highest
mean classification sensitivity, specificity, and accuracy, reaching up to 94%, 88%, and 92%,
respectively. The three matrices calculated for the training and testing of five classifiers are
given in Table 1. The existing clinical staging method results in a sensitivity of 53.3%, a
specificity of 87.5%, and an accuracy of 71.0%. The results suggest that RGs show more
accurate staging performance than the existing clinical staging method.
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Table 1. The results of the binary classification of bladder cancer cases into low- and high-stage
cancer using a radiogenomic model. Five classifiers were tested on external data DataN.

Classifier Validation (DataN)

Sen. Spe. Acc.

NB 0.94 0.88 0.92

SVM 0.88 0.78 0.83

DT 0.89 0.72 0.80

KNN 0.78 0.72 0.75

LR 0.72 0.78 0.75

Two separate bladder staging models, one using genomic features (GS) and the other
using radiomic features (RS), were trained and tested. The same five classifiers (Naïve
Bayes, NB; Support Vector Machine, SVM; K-Nearest Neighbor, KNN; Logistic Regression,
LR; and Decision Tree, DT) were trained for each of the genomic (GS) and radiomic (RS)
models in conjunction with the RFE method. The significant features identified in the
initial genomic and radiomic analysis using DataK were used for the training of GS and
RS, with a limit of up to 8 maximum features for each model. The GS model was tested
using the genomic features in the three external models, that is, DataN, DataW, and DataB,
where the SVM obtained the highest mean classification sensitivity, specificity, and accuracy
at 77%, 55%, and 67%, respectively. The RS model was tested using the MR images in
DataN, where the NB obtained the highest mean classification sensitivity, specificity, and
accuracy at 77%, 72%, and 75%, respectively. The results show that the RGs model takes
the lead by 25% and 17% from the GS and RS models, respectively, on mean classification
accuracy, which supports the primary hypothesis of the study that integrating genomic and
radiomic features can improve the staging accuracy of bladder cancer more than genomic
or radiomic analysis alone.

All scripts for the described analysis were designed at the host institute and imple-
mented on Matlab version 2023a. During external validation, all features extracted from
previously unseen MR images lay within the expected range of values, and no infinity or
undefined values were encountered. The model remained stable, and no thread crashed at
any step throughout the analysis.

3. Discussion

Currently, the clinical staging system for bladder cancer is based on the results of the
transurethral resection of the bladder tumor/exam under anesthesia and imaging tests,
specifically axial imaging of the abdomen and pelvis with CT-based imaging exams in the
United States. As per the National Comprehensive Cancer Network (NCCN) guidelines, CT
urography is recommended for patients suspected of bladder cancer, providing a detailed
evaluation of the bladder, lymph nodes, potential metastases, and upper tract disease
before TURBT [24]. Two common techniques for CT urography are the single-bolus and
split-bolus techniques, each with its advantages and considerations. While cystoscopy
remains the gold standard for bladder evaluation, CT is widely used for the detection and
staging of bladder urothelial carcinoma. CT urography, involving unenhanced, urothelial,
and excretory phases, is valuable for both upper tract and bladder assessment, aiding in
staging and post-treatment follow-up [24]. The sensitivity and specificity of CT urography
for detecting bladder UC are reported to be as high as 93% and 99% [25–27], making it
particularly useful for identifying invasive tumors. Interestingly, in Japan, bladder cancer
patients undergo both a CT scan to assess for nodal involvement/distant metastasis and an
MRI scan to assess the bladder for specific T-stage or intra- or extra-vesical bladder cancer.

It is believed that MRI possesses better resolution than a CT scan and thus could
be more accurate in staging bladder cancer [28]. Furthermore, the inclusion of genomic
features into MRI imaging holds the potential to greatly enhance bladder cancer staging,
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which could lead to improved medical decision-making. This is the first study showing
the possibility that the automated integration of genetic expressions and MR features
can efficiently assist in identifying the accurate stage of bladder cancer. While the naïve
approach to distinguishing tumors of a low stage from a high stage primarily relies on tumor
size, in this study, the textural and shape properties of the low- and high-stage bladder
tumors (that apparently may have identical sizes) were thoroughly analyzed through
radiomics to identify dissimilar features that are usually overlooked or uninterpretable
by the naked eye. Several robust machine learning classifiers were deployed to explore
the optimal combination of genetic and radiomic predictors to obtain the highest staging
accuracy. Although the NB outperformed, the performances of other classifiers on three
matrices were still comparable, showing the consistency of the identified significant features
in genomic and radiomic analysis. A part of the reason for the enhanced performance of
NB could be its probabilistic framework, effectively managing uncertainty in predictors
from multiple omics, especially when dealing with limited training data. Moreover, the
classification accuracy of the proposed radiogenomic model was on average 25% and 17%
higher than that of exclusive genomic- and radiomic-based models, respectively.

