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(S I N N

Abstract: Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that
results in debilitating sensorimotor and autonomic impairments. Despite significant advances
in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of
effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary
molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal
cell populations, which further damage the injured spinal cord. These intracellular cascades present
promising translationally relevant targets for therapeutic intervention due to their high ubiquity
and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct
or indirect involvement of these pathways in improving recovery after SCI. However, the complex,
multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying
secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness.
Recent advances in transcriptional and molecular neuroscience provide a closer characterization of
these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK,
PIBK-AKT-mTOR, Rho-ROCK, NF-kB, and JAK-STAT signaling cascades, in addition to providing a
comprehensive overview of the involvement and therapeutic potential of these secondary intracellular
pathways following traumatic SCL.

Keywords: spinal cord injury; intracellular signaling; protein kinases; kinome; MAPK; PI3K-AKT-
mTOR; Rho-ROCK; NF-«B; JAK-STAT

1. Introduction

A traumatic spinal cord injury (SCI) has a devastating impact on a patient’s indepen-
dence, lifestyle, and socioeconomic status [1]. The prevalence of SCI ranges from 250 to
906 cases per million and constitutes the second-leading cause of paralysis worldwide [2].
The life expectancy of traumatic SCI patients often spans several decades from the time
of injury, leading to a poor quality of life and lifelong disability. Additionally, the esti-
mated lifetime cost of living with traumatic SCI paralysis can exceed USD 5,000,000 per
individual, which introduces significant financial difficulties to the patient’s family and
healthcare providers [3]. However, despite the high prevalence, severity, and repercussions
of traumatic SCI, treatment options in the clinic continue to be limited [4].

In a healthy individual, the spinal cord transmits and processes neuronal signals
between the brain and peripheral organs through a complex network of ascending and
descending tracts as well as spinal interneurons [5]. These cells are supported by a variety
of glial and vascular cells, including astrocytes, oligodendrocytes, microglia, fibroblasts,
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pericytes, endothelial cells, and smooth muscle cells [6-8]. However, following trauma to
the spinal cord, either by compression, contusion, or laceration, there is mechanical damage
to neuronal cell bodies, axonal tracts, blood vessels, and their surrounding glial cells. Re-
ferred to as the primary injury, this mechanical damage also initiates a subsequent cascade
of pathobiological events known as the secondary injury, characterized by the production
of toxic cellular debris [9,10], disruption of the local microvasculature [11], compromised
integrity of the blood—spinal cord barrier (BSCB) [12], and initiation of a neuroinflammatory
response [13-17] that further exacerbates damage to the neuronal pathways [18]. Although
the clinical manifestation of these pathologies is heterogeneous, they often result in sensory
loss and flaccid paralysis due to the loss of peripheral innervation at and distal to the
injury site, in addition to autonomic disturbances, such as neurogenic shock and autonomic
dysreflexia [19-21]. Damage to spinal interneurons, such as in central cord syndrome, can
also result in pain, spasticity, or functional inactivation [22].

The cellular responses behind these secondary pathologies are mediated through a
series of intracellular signaling cascades that can present promising therapeutic targets
to attenuate further damage or even induce regenerative effects to enhance functional
recovery [23]. Due to the complex and integrated nature of intracellular signaling, the role
of these pathways and their underlying protein kinases following traumatic SCI are elusive
targets for clinical translation. However, recent advances in kinomics, transcriptional,
and proteomics techniques, as well as a plethora of pharmacological investigations, have
enhanced our understanding of these intracellular processes and their therapeutic potential
for traumatic SCI. This narrative review aims to survey the recent literature on the signal
transducers involved in secondary SCI pathogenesis and their pharmacological targets to
enhance recovery following traumatic SCI.

2. Secondary SCI Pathobiology

The compressive-contusive damage to the spinal cord permeabilizes the cellular mem-
branes and disrupts the integrity of the spinal microvasculature, leading to ischemia,
hemorrhage, and the release of cellular debris [24,25]. The resident microglia and astrocytes
then trigger a greater immune reaction by recruiting blood-borne immune cells to clear
the oxidative species and free radicals [26] (Figure 1). While the neuroinflammatory re-
sponse serves an important function in regulating tissue damage following the initial trauma,
prolonged inflammation leads to a secondary SCI pathogenesis that exacerbates functional
loss. The secondary response to traumatic SCI involves a variety of neuronal populations as
well as glial cells, such as astrocytes, microglia [27], fibroblasts [28], oligodendrocytes [29,30],
pericytes [31,32], and circulatory immune cells [33].

The progression of secondary pathogenesis after traumatic SCI is categorized into four
phases: acute (within 48 h), subacute (2 to 14 days), intermediate (14 to 56 days), and chronic
(beyond 56 days) [18]. The impaired microvascular network restricts the blood flow at the
lesion core in the acute phase of injury, leading to the induction of hypoxia, ischemic injury,
and hemorrhage [12,34]. Following pro-inflammatory signals from the resident microglia
and astrocytes, reactive circulatory cells and molecules infiltrate the neural tissue [35]. In
the subacute phase, BSCB integrity is re-established, and scar-forming astrocytes begin to
proliferate near the lesion to encapsulate the infiltrated immune cells [36-38]. Astrocytes
have multiple functions in the injured spinal cord and play an important role in organizing
and maintaining the injured spinal cord [36,38,39]. In parallel, myelin sheath damage
and demyelination result in inhibitory molecules that get deposited around the astrocytic
border. Within the intermediate phase, local cellular reactions continue. Ultimately, during
the chronic phase, the extended remodeling and secondary cellular response lead to the
development of cystic cavities, Wallerian degeneration, and neuroplasticity [25].

