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Abstract: Vascular calcification (VC) is a cardiovascular disease characterized by calcium salt deposi-
tion in vascular smooth muscle cells (VSMCs). Standard in vitro models used in VC investigations
are based on VSMC monocultures under static conditions. Although these platforms are easy to use,
the absence of interactions between different cell types and dynamic conditions makes these models
insufficient to study key aspects of vascular pathophysiology. The present study aimed to develop a
dynamic endothelial cell–VSMC co-culture that better mimics the in vivo vascular microenvironment.
A double-flow bioreactor supported cellular interactions and reproduced the blood flow dynamic.
VSMC calcification was stimulated with a DMEM high glucose calcification medium supplemented
with 1.9 mM NaH2PO4/Na2HPO4 (1:1) for 7 days. Calcification, cell viability, inflammatory me-
diators, and molecular markers (SIRT-1, TGFβ1) related to VSMC differentiation were evaluated.
Our dynamic model was able to reproduce VSMC calcification and inflammation and evidenced
differences in the modulation of effectors involved in the VSMC calcified phenotype compared with
standard monocultures, highlighting the importance of the microenvironment in controlling cell
behavior. Hence, our platform represents an advanced system to investigate the pathophysiologic
mechanisms underlying VC, providing information not available with the standard cell monoculture.

Keywords: vascular calcification; co-culture; VSMCs; ECs; dynamic in vitro models; bioreactors

1. Introduction

Vascular calcification (VC) is characterized by calcium–phosphate complex deposition
in the medial and/or intimal layer of the arteries and heart valves [1]. VC is part of the ag-
ing process and other pathological conditions, such as diabetes, hypertension, and chronic
kidney disease (CKD) [2]. The vascular vessel wall comprises an endothelial cell (EC)
sheet surrounded by a layered structure consisting of contractile vascular smooth muscle
cells (VSMCs). Different stimuli, mainly inflammatory mediators, lipids, and increased
calcium and phosphate levels, modulate multiple signaling pathways that promote VSMCs’
phenotypic switch into osteoblast-like cells, also called the calcified phenotype [3]. Several
studies explored the underlying mechanisms during the above differentiation processes,
identifying multiple key mediators, including transforming growth factor β1 (TGFβ1) and
Sirtuin-1 (SIRT-1) [4–6]. Accumulating evidence also pinpointed inflammation as a primary
risk factor in perturbing vascular homeostasis and triggering VSMC differentiation. In-
deed, the chronic upregulation of pro-inflammatory cytokines, such as interleukin-6 (IL-6)
and interleukin (IL-1β), can activate the downstream signaling pathways contributing to
VSMC osteogenic transition and mineralization [7,8]. In vitro models useful for vascu-
lar pathophysiological investigations are scarce and primarily based on the static VSMC
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monoculture (hereafter referred to as the ‘standard monoculture’) [9–13]. Although these
systems are easy to use and produce important results concerning cell behavior and biolog-
ical characteristics, they have objective limitations due to the absence of the proper and
complex microenvironment present in vascular tissues (e.g., interactions between multiple
cell types, hemodynamic conditions). To overcome these limitations, new in vitro platforms
capable of recapitulating the vascular district and reflecting the events occurring in the
human body are needed. This study explored the potentiality of a new dynamic model in
VC investigations, in which VSMCs and ECs were used as relevant cell types associated
with VC. A mathematical approach was exploited to downsize the real human tissue to the
in vitro setting, using a cell composition that reflects the architecture of the vessel wall [14].
To this end, this approach considers relevant parameters such as the myocardium mass,
the length and the volume of the human coronary tree, the dimension of the coronary
endothelium, and the smooth muscle layer. According to the mathematical model, the ratio
between the ECs and the VSMCs that have to be used in the in vitro model was defined.
Moreover, the intracellular calcium content, inflammation, and VSMC differentiation were
investigated using immunometric and molecular biology techniques, and the results were
compared with those obtained in the standard VSMC monoculture.