To conduct these analyses, multiple retrospective datasets of gene expressions and MR
scans of bladder cancer patients were collected. First, an extensive investigation of gene
expressions and radiomic features of MR scans of bladder cancer patients was performed.
The analysis identified several potential predictors specific to MIBC in both genetic and
MR data, which validated our primary hypothesis. The analysis was followed by the
development of a radiogenomic model for MIBC staging in which several machine learning
algorithms were trained to perform automated binary classification of bladder cancer
cases into either a low- or high-stage group using different combinations of the newly
identified genetic and MR features. These algorithms were then evaluated at different
performance bars to identify the one with the highest classification accuracy on the training
data. The selected model was then validated against an independent external dataset, and
the performance was estimated using different matrices. Moreover, two additional models,
one based on genetic features and the other based on MR features alone, were trained and
tested for MIBC staging. The performance of the proposed radiogenomic model was found
to be significantly higher than the other two models, which strongly supports our proof of
concept. This first study has high clinical application and encourages further investigation
by replicating the model and validating its performance on large datasets.

The study’s goal is to assist clinicians in better exploring and deciding optimal treat-
ment, given a certain stage of cancer, to improve the outcome. The clinical stages associated
with tumor growth, however, may be different, as stages Ta, Tis, and T1 are known as
non-muscle-invasive bladder cancer (NMIBC), while stages T2–T4 are known as MIBC [29].
However, the current study categorizes these stages into two major classes, that is, intra-
vesical (Ta, Tis, and T1) and extra-vesical (T2, T3, and T4), based on the complexity of the
subsequent treatment. For instance, patients at stage Ta or T1 (low grade) are primarily
treated with TURBT, followed by immediate intra-vesical chemotherapy. These patients are
prone to developing more low-stage tumors throughout their lives [30]. Similarly, stage Ta,
T1 (high grade), or Tis is commonly treated with a combination of TURBT and intra-vesical
Bacillus Calmette–Guerin (BCG) immunotherapy or chemotherapy [24,31]. It has been
observed that such tumors may return at a more advanced stage [24]. Patients at T2 or
higher are given more aggressive and urgent treatment, including highly invasive surg-
eries. As we discussed, past studies have shown that the outcomes of bladder preservation
with chemoradiotherapy are survival outcomes comparable to those of radical cystectomy
when the patients suitable for the bladder-preserving strategy were properly selected, that
is, not patients with T3 or T4 bladder cancer [6,8,9]. Our study demonstrates improved
clinical staging of bladder cancer patients when a novel automated radiogenomic model
is utilized. Such an automated radiogenomic model can be easily deployed in a clinical
setting. Patients with a suspected bladder tumor seen on cystoscopy could undergo axial
imaging of the pelvis with an MR scan (with contrast and T2 weighted images), followed
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by transurethral resection of the bladder tumor and RNA-seq or RT-PCR of a prescribed
RNA signature. Subsequently, the automated radiogenomic model would more accurately
stage bladder cancer patients, leading to improved outcomes.

Our study has three key contributions. First, a new set of genetic expressions po-
tentially predictive of low and high stages of bladder cancer was identified that includes
Luminal, Luminal differentiation, Neuroendocrine differentiation, Normal Basal Interme-
diate, and Normal CDH12. Second, it is the first time that the microlevel irregularities
in the bladder tumors were investigated using radiomics of MR images, with the goal of
uncovering patterns of tumor texture associated with the stage of bladder cancer. Various
MR features potentially predictive of bladder cancer stages were identified, suggesting
that imaging can play an essential role in characterizing stages of MIBC. Third, the first
automated radiogenomic model for bladder cancer staging was developed and validated on
an independent dataset. The model outperformed the two models, each developed based
on genomic and radiomic features alone. The RFE method, in conjunction with several
common machine learning classifiers, efficiently identified the most optimal combination
of radiomic and genomic features for accurate staging.