These secondary SCI pathologies result in the formation of three distinct histologi-
cal sections in the injured spinal cord [26]. These histological compartments consist of
an injury epicentre characterized by cavitation and fibrotic scar [31,40,41], an astrocytic
border surrounding the injury epicentre [38,42], and an adjacent perilesional zone of neural
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tissue, in which circuit remodeling and neuroplasticity occur [13,26]. Each of these three
histologically distinct compartments is formed throughout the course of secondary SCI
pathogenesis and presents unique challenges for regeneration and recovery [43].
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Figure 1. The early pathogenesis of secondary traumatic SCI at the lesion core. The BSCB is crucial
for maintaining the stability of neural tissue by selectively preventing the transfer of ions between
the circulatory and nervous systems. Traumatic SCI compromises the integrity of this barrier, leading
to increased permeability, swelling, ischemia, pro-apoptotic signaling, and the introduction of pro-
inflammatory immune cells and cytokines. The spinal vasculature on the left was adapted and edited
with permission from Santillan et al. [44], 2012, BM] Publishing Group LTD, and the schematic was
created in Biorender (BioRender.com) with permission.

At the injury epicenter, debris clearance leads to the formation of cavitations that
limit axonal growth and sprouting [45,46]. In addition, fibroblasts proliferate and migrate
from nearby perivascular sites to the lesion site, as well as enclosing a large number
of macrophages, leading to fibrotic scar formation [40,47,48]. Fibroblasts are spindle-
shaped, progenitor mesenchymal cells involved in extracellular matrix homeostasis, tissue
metabolism, the generation of mechanical force and signaling factor secretion, which aid
in tissue synthesis, the creation of stem cell signaling niches, and the regulation of innate
as well as adaptive immunity [49]. The SCl-induced fibrotic scar forms a biomechanical
barrier by releasing EphB2, neural/glial antigen 2 (NG2) proteoglycans, Semaphorin 3A
and tenascin C, which inhibit axon regeneration and functional recovery [47,50,51].

Immediately adjacent to the non-neural lesion core, the newly proliferated astrocytes
migrate and intermingle with chondroitin sulfate proteoglycans (CSPGs) to generate a
barrier, referred to as the astrocytic border [36,52]. Serum proteins and local cell markers,
including ATP, sonic hedgehog (SHH), bone morphogenic proteins (BMPs), thrombin,
fibroblast growth factor 2 (FGF2), and endothelin, are known mediators that promote astro-
cyte proliferation [53-57]. These proliferating astrocytes then synthesize and secrete CSPGs,
via NG2+ oligodendrocyte progenitor cells (NG2-OPC) into the extracellular matrix [36].

The perilesional zone of spared neural tissue extends away rostro-caudally from the
astrocytic border and contains reactive astrocytes, microglia, and NG2-OPCs that induce
spontaneous synaptic plasticity and circuit reorganization [27]. In contrast to the newly
formed astrocytes in the astrocytic border, the hypertrophic reactive astrocytes in the
perilesional zone maintain their connections with local neurons and are directly involved
in synaptic regulation. The activity of reactive glial cells as well as circuit reorganization
gradually reduces and transitions into healthy spinal cord tissue [26].
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Each of these SCI-induced histological compartments presents unique challenges
and opportunities for therapeutic intervention. Several intracellular cascades have been
shown to be involved in the progression of secondary SCI pathogenesis. These include
the MAPK network, the PI3K-AKT-mTOR network, the Rho-ROCK pathway, the NF-«B
pathway, and the JAK-STAT pathway. These signaling cascades control a wide range
of cellular processes involved in neuroinflammation, scar formation, glial response, and
neuroplasticity. Targeting these secondary cellular mediators presents a translationally
relevant therapeutic strategy, as they are highly ubiquitous in different cell populations
and are well preserved across eukaryotic species. This review article will outline these
intracellular pathways and survey the pharmacological interventions that have targeted
these cascades with great success.

3. MAPK Signaling Network

The MAPK signaling network is comprised of complex interacting cascades with
constant crosstalk that are regulated by factors involved in cell proliferation, growth,
survival, stress response, immune defense, and apoptosis [58,59]. MAPK signaling has
been demonstrated to be involved in many SCl-induced cellular processes, including
immune response, scar formation, and neuronal regulation [60-64]. The current clinically
approved neuroprotective regimen, involving the administration of methylprednisolone
sodium succinate (MPSS), is known to suppress the immune response through alteration of
the MAPK network [65-68]. Interestingly, a recent comparative cross-species transcriptional
analysis has highlighted the therapeutic potential of MAPK signaling in traumatic SCI [22].
The scarless healing process post-SCI seen in regenerative species, such as salamanders,
may be explained by the downregulation of MAPK orthologs. Due to the observation that
these genes are upregulated in mammals and downregulated in salamanders post-SCI,
they may be worth investigating as potential therapeutic targets [22].

In mammalian cells, MAPK pathways are characterized and classified based on the
isoforms with a similar activation motif, structure, and function. These include the classical
MAPK, or Extracellular Signal-Regulated Kinase (ERK1/2), C-Jun N-terminal Kinase 1, 2,
3/Stress-Activated Protein Kinase (JNK/SAPK), and p38 kinase (p38cc/f3/v/6) [58,59,69-71].
Despite the unique transcriptional profile and tissue-specific expression of each isoform
in various organs, pathway activation solely depends on extracellular stimuli such as
growth factors, hormones, pro-inflammatory stimuli, and cellular as well as environmen-
tal stresses [59]. The activation of the MAPK-wiring network requires sequential dual
phosphorylation and results in the activation of one of the 17 MAPKKKSs (MAP Kinase
Kinase Kinase), 7 MAPKKs (MAP Kinase Kinase), and 12 MAPKSs [70,72]. MAPK protein
phosphatases (MKPs) can inactivate the MAPK pathway by dephosphorylating threonine
and tyrosine residues on MAPKs [59] (Figure 2).
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Figure 2. An overview of the MAPK signaling pathways. MAPK signaling cascades are activated by
the stimulation of the external growth factor receptor (EGFR), G-protein-coupled receptors (GPCRs),
transforming growth factor beta (TGFf) receptor, tumor necrosis factor receptors (TNFRs), MHC, and
cytokine receptors through growth factors, inflammatory cytokines, and environmental stressors. The
set of adaptors (GRB2, Crk, and TRAF2) links the activated receptor to guanine nucleotide exchange
factors (SOS and HPK1), leading to signal transduction through small GTP-binding proteins such as
Ras, Rac, PAK1/2, and ZPK. The signal is transmitted through specific receptor-associated MAP3K,
MAP2K, and MAPK family members. The unique MAP3K-promoting MAP4K family members are
inhibited during the activation of MAPK pathways due to inflammation or environmental stress.
The activated MAPK family members such as ERK1/2, JNK1/2/3, and p38«/{3/v/5 translocate
to the nucleus to phosphorylate various transcription factors regulating specific gene expression
involved in cell growth, differentiation, cytokine production, survival, and apoptosis. The figure was
created with permission in Biorender (BioRender.com) based on the KEGG database and previous
publications [73-90].