2. Results
2.1. VSMC and EC Viability

The VSMCs were treated for 7 days in a calcifying medium, and then viability was
assessed for each cell type. As reported in Figure 1A, the VSMCs were viable in all condi-
tions, and, as expected, less viable when treated with the calcifying medium. However, the
viability reduction for the VSMCs cultured in the calcifying medium was less pronounced
in the dynamic platform with a viability of about 78% compared to the control cells. In
contrast, in the standard monoculture, the viability was about 47%. This phenomenon may
be due to the presence of the endothelium under stimuli of flow, conditions that are not
present in standard monocultures. To underline, as shown in Figure 1B, ECs were viable in
both VSMC culture conditions, with no significant changes between the two treatments.
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Figure 1. Number of viable VSMCs (A) and ECs (B). C refers to control cells (VSMCs grown in 
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Figure 1. Number of viable VSMCs (A) and ECs (B). C refers to control cells (VSMCs grown in
medium 231); CM refers to VSMCs grown in calcifying medium. Data represent mean of three
independent experiments. Statistical analysis was performed with two-way ANOVA and Tukey
multiple comparison test; * p ≤ 0.05, *** p ≤ 0.001.
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2.2. VSMC Calcification

Following 7 days of treatment in the calcifying medium, a spectrophotometric deter-
mination was performed to quantitatively measure the VSMC intracellular calcium amount
(Figure 2). As expected, we detected higher levels of intracellular calcium in the standard
monoculture than in the dynamic co-cultures, suggesting that the surrounding microenvi-
ronment has a relevant influence on the calcification mechanisms in VSMCs. To analyze
intracellular calcification in detail, a transmission electron microscopy (TEM) analysis was
performed (Figure 3), highlighting intracellular calcium deposits as microcalcifications,
some in the cytoplasm and others inside vesicles.
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Figure 2. Intracellular calcium quantification in VSMCs. C refers to control cells (VSMCs grown in 
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multiple comparison test; ** p ≤ 0.01, **** p ≤ 0.0001. 

Figure 2. Intracellular calcium quantification in VSMCs. C refers to control cells (VSMCs grown
in medium 231); CM refers to VSMCs grown in calcifying medium. Data represent mean of three
independent experiments. Statistical analysis was performed with two-way ANOVA and Tukey
multiple comparison test; ** p ≤ 0.01, **** p ≤ 0.0001.
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Figure 3. Transmission electron microscopy (TEM) of VSMCs cultured in standard monoculture. Rep-
resentative images of VSMCs at 1000× (A), 8000× (B), and 10,000× (C) magnification. Intracellular
calcium microcrystals (see black arrows) are evident at higher magnification (B,C), either spread in
cytoplasm or inside vesicles. Nucleus (N) and rough endoplasmic reticulum (RER) are indicated.
Scale bars equal to 4 µm (A), 500 nm (B), 200 nm (C).
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2.3. VSMC-Released Inflammatory Mediators

Caspase-1, IL-6 and interleukin-1β (IL-1β) are pro-inflammatory cytokines that play a
key role in VC driving the VSMC activation; thus, they were quantified in VSMC culture
media (Figure 4). Significant increases in caspase-1 (Figure 4A) and IL-6 (Figure 4B) levels
were detected in the calcified VSMCs for both the experimental settings tested. However,
for both mediators, the increase was less significant in the dynamic co-culture, confirming
the importance of the surrounding microenvironment in the calcification of VSMCs.
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Figure 4. Quantification of caspase-1 (A) and IL-6 (B) in VSMC culture media. C refers to control cells
(VSMC grown in medium 231); CM refers to VSMCs grown in calcifying medium. Data represent
mean of three independent experiments. Statistical analysis was performed with two-way ANOVA
and Holm–Sidak multiple comparison test; * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001.