One of the study’s strengths lies in the utilization of AI models, which systematically
integrate complex genomic and radiomic data to characterize key features influencing
disease progression, enabling accurate staging of bladder cancer. The increasing interest in
employing AI for radiogenomics in various cancer-related objectives has been noted [32],
owing to its superior performance that surpasses nearly all manual approaches. AI has
proven instrumental in correlating radiomic patterns with specific genomic signatures
across distinct cancer stages. For example, Gillies et al. [33] demonstrated the potential of
radiomics in predicting the mutation status of isocitrate dehydrogenase in gliomas. Specifi-
cally, each of the five models investigated has been commonly employed in radiogenomic
models for various cancers [34]. While these models refine existing staging criteria and offer
a more individualized assessment of a patient’s disease status, challenges such as the need
for larger datasets for model training and validation, the interpretability of AI-generated
features, and the careful integration of these findings into clinical decision-making processes
need consideration.

It is important to note that the model training prioritized maintaining higher sensitivity
compared to specificity. Sensitivity, in this context, refers to accurately classifying cases
into the high-stage category. This decision was intentional to minimize ‘false-negative’
instances (incorrectly identifying a ‘high-stage’ tumor as a ‘low-stage’ tumor). Justifying
this choice ensures that cases classified as ‘low stage’ but actually ‘high stage’ (false-positive)
undergo further evaluation, which may not have as severe consequences as the scenario
where a ‘high stage’ case is incorrectly classified as ‘low stage’ (false-negative), potentially
preventing the timely intervention to stop cancer growth to the advanced stage, that is,
‘high stage’.

Limitations and Future Work

The key limitation in this study lies in the scarcity of available datasets for analysis.
However, given that the main purpose of this initial analysis is to establish a proof of
concept and present the potential of the idea through preliminary findings, the existing
data adequately serves the investigative goals. Subsequent validation of the proposed
model on a more extensive dataset would not only affirm our findings but also refine the
model parameters, resulting in a more robust staging system for MIBC.

Another constraint of the study is that it does not attempt to establish associations
between the integrated, identified features and the underlying biological mechanisms.
The biological interpretation of radiomic features, such as tumor texture, poses significant
challenges. A comprehensive analysis involving a substantial number of cases and accom-
panying histopathological information could offer an opportunity to correlate predictive
features with the underlying biology, thereby enhancing our understanding.
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An important avenue for improving the model’s accuracy is to integrate demographic
and clinical characteristics that could significantly impact the overall staging of bladder
cancer. However, there is a risk of overfitting, and it would be challenging to discern
the fundamental contribution of specific features to the staging performance, potentially
undermining the primary goal of investigating the combined clinical value of radiomics
and genomics. For future studies with larger datasets, the inclusion of demographic or
clinical characteristics could enhance the stability and overall performance of bladder
cancer staging.

4. Materials and Methods
4.1. Study Data

The study was performed after approval by the Cedars-Sinai Medical Center Institu-
tional Review Board (IRB) (STUDY00001310), Kyoto University IRB (#G1301), and Nara
Medical University IRB (#2967) under a request for waiver of consent on archived patho-
logic specimens and magnetic resonance imaging (MRI). Potential study subjects were
identified by searching for both MRI and pathology data repositories from both Japanese
centers for the years between 2010 and 2020. Each case in both datasets came with a dei-
dentified imaging report specifying the clinical stage of the cancer and the final pathologic
stage obtained at the time of radical cystectomy. Next, we gathered a comprehensive
collection of RNA and MRI data and bladder tumor formalin-fixed paraffin-embedded
(FFPE) at the time of TURBT from these two centers, where MRI imaging of the bladder is
routinely performed for staging bladder cancer, as shown in Table 1, with one center serving
as a training cohort and the other as a testing cohort. The training cohort consisted of
28 cases from the Kyoto University Hospital (termed DataK), including both MRI scans and
RNA sequencing (RNA-seq). The cases belong to 25 males and 3 females, with a median
age of 78. Among these cases, 18 were classified as intra-vesicle tumor cases (Ta, Tis, T1,
and T2), while the remaining 10 cases were categorized as extra-vesicle tumor cases (T3,
T4, and N+ or M+). The testing cohort consisted of 12 cases from Nara Medical Univer-
sity Hospital (termed DataN), including both MRI scans and RNA sequencing (RNA-seq).
The cases belong to 11 males and 1 female, with a median age of 71. Out of these cases,
6 were classified as intra-vesicle tumor cases, while the remaining 6 cases were identified
as extra-vesicle tumor cases. The subjects in both datasets belong to Asian ethnic groups.