3.1. ERK1/2 Pathway

The ERK1/2 pathway plays a crucial role in cell proliferation, growth, and differenti-
ation [91,92]. This signaling transduction cascade is initiated when extracellular stimuli
in the form of hormones, pro-inflammatory cytokines, and growth factors activate the
transmembrane glycoproteins of designated cellular surface receptors [58,69]. These recep-
tors include G-protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), and
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epidermal growth factor receptors (EGFRs) [58,69]. The transcriptional and translational
regulation of effector genes is accomplished by downstream signal transduction through
the autophosphorylation of cytosolic intermediates [58,59]. The ERK1/2 pathway also leads
to the activation of the PI3K-AKT-mTOR cascade, which influences metabolic signaling
and protein synthesis to sustain cell growth [58].

Upon activation, the conformational change in EGFR results in the binding of a second
tyrosine kinase receptor (HER?2, also known as erbB-2) to EGFR, which transphosphorylates
the EGFR intracellular domains [93-96]. The activated EGFR and HER2 subsequently
recruit the EGFR-associated nucleotide exchange factor Son of Sevenless (SOS) and GRB2,
which act as docking sites for RAS and mediator proteins for signal transmission from
receptors to soluble intracellular proteins, respectively [93-96]. The RAS superfamily of
GTPases is comprised of over 150 small G-proteins, such as HRAS, KRAS, and NRAS,
and is the first line of cytosolic intermediates that activate the phosphorylation cascade
of the MAPK network [58]. Upon RAS binding, GDP present in the cofactor-binding
site is exchanged with GTP to activate RAS [58]. Activated RAS dissociates from the
activation complex to either activate various cytoplasmic proteins or stay attached to the
cell membrane [93]. Hence, multiple RAS proteins can be activated by a single GRB2-SOS
complex to amplify the signal [93].

The activated RAS complex recruits and interacts with the serine/threonine-protein
kinase Raf (Raf-1, A-Raf, and B-Raf), leading to pathway progression by activating MEK
and ERK1/2 through phosphorylation [58,69]. Cell apoptosis can also be triggered by
the binding of Raf-1 to mammalian sterile 20-like kinase 2 (MST2) and apoptosis signal-
regulating kinase (ASK1) [69]. Activated MEK and ERK1/2 play a crucial role in the
regulation of gene expression, depending on their phosphorylated targets and irrespective
of the cellular location [58]. In the cytoplasm, ERK1/2 regulates cell-functioning factors by
activating rpS6, elF4B, Filamin A, and IKB-o and inhibiting eEF2K, GSK3, DAPK, METTL1,
BAD, and nNos [58,97]. While in the nucleus, it regulates transcription factors by activating
a wide range of factors such as Elk-1, Fos, Myc/N-Myc, CREB, ATF1, Histone H3, SRF, and
many more, and inhibiting FoxO3, MKP1/2, PPARy, and p27 KIP1 [58,97].

In the injured spinal cord, the ERK pathway leads to astrocyte proliferation and scar
formation at the lesion site, which inhibits neuronal growth and axon regeneration [61,98].
Hindering the MAPK signaling pathway (using TLR9 antagonists, MEK/ERK inhibitors
U0126, Ca?* channel blockers, or EGFR blockers C225 and AG1478) inhibits the proliferation
and migration of astrocytes, which attenuates apoptotic death in proximal axons but
does not promote axonal re-growth in the astrocytic scar [61,98-100]. Despite the lack of
axonal regeneration, the corresponding reduction in inflammatory cell infiltration, cytokine
production, and microglial activation achieved by inhibition of the MEK/ERK signaling
pathway leads to improved functional recovery [61].

3.2. SAPK/INK Pathway

Stress-activated protein kinases (SAPKs)/Jun amino-terminal kinases (JNKs) are ac-
tivated following a variety of cellular stresses and extracellular stimuli [101]. These ki-
nases are present ubiquitously in the human spinal cord. The role of JNK in spinal cord
regulation was previously reviewed by Schellino et al. 2019 [102]. SAPK-o/JNK2, SAPK-
/JNK3, and SAPK-y/JNK1 encode for SAPKs/JNKs, which are activated through pro-
inflammatory stimuli like cytokines as well as cellular and environmental stresses [103,104].
This leads to downstream signal transduction from the growth factor, major histocompati-
bility complex (MHC), and cytokine receptors to MAP4Ks/MAP3Ks by dual autophospho-
rylation [71,105].

The MAP4K proteins are upstream activators of MAP3K levels that include: Hemat
opoietic Progenitor Kinase-1 (HPK1), GCK-Like Kinase (GLK), Germinal Center Kinase
(GCK), HPK/GCK-like Kinase (HGK), GCK-Related Kinase (GCKR), and kinase homolo-
gous to Ste20/Sps1 [71,105]. HPK1, a 97-kDa serine/threonine kinase, is associated with
oncogenes Crk and CrkL, as well as GRB2 to regulate activation of TAK1 and MEKK1 in the
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kinase signaling cascade [71,105]. HPK1 is activated by the EGF receptor, whereas specific
JNK activators, such as GLK, GCK, HGK, and GCKR, are activated by tumor necrosis factor
receptors (TNFRs) [71,105].