Considering the close relationship between inflammation and VSMC calcification, a
correlation analysis was performed among the intracellular calcium levels and those of
the pro-inflammatory mediators (Table 1). Interestingly, positive correlations were found
in both of the experimental settings, although the dynamic model shows more robust
correlations between calcium levels and caspase-1 (R = 0.99, p = 0.0155) and IL-6 (R = 1.00;
p = 0.0002).

Table 1. Correlation analysis among the intracellular calcium levels and those of caspase-1 and IL-6.

Caspase-1 IL-6

dynamic co-culture
Intracellular calcium

content

R = 0.99
p = 0.0155

R = 1.00
p = 0.0002

standard monoculture R = 0.79
p = 0.0061

R = 0.81
p = 0.0159

2.4. The Microenvironment Conditions Influence VSMC Differentiation

The phenotypic switch of VSMCs is a central event in vessel remodeling and con-
tributes to cardiovascular pathologies, including VC. A plethora of cellular effectors are
involved in VSMC plasticity; thus, we focused on SIRT-1 and TGFβ1, evaluating their
mRNA relative expression by real-time PCR (Figure 5). In the standard monoculture, the
calcifying treatment dramatically decreased the SIRT-1 levels compared to the control cells
(Figure 5A). Conversely, we did not detect significant variation between the control cells
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and calcified VSMCs in the dynamic setting. Moreover, a comparison of the two calcifying
conditions showed significantly higher levels of SIRT-1 in the dynamic model. As far as
TGFβ1 was concerned, calcifying conditions modulated its expression in an opposite man-
ner between the standard monoculture and dynamic co-culture (Figure 5B). In the standard
monoculture, calcified VSMCs exhibited a dramatic decrease in TGFβ1 levels compared to
the control cells; conversely, a moderate increase was detected in the dynamic model.
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3. Discussion