Moreover, two public datasets, one published by Wrana JL. et al. in Eur Urol in 2014
(termed DataW) [35] and the other by Jolanta Bondaruk et al. in iScience in 2022 (termed
DataB) [36], were also included in the study. The DataW consists of the next-generation
RNA-seq of archival formalin-fixed paraffin-embedded urothelial bladder cancer. The
dataset consisted of 27 cases categorized as intra-vesicle tumor cases and 22 cases catego-
rized as extra-vesicle tumor cases, whereas the DataB consists of geographically annotated
mucosal samples from human cystectomies performed in 9 patients with bladder cancer
(3 basal and 6 luminal molecular subtypes) and 2 subjects with normal bladders. The
samples ranged from normal urothelium (NU) to urothelial carcinoma (UC), obtained from
individual patients, exhibiting varying degrees of dysplasia, including mild dysplasia,
moderate dysplasia, severe dysplasia, and carcinoma in situ. These samples comprised
microscopically normal urothelium, in situ preneoplastic conditions known as low-stage
intra-urothelial neoplasia and high-grade intra-urothelial neoplasia, as well as UC. By incor-
porating these diverse datasets, the aim of the study was to provide a comprehensive and
multi-dimensional understanding of bladder cancer at different clinical stages, leveraging
RNA sequencing and MRI data to gain insights into the disease’s underlying mechanisms
and potential biomarkers.

As a part of preprocessing, the RNA isolation was performed on FFPE curls using
the FormaPure XL RNA isolation kit (Beckman Coulter, Brea, CA, USA). Purified total
RNA was tested for purity using the NanoDrop 8000 (ThermoFisher Scientific, Waltham,
MA, USA), quantified using the Qubit Flex fluorometer (ThermoFisher Scientific), and
the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Also, the library
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construction was performed using the Lexogen QuantSeq 3′ mRNA-Seq Library Prep Kit
FWD for Illumina. (Lexogen, Vienna, Austria). Briefly, all RNA samples were assessed for
concentration using a Qubit fluorometer and for quality using the 2100 Bioanalyzer. Up to
100 ng of total RNA per sample was used for library preparation. Library concentration
was measured with a Qubit fluorometer, and library size was measured on an Agilent
4200 TapeStation (Agilent Technologies). Libraries were multiplexed and sequenced on
a NovaSeq 6000 (Illumina, San Diego, CA, USA) using 75 bp single-end sequencing. On
average, about 10 million reads were generated from each sample.

4.2. Radiogenomic Staging of Bladder Cancer

The following sections describe an automated methodology for radiogenomic-based
staging of bladder cancers.

4.2.1. Genomic Analysis of MIBC Staging

The purpose of the genomic analysis of patients with bladder cancer was to identify
gene expressions that are significantly different between intra- and extra-vesicle tumors.
For this, RNA-seq technology was employed to capture a comprehensive snapshot of the
transcriptome. To ensure data reliability and accuracy, stringent quality control measures
were implemented throughout the RNA-seq workflow. The data were ensured to be the
most accurate by carefully evaluating the quality of the sequencing reads, assessing library
complexity, and monitoring various metrics.

A differential analysis was conducted using the DESeq2 package in R to compare gene
expression between low- and high-stage samples in the DataK. DESeq2 employs empirical
Bayes methods to accurately identify differentially expressed genes (DEGs) from count
data. By analyzing DEGs, we gain insights into the molecular changes associated with
disease progression and potential therapeutic targets or biomarkers. By overlapping the
differentially expressed genes, we were able to categorize them separately based on their
higher expression in intra- vs. extra-vesical cases.

To assess the relevance of these gene signatures, the ssGSEA algorithm was applied.
The ssGSEA algorithm is a widely used computational method that quantifies the activity
of predefined gene sets in individual samples. It measures the enrichment score of each
gene set in each sample by comparing the ranks of the genes in the set to the ranks of
all other genes in the sample. This approach enables us to evaluate the activity levels of
the BLCA (Bladder Urothelial Carcinoma) stage-related gene signatures in each sample,
providing insights into the underlying biology and potential clinical implications. By
applying the ssGSEA algorithm to DataK, we assessed the enrichment of the bladder
cancer-stage-related gene signatures in different stages of bladder cancer. This analysis
helped identify the gene sets that are significantly associated with specific stages of bladder
cancer. Our focus was on a set of 75 bladder cancer-stage-related signatures (identified in
multiple published references [12,37,38]), with the goal of identifying and validating the
most significant signatures while considering potential confounding effects stemming from
patient-to-patient variability.