MAP3Ks, including MAPK/ERK Kinase Kinases (MEKKSs), Tumor Progression Locus-
2 (TPL2), Mixed Lineage Kinase-2/3 (MLK2/3), TGF-Beta-Activated Kinase-1 (TAK1),
Apoptosis Signal-regulating Kinase-1 (ASK1), and Zipper Protein Kinase (ZPK), are capa-
ble of phosphorylating and activating downstream signal transduction proteins such as
MAP2K [106]. Moreover, some of the kinases involved in MAP3K levels, such as MAP3K®6,
LZK, and MLK1, are known to regulate MAP2Ks, however, their own activation cascade
and function remain unexplored.

The MAPK kinase (MAP2K) level comprises dual-specificity kinases MKK4 /7 that
phosphorylate serine and threonine residues to activate JNK1/2/3 [71,105,107]. JNKs,
which are active dimers, translocate across the nuclear membrane to phosphorylate c-
Jun, Activating Transcription factor 2 (ATF2), tumor suppressor p53, Nuclear Factor of
Activator T-Cells (NFAT4), and MAP-kinase Activating Death Domain (MADD) to increase
the gene expression of Activator Protein 1 (AP1) [71,105]. Generally, INK/SAPK signaling
promotes apoptosis as well as cell survival under certain conditions; hence, it is involved
in tumorigenesis, inflammation, and development [71,105].

3.3. p38 Pathway

The p38 pathway is a stress-activated molecular response homologous to the JNK/SAPK
signaling pathway, which is triggered by pro-inflammatory cytokines (IL-1 and TNF-«) as
well as other cellular and environmental stressors [69,108,109]. Depending on the type of
signaling molecule, its specific MHC and cytokine receptor sequentially activate TRADD
and TRAF?2 to initiate downstream signal transduction [108,109].

TAK1 is a protein kinase that plays a crucial role in transducing signals from the
TGF-3 receptor and phosphorylating JNK, as well as the p38 kinase pathway [108,109].
Inflammatory cytokines can stimulate their specific cytokine receptors to inhibit MAP4Ks
such as GCK, GCKR, GLK, as well as HGK, and eventually inhibit TAK1 [108,109]. Acti-
vated ASK1 or MEKK1 in place of TAK1 can also crosstalk by phosphorylating MKK4 /7
in the JNK pathway [69]. At the activated MAP2K level, MKK6 can phosphorylate p38-
o/p/v/6, while MKK3 can phosphorylate p38-/v /6, and MKK4 can only phosphorylate
p38-0c [108,109].

Activation of four well-known isoforms of p38—o/ 3 /y/d—results in phosphorylation
and activation of downstream kinases, such as MAPK-Activated Protein Kinase-2 (MAP-
KAPK2), MAPK-Activated Protein Kinase-3 (MAPKAPKS3), and p38-regulated/activated
protein kinase (PRAK), which alters the cytoskeleton by activating Heat Shock Proteins-
25/27 (HSP25/27) antigen [108,110]. There are, however, heterogeneous activation affinities,
where activation of MAPKAPK2 and HSP25/27 is accomplished primarily by p38-«/3,
while p38-y /b causes notable upregulation of AFT2 [108,109]. p38-« can phosphorylate
and activate Mitogen and Stress-induced Kinase (MSK1/2), which can also be activated
by the ERK1/2 signaling pathway [111]. The p38 family affects several transcription
factors through MSK1/2 activation: cAMP Response Element-Binding Protein (CREB),
Signal Transducers and Activators of Transcription-1 (STAT1), Elk-1, and Max/Myc com-
plexes [108,109,111]. Hence, the p38 signaling cascade is crucial in chromatin remodelling,
transcription, and cell motility [112,113].

Targeting p38 MAPK using both inhibitors and genetic disruptions of the p38 gene
has demonstrated the critical role of these proteins in the pro-inflammatory response
following SCI. p38 is an upstream regulator of several inflammatory pathways that require
its phosphorylation in order to activate downstream targets. Intrathecal or systematic
delivery of p38 inhibitors has been shown to reduce pro-inflammatory cytokine release
and several pain mediators, such as prostaglandins, in the spinal cord, resulting in reduced
neuropathic pain [60].
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A selective inhibitor of p38, SB203580, was shown to reduce neural apoptosis and
myelin degeneration, resulting in improved hindlimb function following SCI [114]. In
another study, the dose-dependent administration of SB203580 post-CClI (chronic constric-
tion injury) of the sciatic nerve reversed CCIl-induced neuropathic pain, likely through the
inhibition of p38, thereby modulating CREB-dependent gene expression of inflammatory
cytokines [115]. Contrary to these results, a more recent study demonstrated no significant
improvement in tissue sparing or functional recovery after administration of three different
doses of SB203580 post-SCI [116]. Interestingly, these studies were consistent in terms of
the model of injury as well as the dosage, route, and timing of SB203580 administration.
However, the inconsistent results may be due to differences in the severity of the injury,
resulting in reduced efficacy of the drug [116]. It is important to note that aside from its
role in inflammation, p38 MAPK is involved in pathways for growth cone formation, axon
development [117], and cell differentiation [118]. Thus, inhibition of p38 may interfere
with spontaneous recovery. Furthermore, downstream targets of p38, such as mitogen
and stress-activated kinases (MSKs) 1 and 2, are involved in the production of IL-10, an
anti-inflammatory cytokine, and of DUSP1, which deactivates p38, acting as a negative
feedback loop [119]. Thus, further investigation of specific p38 inhibitors is required for the
use of p38 as an effective therapeutic target.

Additionally, p38 MAPK plays a critical role in the induction of long-term depression
(LTD) and long-term potentiation (LTP). LTD involves either ionotropic receptors induced
through the activation of NMDARs or group I metabotropic glutamate receptors. Previous
studies have shown that MAPK genes are highly expressed in the CNS [120]. The MAPK-
activated protein kinase (MKs) subfamily is a downstream target of p38-MAPK, which
is involved in the regulation of actin remodeling. Actin filaments are important for the
maintenance and growth of dendritic spines, which are responsible for the formation
of synapses.