VC is an active process characterized by calcium crystal deposition within the vessel
wall. VSMCs play a key role in this pathologic process, acting through osteochondrogenic
differentiation, extracellular vesicle release, and calcium overload [3,15]. Blood vessel
walls are comprised of different cell types, primarily ECs and VSMCs, and the interaction
between these cell types is fundamental to the vasculature’s function in physiological and
pathological conditions, including VC [16,17]. In the vascular wall, ECs are exposed to con-
stant stress caused by blood flow, and this mechanical force is converted into biochemical
responses that regulate the underlying VSMC behavior [18]. In this regard, ECs secrete
multiple vasoactive molecules (e.g., prostanoids and nitric oxide) that maintain VSMCs in
the contractile state [19]. However, injury or loss in the endothelium disturbs the crosstalk
between ECs and VSMCs and triggers the phenotypic switch of VSMCs, inflammation, and
functional changes that characterize the pathological remodeling of the vascular wall [20].
These pieces of evidence confirm the need for in vitro models based on the dynamic co-
culture systems of ECs and VSMCs to investigate the pathophysiology of vascular diseases
properly. For a long time, researchers have investigated various VC-related aspects using
in vitro models based on VSMC monocultures [9–13]. Although these models are easy to
manipulate, they exhibit intrinsic limitations related to the lack of essential elements of
the in vivo system, such as the crosstalk between different cell types and the presence of a
complex hemodynamic environment. In the present study, we investigated the potentiality
of a novel dynamic platform, based on the EC–VSMC co-culture, in which the ratio between
the two cell species was determined by applying a mathematical model that considers
different in vivo parameters (i.e., the length and the volume of the human coronary tree
and the myocardium mass) to downsize the real human tissue to the in vitro setting. This
in vitro model was used to analyze different aspects of VC (i.e., the intracellular calcium
levels, inflammatory parameters, and VSMC differentiation), and compare the results
with those obtained with a standard VSMC monoculture. According to published data,
VSMC viability decreased under calcifying conditions [13,14] in both of the experimental
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settings tested; however, the viability reduction was less marked in the dynamic platform.
The dimensions of calcium deposits (i.e., macro-calcification and micro-calcification) are
essential information for understanding the pathophysiology of VC in more detail. Indeed,
macro-calcifications confer plaque stability, whereas micro-calcifications are implicated
in plaque rupture and major cardiovascular complications [21–23]. TEM analyses were
carried out to investigate this aspect, showing micro-calcifications either in the cytoplasm
or inside vesicles. The quantitative analysis of intracellular calcium highlighted an appre-
ciable degree of VSMC calcification in both experimental settings; however, in the dynamic
co-cultures, calcium values were lower than in the standard ones. These observations could
be explained considering the EC–VSMC communication as an essential event in blood
vessel development and function [16,17]; thus, it is reasonable to assume that the presence
of healthy endothelium under flow could promote the viability of VSMCs and counteract
calcification processes. Being that VSMC activation and phenotype switch is essential for
VC [3,15], the mRNA levels of TGFβ1 and SIRT-1 were analyzed using real-time PCR. Scien-
tific evidence recognized TGFβ as a factor that inhibits VSMC phenotypic change [4,24–26].
In agreement with these in vitro findings, Mallat and colleagues confirmed the protective
role of TGF-β signaling toward the development of atherosclerotic lesions in apoE-deficient
mice [27]. Moreover, Takemura and colleagues associated the downregulation of SIRT-1,
which acts on RUNX2 acetylation, with the VSMC osteogenic phenotype [28]. Conversely,
increased SIRT-1 levels counteract VSMC calcification by DNA repair and promoting cell
survival [29,30]. According to this study, the downregulation of TGFβ1 and SIRT-1 observed
in the standard monoculture could be indicative of a more pronounced calcified phenotype
than in the dynamic model, in which TGFβ1 upregulation was associated with slight,
nonsignificant changes in SIRT-1 levels. The differences in TGF-β modulation between the
two experimental settings can be explained by considering the different complexities of the
two systems. Based on the results of Heydarkhan-Hagvall and colleagues, VSMCs showed
a significantly higher TGF-β expression in the static co-culture with ECs than in the stan-
dard monoculture [31]. Similar results were obtained in the dynamic EC–VSMC co-culture,
in which the EC monolayer was subjected to dynamic flow [32]. These data from the litera-
ture corroborate the results obtained from our gene expression analysis, confirming that
EC–VSMC crosstalk is essential in controlling the TGF-β expression and, thus, the VSMC
phenotypic switch. Indeed, in our platform, the presence of a healthy endothelial layer and
the dynamic flow could influence the expression of TGF-β in VSMCs, partly attenuating
the transition into the calcified form. In the standard monoculture, on the contrary, the
absence of crosstalk with ECs resulted in a clear deregulation of TGF-β expression, leading
to a more pronounced calcified phenotype. These observations are in accordance with the
calcium quantification analysis, which showed a higher degree of VSMC calcification in the
standard monoculture. The vicious circle between VSMC calcification and inflammation is
well established [33], identifying IL-6 and IL-1β as potent inducers of VSMC osteogenic
transition [7,8]. In both cell models, calcifying conditions increased IL-6 and caspase-1,
responsible for pro-IL-1β processing into IL-1β [34]. The dynamic system showed slightly
lower levels of inflammatory cytokines than the standard monoculture, but a more robust
degree of correlation with calcium levels (Caspase-1: R = 0.99, p = 0.0155; IL-6: R = 1.00,
p = 0.0002). Altogether, these results suggest that the system complexity influences the differ-
ent degrees of calcification and inflammation, as well as the modulation of effectors related
to VSMC differentiation. Indeed, VSMC monocultures represent a good high-throughput
option for researchers, but cannot recapitulate the in vivo environment of vascular tissues,
resulting in a poor in vitro–in vivo translation. Our dynamic platform closely captures
the complexity of vascular tissues, (1) employing VSMCs and ECs as relevant cell types
associated with the disease; (2) using a mathematical approach to downsize the real human
tissue to the in vitro setting, and a cell composition that reflects the architecture of the vessel
wall; and (3) applying a flow mimicking the hemodynamic environment. Due to its versa-
tility and cost-effectiveness, this dynamic in vitro model might help us understand the VC
mechanisms and cell–cell interactions, replicating the human vascular microenvironment