4.2.2. Radiomic Analysis of Bladder Cancer Staging

Radiomic analysis is a rapidly growing approach to extracting and thoroughly ana-
lyzing the high-throughput image features of anatomical structures, including tumors, to
assist in prediction, diagnosis, and prognosis. Using predefined mathematical quantities,
radiomics can characterize tumor phenotypes based on complex multidimensional arrays
of image-derived measurements. Radiomic analysis has been used for staging lung, gastric,
cervical, and rectal cancers [39–42].

An extensive radiomic analysis of bladder tumors using MR scans was performed
to seek features that are significantly different between intra- vs. extra-vesical tumors.
The analysis was performed using all 28 high-resolution T2-weighted MR scans in DataK.
Preprocessing included outlining the tumors in all MR images by two independent and
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experienced radiologists. Any labeling disagreements were resolved through consensus
with a third radiologist. The ITK-snap version 3.0 software was used throughout the
interactive labeling process. Each of the 28 images in DataK was normalized (i.e., voxel
values in each image were scaled between 0 and 1) before analysis using the min-max
scaling. Several thousand radiomic features were then extracted from the outlined bladder
tumors in each of these images. Each radiomic feature represented a unique MR image
characteristic of the tumor and was expressed as a single numerical value calculated using
a standard pre-defined mathematical formula. Various radiomic features were considered,
including 15 First Order Statistics (e.g., Kurtosis, Percentiles, Range, etc.), 20 Gray-level
Co-occurrence Matrix statistics (e.g., Cluster shade, Contrast, Autocorrelation, etc.), 15 Gray
Level Run Length Matrix statistics (e.g., Run percentage, Run entropy, etc.), 14 Gray Level
Size Zone Matrix (e.g., Zone percentage, Zone variance, etc.), 12 Gray Level Dependence
Matrix (e.g., Small dependence emphasis, etc.), 20 Shape-based Features 2D/3D (e.g.,
Volume, Surface area, Sphericity, etc.), and 5 others (e.g., Complexity, Busyness, etc.). For
example, to extract the signal intensity of the bladder tumor region, the mean gray level
values of all voxels in the outlined boundary of the tumor in all slices of a three-dimensional
bladder MR scan were considered.

All radiomic features were extracted using different combinations of three significantly
important radiomic parameters, including bin size, kernel size, and angle. The Bin size
determines the number of bins in the discretization process of the scan. The discretization
decreases the chance of noise amplitude by transferring the continuous values of voxels
into discrete counterparts, avoiding contrast variation among all MR scans acquired from
different scanners. The Kernel size specifies the proximity around a voxel as a fixed window
within which the spatial relationships of voxels with each other are calculated. The Angle
determines the directions in which the spatial neighborhood is to be considered within the
Kernel window. The choice of the three parameters has a great influence on the overall
analysis. The Bin size used during feature extraction was between 2x = 1 and 2x = 8. The
window size for the Kernel could take values between 1 and 5, whereas the Angle in all
four quadrants was considered. Thus, an exhaustive analysis was performed using all
possible combinations of the three parameters, which yielded nearly 6000 radiomic features
from each of the 28 images in DataK. All features were extracted using an in-house radiomic
feature-extraction application.

4.2.3. Radiogenomic Modeling for Bladder Cancer Staging

A machine learning model was developed that performs automated staging of bladder
cancer through the integration of the above genomic and radiomic predictors. A systematic
approach was adopted to ensure that the proposed model selects the minimal set of reliable
and consistent predictors from both data categories to avoid overfitting and increasing
generalizability without compromising the overall performance of the model.