Many emerging studies have demonstrated an association between p38 MAPK activa-
tion and the activation of various nociceptive pathways in different animal models of pain.
This pain pathway is often activated by inflammatory cytokines such as IL-6, I-1B, and
TNF-a, as well as cellular stress, which activate MAPKKKSs and then activate p38 MAPK via
phosphorylation, allowing it to translocate to the nucleus. Nuclear p-p38 can then regulate
the transcription of various genes involved in the mediation of pain [121]. Furthermore,
numerous studies have demonstrated that central, systemic, or local treatment of p38
MAPK inhibitors attenuates neuropathic pain in different animal models, including those
of SCI [48,122-124].

Interestingly, minocycline is a second-generation tetracycline with a neuroprotective
effect following traumatic SCI due to its anti-inflammatory, anti-apoptotic, and antioxidant
properties, some of which are primarily mediated through p38 MAPK inhibition [124,125].
Several studies have reported the efficacy of minocycline in the recovery of animal models
of SCI through various mechanisms, including reduced neuronal and oligodendroglial
apoptosis, inhibition of microglial activation, reduced excitotoxicity, and neutralization
of free radicals. In particular, minocycline inhibits p38 phosphorylation, leading to re-
duced pro-inflammatory cytokine and chemokine release [124,126,127], increased produc-
tion of endogenous BNDF [124], and reduced iNOS expression in reactive microglia and
macrophages [128]. To date, a phase II double-blind, randomized, placebo-controlled pilot
clinical trial has shown possible benefits of minocycline in subsets of SCI patients [129]. Pa-
tients treated with minocycline demonstrated significant improvements in motor recovery
compared to placebo controls (1 = 44), however, this improvement was only observed in
patients with cervical, and not thoracic, SCI[129]. A phase III clinical trial was subsequently
injtiated (clinicaltrials.gov registration number NCT01828203), although the current status
of this trial is unclear.
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4. PI3K-AKT-mTOR Network

The PI3K-AKT-mTOR pathway is activated by growth factors, inflammatory markers,
and hormones and is involved in several cellular functions, including cell cycle regulation,
cell proliferation, cellular metabolism, and apoptosis [130] (Figure 3). The PI3K-AKT-
mTOR signaling network is highly conserved throughout eukaryotic evolution, and the
molecular mechanism behind its function and biological role has undergone continual
refinement. In addition to its involvement in the pathogenesis of secondary SCI (reviewed
previously by He et al. 2022 [131] and Xiao et al. 2022 [132]), the aberrant PI3K-AKT-mTOR
pathway is implicated in a variety of conditions, including cancer, chronic obstructive
pulmonary disease, pulmonary fibrosis, cardiovascular disorders, and other neurological
conditions [133-136].
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Figure 3. An overview of the PI3K-AKT-mTOR network. The PI3K-AKT-mTOR signaling cascade
is involved in secondary SCI pathogenesis by regulating cellular metabolism, growth, and survival
through a series of phosphorylation events. Transmembrane receptors, such as receptor tyrosine
kinase (RTK), toll-like receptors, integrins, interleukin receptors, and GPCRs, lead to PI3K activation.
This in turn phosphorylates membrane phospholipids, leading to AKT activation by phosphorylation
at specific residues. Active AKT phosphorylates downstream targets, including mTOR, controlling
essential cellular processes like protein synthesis and metabolism. The figure was created with
permission in Biorender (BioRender.com) based on the KEGG database (Pathway IDs: hsa04151 and
hsa04150) and previous publications [133,137].

PIBK-AKT-mTOR signaling is initiated upon extracellular signaling molecules binding
to extracellular receptors, such as vascular endothelial growth factor receptor (VEGFR), B-
cell receptor (BCR), interleukin-2 receptor (IL2R), and G protein-coupled receptors (GPCRs),
which lead to PI3K activation [138-140]. Phosphoinositide 3-kinase (PI3K) is a lipid kinase
that phosphorylates membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2) to
generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 serves as a second mes-
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senger that recruits AKT to the cell membrane, where it undergoes activation through
phosphorylation at two critical sites, Thr308 and Ser473. AKT, also referred to as protein
kinase B, is a proto-oncogene as well as an ortholog of the viral v-akt and is related to
protein kinase A and C serine-threonine kinases. The 3’-phosphoinositides recruit AKT to
the plasma membrane via its interaction with the N-terminal region of the AKT. AKT exists
in three isoforms (AKT1, AKT2, and AKT3), each with distinct functions [141]. Activated
AKT phosphorylates the mammalian target of rapamycin (mTOR), which functions as a
serine-threonine protein kinase incorporated either in the mammalian target of rapamycin
complex 1 (mTORC1) or mammalian target of rapamycin complex 2 (mTORC2) [137].
These complexes are master regulators of cellular processes and initiate two separate
signaling cascades.

The mTORC1 pathway increases cell growth, proliferation, and survival by enhancing
protein, lipid, and nucleotide production and reducing autophagy. In addition to mTOR,
the mTORC1 complex is composed of Regulatory-Associated Protein of mTOR (RAPTOR),
G protein beta subunit-like (GBL)/mammalian lethal with SEC13 protein 8 (MLSTS), DEP
domain-containing mTOR-interacting protein (DEPTOR), and PRAS40 (proline-rich AKT
substrate 40 kDa) [137]. In contrast, the mTORC2 pathway increases cell proliferation and
survival, but its full biological function is still unknown. mTORC2 phosphorylates AKT. The
constituents of the mTORC2 pathway include mTOR, GBL/mLST8, Rapamycin-insensitive
companion of mTOR (RICTOR), DEPTOR, and Proline-rich protein 5 (PRR5)/protein
observed with RICTOR (PROTOR) [137].

AKT also inhibits Forkhead box O (FoxO) transcription factors as well as pro-apoptotic
proteins BCL2-associated agonist of cell death (BAD) and caspase 9 [142,143]. The AKT
phosphorylation of FoxO transcription factors prevents their translocation to the nucleus
and starts pro-apoptotic transcriptions. BAD is a proapoptotic member of the BCL-2 gene
family. Caspase 9 is an initiator caspase.

Rapamycin (also known as Sirolimus) is a well-studied and multipurpose medication
initially identified in fungi that targets mTOR [144]. Rapamycin is currently in the clinic
as a macrolide antibiotic, cancer treatment, immunosuppressive for transplantation, and
cardiovascular treatment [145]. Preclinical studies demonstrate the neuroprotective effects
of rapamycin following SCI [146-148]. These studies demonstrate that rapamycin reduces
neuronal loss in the injured spinal cord [149].

Phosphatase and tensin homolog (PTEN) is a natural inhibitor of the PI3K-AKT-mTOR
pathway. PTEN is a known tumor suppressor and acts both as a lipid and protein phos-
phatase [150]. PTEN dephosphorylates phosphatidylinositol (3,4,5)-trisphosphate. PTEN
deletion enhances mTOR activity and promotes axonal regeneration in the injured adult
spinal cord via the sprouting of the uninjured corticospinal axons, which possess the abil-
ity to form synapses [151]. Similar findings have been observed in other injury models,
such as optic nerve injury [152]. Recent findings demonstrate that PTEN antagonistic
peptide (PAP), which blocks the PTEN’s functional domain, yields similar results and
enhances axonal growth [153]. Similarly, insulin-like growth factor 1 (IGF-1) is a sup-
pressor of the PI3K-AKT-mTOR signaling cascade and holds great promise to enhance
regeneration [154,155].

5. Rho-ROCK Pathway

The Rho-ROCK pathway is an important regulator of cytoskeleton dynamics and
actomyosin contractility, which plays a crucial role in controlling cellular shape, adhesion,
and motility [156] (Figure 4). Following traumatic SCI, Rho-ROCK activation is a barrier to
recovery, as it contributes to the collapse of axonal growth cones, failure of axonal regener-
ation, and neuronal loss [157]. This inhibition of axonal regeneration and its consequent
attenuation of functional recovery via the activation of the Rho-ROCK pathway is instigated
by many secondary extracellular signals produced in the injured spinal cord, as described
below [158].
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The traumatic degeneration of myelin and oligodendrocytes releases inhibitory molecules,
such as neurite outgrowth inhibitor A (Nogo-A), oligodendrocyte-myelin glycoprotein
(OMgp), and myelin-associated glycoprotein (MAG), which bind to Nogo receptors 1, 2,
and 3 [159]. In parallel, reactive glia secrete inflammatory and inhibitory CSPGs, including
brevican, phosphacan, neurocan, versican, and NG2 proteoglycans [160]. Through binding
to their respective receptors, these inhibitory extracellular signals lead to the activation
of Rho GTPases, which include RhoA, RhoB, and RhoC [161]. These small GTPases act
as molecular switches, transitioning between an active GTP-bound state and an inactive
GDP-bound state. Guanine Nucleotide Exchange Factors (GEFs) facilitate the exchange
of GDP for GTP, turning on the GTPase [161]. The activated Rho GTPases, particularly
RhoA, stimulate the activity of Rho-associated protein kinase (ROCK), a downstream
effector in the pathway. ROCK phosphorylates various downstream targets, including
myosin light chain (MLC) and myosin phosphatase, leading to the regulation of actin—
myosin cytoskeletal dynamics [162]. The Rho-ROCK pathway can also influence gene
expression by modulating transcription factors such as serum response factor (SRF) and
myocardin-related transcription factor (MRTF) [163,164].

Cethrin (also referred to as VX-210 or BA-210) is a RhoA inhibitor that has been shown
to be an effective regenerative agent in both preclinical and clinical studies of traumatic
SCI. Animal studies investigating the role of Cethrin demonstrate its neuroregenerative
properties and its potential to enhance functional recovery [165]. A dosage-ranging mul-
ticenter phase 1/2a clinical trial concludes that, topically, Cethrin administration on the
dura mixed with fibrin sealant during decompression surgery is safe and tolerable for
traumatic SCI patients [166]. Its strong efficacy for complete cervical SCI patients enticed a
follow-up randomized, double-blind, placebo-controlled phase 2/3 trial, but the study was
prematurely terminated at the interim efficacy-based futility analysis [167,168].

Similarly, Elezanumab is a monoclonal antibody against repulsive guidance molecule
A (RGMa) that lowers Rho-ROCK signaling. Elezanumab is currently in clinical tri-
als for multiple sclerosis (MS; clinicaltrials.gov registration numbers NCT03737851 and
NCT03737812), traumatic cervical SCI (clinicaltrials.gov registration number NCT04295538),
and acute ischemic stroke (clinicaltrials.gov registration number NCT04309474). RGMa
is a neurite growth inhibitor that is present in either soluble or membrane-bound forms.
Through interaction with neogenin and bone morphogenic protein (BMP), RGMa blocks
neuroregeneration and triggers neuronal apoptosis [169]. RGMa upregulation following
traumatic SCI presents a significant challenge to the regeneration of damaged neural tissue.
Several animal models have been utilized to investigate the effects of RGMa inhibition
on traumatic SCI recovery using either intrathecal or systemic elezanumab administra-
tion [170-172]. These studies demonstrate enhanced regeneration, plasticity, and repair.
In primates, elezanumab echoes these findings and shows enhanced neurobehavioral
recovery [169,173].
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Figure 4. An overview of the Rho-ROCK Pathway. The binding of extracellular signals to the
appropriate receptors initiates the Rho-ROCK pathway via the activation of Rho GTPases. This then
leads to the activation of ROCK and the subsequent phosphorylation of downstream effectors, such
as MLC. The activated Rho-ROCK pathway plays an important role in regulating actin cytoskeleton
organization and cell contractility, which leads to the collapse of axonal regeneration following
traumatic SCI. The figure was created with permission in Biorender (BioRender.com) based on the
KEGG database (Pathway ID: hsa04810) and previous publications [159,162,174].