The preprocessing steps include identifying a subset of the significant features iden-
tified in the radiomic analysis that show the highest predictive strength. Such features
were obtained in two phases: the first phase consisted of randomly selecting one of the
multiple features that differed only in the combination of the radiomic parameters these
were obtained with. For example, if multiple instances of a feature (e.g., contrast) were
identified as significant (each with a unique combination of Bin size, Kernel size, and
Angle), then only one of the instances would be selected and the rest would be ignored. In
the second phase, the subset of features was further narrowed to a sub-subset by choosing
the features that show significance at a minimal p-value such that the number of features in
the final set corresponds to the number of features identified as significant in the genomic
analysis. Figure 3 presents the distribution of p-values for all the features examined and
those that show significance at 0.05. The final set of radiomic features consisted of 12
unique features identified at p = 0.01, as Energy, Inverse gaussian left, Inverse gaussian left
focus, Gaussian right polar, Cluster promin, Cluster shade, Cluster trend, Homogeneity,
Autocorrelation, Gaussian, Gaussian right focus, and Gaussian right polar.
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Subsequently, several common fully supervised machine learning classifiers were
trained to perform automated staging of bladder cancer using both sets of significant
features. The staging was expressed as a binary classification problem, with intra- vs.
extra-vesical as two possible categories. The NB classifier worked based on the Bayes
theorem with the “naive” assumption of conditional independence between every pair of
features (e.g., feature independence within and across radiomic and genetic feature sets).
The KNN performed classification using the assumption of the proximity of values for
features from a class (e.g., values of radiomic features from low-stage tumors were expected
to be closer than those from high-stage tumors). The SVM performed classification by
specifying among hyperplanes and separating the radiomic and genomic features of two
classes such that the margins of the planes are maximized. The LR worked based on the
linear regression technique, which finds an optimal boundary between two sets of features
using a logistic sigmoid function to avoid outliers. The DT classifier worked by specifying
nodes (each denoting a radiomic/genomic feature), branches (each denoting a decision of
the test), and terminal nodes (each representing one of the two stages of bladder cancer).

These algorithms were chosen for analysis due to their widespread acceptance in
binary classification problems and frequent utilization for their performance. These algo-
rithms have been employed in numerous studies to identify the critical aspects of patients’
conditions and model the progression of diseases following treatment using intricate health
information and medical datasets [34]. These algorithms have demonstrated stability in
addressing cancer staging problems, including recurrence of stage IV colorectal cancer [43],
cancer genomics and subtyping of breast cancer [44], and detection of early stages of pan-
creatic cancer [18]. Moreover, given the pilot nature of this study and the small dataset, we
steered clear of advanced or complex algorithms to prevent potential overfitting.

Finally, the Recursive Feature Elimination (RFE) method was deployed in conjunction
with the five mentioned classifiers to eliminate the relatively weak features by comparing
the overall training accuracy achieved by each classifier using different combinations of
features. A classifier could select up to a maximum of 8 significant features from each of
two categories (i.e., genomics and radiomics) while maximizing the classification accuracy.
Any features from each of the two categories were counted with equal weight.

4.3. Statistical Analysis

Statistical analyses were performed with R version 4.0.3 (https://www.r-project.
org/, accessed on 1 August 2021), and the visualization of heat maps was achieved using
the Complex Heat Maps Bioconductor package. To assess differences among multiple
groups for continuous variables, Kruskal–Wallis tests were applied. Additionally, the Gene
Set Enrichment Analysis of tumor single-cell subtype signatures was conducted using
the single sample Gene Set Enrichment Analysis (ssGSEA) function from the R package
GSVA. All p-values were two-sided, and p < 0.05 was considered to indicate a statistically
significant difference.

5. Conclusions

This preliminary study provides a proof-of-concept with promising results of a radio-
genomic approach for bladder cancer staging and encourages researchers to further validate
the proposed model on large datasets. Although the number of cases in the study data was
low, the methodology ensured avoiding overfitting by restricting the number of predictors
used in the model. Furthermore, with the certainty that at least 40% of the enrolled subjects
are from each of the low- and high-stage groups, a relatively small number of cases was
sufficient to develop the classification model. The lack of specific and well-established
tumor characteristics to recognize its stage leads to inefficient management of bladder
cancer. To our knowledge, the proposed data structure has not been used previously for
bladder cancer staging. The future works include performing an exhaustive search on data
repositories at the host and the collaborating centers to further validate the model on large
datasets and improve its generalizability. This will also allow for the establishment of a

https://www.r-project.org/
https://www.r-project.org/
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correlation between imaging indicators and genetic heterogeneity. Taken together, a robust
model can be a supporting tool in prospective studies and will help increase the rate of
efficient bladder cancer staging.
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