6. NF-«B Pathway

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-«B) pathway is
highly intertwined due to crosstalk with the MAPK, PI3K, and JAK-STAT cascades [175].
The NF-kB pathway plays an important role in mediating the immune response, cell
proliferation, and cytokine production [176]. The dysregulation of this cascade is implicated
in various inflammatory and autoimmune conditions. Previous research demonstrates its
involvement in the secondary neuroinflammatory response following traumatic SCI. NF-kB
involves both classical and alternative pathways (Figure 5) [177]. The classical pathway
(also referred to as the canonical pathway) produces a rapid and transient response by
pro-inflammatory cytokines, PAMPs, and DAMPs [177]. The alternative pathway (also
referred to as the non-canonical pathway) produces a slower response and is activated by a
small subset of cytokines [177].

Under normal physiological conditions, the NF-«B pathway is inactive [178]. Upon
binding of pro-inflammatory cytokines to extracellular receptors, including TNF receptors
or interleukin receptors, downstream molecules such as protein kinase C (PKC), TAK1,
TAB, and NIK are activated. These molecules lead to the activation of the inhibitory-«B
kinase (IKK) complex, consisting of IKKe, IKKf3, and NEMO (also known as IKKy). This
IKK complex then phosphorylates IkBs, marking them for ubiquitination and subsequent
proteasomal degradation [177]. As a result, the NF-xB complex consisting of p50 and
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p65 (also known as RelA) is then translocated to the nucleus [179]. In the nucleus, the
NF-«B complex binds to specific DNA sequences, known as kB sites, which regulate the
transcription of specific target genes involved in immune and inflammatory responses, cell
survival, proliferation, and differentiation [179]. These genes include pro-inflammatory
cytokines and chemokines, adhesion molecules, and anti-apoptotic proteins [180].
Histological analysis demonstrates NF-kB activation in the injured spinal cord [181].
Western blotting and immunohistochemical staining illustrate the presence of activated
p65 in the NF-«B dimer as early as 0.5 h post-SCI and persist until 72 h after injury [181].
Cellular staining demonstrates that activated NF-«B signaling is present in microglia,
endothelial cells, and neurons [181]. Interestingly, several natural compounds have been
shown to protect the injured spinal cord from SCI-induced inflammatory responses through
NF-«B signaling attenuation [175]. These include Resveratrol [182], Forsythiaside B [183],
Geniposide [184], Wogonoside [185], Sesamol [186], Curcumin [187], and Triptolide [188].
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Figure 5. An overview of the NF-«kB signaling involved in mediating the inflammatory response
post-SCI. NF-«B signaling consists of canonical and non-canonical pathways. Extracellular signaling
leads to the subsequent degradation of IkB proteins, resulting in NF-«B translocation into the nucleus.
The figure was created with permission in Biorender (BioRender.com) based on the KEGG database
(Pathway ID: hsa04064) and previous publications [176,177,189,190].

7. JAK-STAT Pathway

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is in-
volved in cell-cycle functions such as cellular division, proliferation, and apoptosis, as well
as various biological processes such as hematopoiesis, scar formation, and immunological
response (Figure 6). The role of the JAK/STAT pathway in SCI was previously reviewed by
Guo et al. 2023 [191].

JAK-STAT is activated through the binding of extracellular cytokines or growth factors
to their cell surface receptors, which leads to the activation of Janus kinases (JAKs) through
autophosphorylation. Phosphorylated JAKs in turn phosphorylate signal transducer and
activator of transcription (STAT) proteins, which will then dimerize and translocate into
the nucleus to induce a transcriptional response. The JAK family of non-receptor tyrosine
kinases consists of four proteins, including JAK1, JAK2, JAK3, and TYK2 [192]. JAKSs
activate their downstream molecules, known as STAT proteins. The STAT family members
include STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 [192]. STATs can also
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be activated by SRC family kinases [193]. Phosphorylated STATs undergo conformational
changes, allowing them to form homo- or hetero-dimers through reciprocal interactions
between their Src homology 2 (SH2) domains, which are then translocated to the nucleus to
alter the transcriptional pattern.

The JAK-STAT pathway plays several important roles in the pathogenesis of sec-
ondary SCI. First, it mediates the astrocytic response after SCI, including the formation of
the astrocytic barrier and protein secretion. Second, the JAK-STAT pathway alters inflam-
mation [194]. Third, it alters the neuronal response. A recent study demonstrated that acute
production of IL-6 in a mouse SCI model leads to the activation of JAK-STAT signaling in
neurons, particularly through JAK1 phosphorylation at the Tyr1022/1023 residue [195].
Interestingly, the JAK inhibitor AG-490 suppressed JAK1 phosphorylation and reduced
functional recovery [195]. Fourth, it mediates the differentiation of neural progenitor cells
toward an astrocytic lineage [196].

Suppressor of Cytokine Signaling (SOCS) proteins are major regulators of the JAK-
STAT pathway. SOCS3 is a negative regulator of the JAK/STAT pathway and plays an
important role in modulating inflammation and the cellular response to cytokines [197,198].
SOCS3 deletion in SCI results in increased axonal sprouting in the spared corticospinal
tract and leads to improved recovery in a unilateral pyramidotomy SCI model [199].

A recent transcriptional analysis in Xenopus laevis tadpoles highlights the importance
of the JAK-STAT pathway for spinal cord regeneration and demonstrates its differential
regulation between regenerative and non-regenerative stages [200]. Following SCI, regen-
erative tadpoles quickly activate this pathway transiently, while non-regenerative stages
show delayed and sustained activation. Additionally, STAT3, a key player in this pathway,
becomes active mainly in Sox2/3+ ependymal cells, motoneurons, and sensory neurons
post-injury. Manipulating STAT3 activation reveals its significant role in controlling the
expression of pro-neurogenic genes after injury. This highlights the crucial involvement of
the JAK-STAT pathway in regulating neural progenitor fate during spinal cord regeneration
in tadpoles [200,201].
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Figure 6. An overview of the JAK-STAT pathway. Extracellular ligands activate-related recep-
tors to transphosphorylate and then phosphorylate downstream molecules such as STATs, which
ultimately cause changes in the transcriptome [202]. The figure was created with permission in
Biorender (BioRender.com) based on the KEGG database (Pathway ID: hsa04630) and previous
publications [191,203].
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8. Translational Implications and Future Directions

Due to the complexity and multifaceted nature of secondary traumatic SCI pathogene-
sis, timely intervention is crucial to mitigate further secondary damage and enable enhanced
recovery [13,204-206]. Recent advances in molecular technologies have provided major
milestones in developing therapeutics that can alter the secondary pathogenesis and target
the molecular cascades within the MAPK, PI3K-AKT-mTOR, JAK-STAT, and Rho-ROCK
signaling networks. Targeting these cascades can alter neuroinflammation, apoptosis/cell
death, cellular proliferation, tissue repair, and neuronal regulation. While many phar-
macological agents that target these pathways have been investigated for traumatic SCI,
important factors such as drug penetrance across BSCB, potency and effectiveness, toxicity
or adverse off-target effects, and drug metabolism limit their efficacy for clinical translation.

The heterogeneity of traumatic SCI cases is another important difficulty in developing
efficacious pharmacological interventions [207,208]. For instance, the pathogenesis and
incidence of traumatic SCI vary depending on the injury level. Epidemiologically, SCI
occurs most frequently at the cervical level, followed by the thoracic and lumbosacral
levels [25]. Cervical SCI patients consequently exhibit tetraplegia—an impairment of all
four limbs—which severely impacts their quality of life [209]. Additionally, damage to the
cervical autonomic tracts, phrenic neurons, and sympathetic preganglionic neurons (SPNs),
further complicates this condition, leading to dysfunctional breathing [210], autonomic dys-
reflexia [20,211], impaired cardiovascular function, and secondary immunodeficiency [212].
Many pharmacological interventions demonstrate different efficacy for improving func-
tional recovery depending on the level of injury.

Considering the complex and interconnected network of intracellular biochemical
events triggered following traumatic SCI, protein kinases are promising targets to inhibit
the progression of secondary SCI damage. These globular enzymes regulate cell signaling
and gene expression in the local and adjacent cells of the injured spinal cord. Notably,
midostaurin is a small-molecule pan-protein kinase inhibitor that can cross the BSCB
and inhibit a vast array of protein kinases through competitive binding to ATP binding
sites. A recent investigation of midostaurin demonstrates its ability to ameliorate the early
secondary injury responses seen following traumatic cervical SCI and improve functional
recovery, which presents a viable neuroprotective approach for combating the secondary
injury response present after SCI [213].

Alternatively, combined treatments for traumatic SCI offer a multifaceted approach,
integrating various therapeutic interventions to enhance recovery. Recent studies have
demonstrated how a combination of different treatments, such as stem cell therapy, rehabil-
itative training, or electrical stimulations, can work synergistically to enhance functional
recovery [214-216]. For SCl-induced intracellular signaling cascades, while this can be
achieved by the administration of multiple pharmacological drugs, advances in gene ther-
apy enable precise targeting of multiple intracellular substrates. The clinical approval of
AAV9-based therapeutics for spinal muscular atrophy in 2019 has opened many possibilities
for gene therapies for the treatment of traumatic SCI [214,217]. An AAV-based combined
approach in transgenic mice, targeting SOCS and PTEN, shows great effectiveness in im-
proving functional recovery [199]. In another study, a combined AAYV strategy was used to
induce axonal growth by enabling intrinsic growth capacity in neurons, growth-supportive
substrates, and chemoattraction through PTEN, IGF1, CNTF, laminin, FGF2, EGF, and
GDNF manipulation [218]. This combined strategy demonstrates improved propriospinal
axonal regrowth by 100-fold in the injured spinal cords of rats and mice [218]. Such
combined treatment strategies hold great promise for clinical translation and improving
recovery for patients with traumatic SCL.

Future studies establishing the cell-specific role and impact of selective modulation of
the intracellular signaling cascades could uncover the complex molecular mechanisms that
regulate this promising therapeutic target for traumatic SCI. Recent advances in single-cell
RNA-sequencing and single-nucleus RNA-sequencing transcriptional analyses enable more
precise analyses [219]. SCRNA-Seq refers to the isolation and sequencing of the total RNA
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extracted from each cell, which enables the investigation of gene expression patterns in each
cell and cellular heterogeneity. SnRNA-Seq investigates the nuclear RNA, excluding the
cytoplasmic RNA [219]. These transcriptional profiling tools enable analysis of differential
expression of protein kinases in each particular cell type, kinome-based cellular diversity,
characterization of cell states, and investigation of cellular interaction.

In addition to transcriptional analyses, future investigations using mass-spectrometry-
based phosphoproteomics as well as high-throughput kinome-wide screens can enable
closer examination of kinase activity, function, and interaction [220-222]. Mass-spectrometry
enables the identification of the interactome of proteins in cells. Kinome-wide screens com-
prehensively assess the inhibitory outcome of a wide range of compounds against a diverse
set of kinases. These can include the incorporation of RNAi and CRISPR. These techniques
offer a promising avenue to uncover the full therapeutic potential of the intracellular
signaling pathways following a traumatic spinal cord injury.

9. Conclusions

The MAPK, PI3BK-AKT-mTOR, Rho-ROCK, NF-kB, and JAK-STAT signaling cascades
consist of groups of serine-threonine kinase proteins, which are crucial for the propagation
of the secondary SCI pathogenesis. These signaling cascades are involved in multiple
secondary processes after traumatic SCI, including immune responses, scar formation, and
neuroplasticity. While some of these mechanisms are considered an adaptive response to
the initial injury, their continued activation results in further spinal cord injury. Therapeutic
targeting of these signaling pathways presents a promising strategy to avoid the deleterious
impact of these mechanisms. The diverse set of pharmacological candidates that target these
intracellular networks shows great promise for improving recovery post-SCI. Opportunities
for further drug development to examine this promising target exist and could lead to
novel translational opportunities.
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