Int. J. Mol. Sci. 2024, 25, 7427 8 of 12

more appropriately than the standard monoculture. For example, dynamic parameters can
be varied ad hoc (e.g., increasing or decreasing flow rate) to study cell-specific modulations
in response to different hydrodynamic VC-related conditions. In addition, it is also feasible
to treat ECs with calcifying medium, thus mimicking a pathological condition that involves
the entire vascular tissue, highlighting additional morphological and signaling pathway
modulation implicated in VC pathophysiology.

4. Materials and Methods
4.1. Cell Cultures

Human coronary artery endothelial cells (HCAECs, Lonza, Walkersville, MD, USA) and
human coronary artery smooth muscle cells (HCASMCs, Lonza) were used. HCAECs (here-
after abbreviated as ECs) were cultured in an endothelial medium consisting of endothelial
cell GM MW2 growth medium with Supplements (Lonza, Walkersville, MD, USA) and Peni-
cillin/Streptomycin for a final concentration of 100 I.U./mL and 100 µg/mL, respectively.
HCASMCs (hereafter abbreviated as VSMCs) were cultured in smooth muscle medium, con-
sisting of Medium 231 with Smooth Muscle Growth Supplement (Lonza, Walkersville, MD,
USA) and Penicillin/Streptomycin for a final concentration of 100 I.U./mL and 100 µg/mL,
respectively. Cells were seeded and expanded at 37 ◦C, 5% CO2, and replenished with fresh
media every 3–4 days until use in the device.

4.2. Dynamic Co-Culture Experimental Setting

As previously reported [14], ECs and VSMCs were seeded in a LiveBox2 (LB2)
double-flow bioreactor (IVTech Srl, Pisa, Italy) composed of two chambers that can be
in-dependently perfused and separated by a PET membrane with 45 µm diameter circular
pores (Figure 6A,B). Briefly, ECs (45,000 cells) were seeded in each upper chamber of the
LB2 and cultured in the endothelial medium. VSMCs (30,000 cells) were seeded in the lower
chamber of the LB2 and cultured in the smooth muscle medium (control cells). Upper cham-
bers were connected to the peristaltic pump and were subjected to a 250 µL/min flow rate
for the dynamic condition (Figure 6C). To induce VSMC calcification, the smooth muscle
medium was replaced with the calcifying one composed of 1.9 mM NaH2PO4/Na2HPO4
(1:1) in DMEM high glucose [35]. The LB2 was placed in an incubator at 37 ◦C, with 5%
CO2 for 7 days, and the medium was replaced after 72 h. At the end of the experiments, the
culture media were collected for inflammatory marker analyses; cell viability, intracellular
calcium content, and VSMC differentiation were investigated using immunometric and
molecular biology techniques.

4.3. VSMC Standard Monoculture

VSMCs (30,000 cells) were seeded in a 12-well plate and cultured in the smooth muscle
medium (control cells). To induce VSMC calcification, we used the same calcifying medium
used in the dynamic setting. Cells were incubated at 37 ◦C, 5% CO2 in a humidified cell
culture incubator for 7 days, replacing the calcification media after 72 h. At the end of
the experiments, the culture media were collected for inflammatory marker analyses; cell
viability, intracellular calcium content, and VSMC differentiation were investigated using
immunometric and molecular biology techniques.

4.4. Cell Viability

Cell viability was determined using the CellTiter-Blue® Cell Viability Assay kit
(Promega, Milan, Italy), as previously reported, for both dynamic co-culture [14] and
VSMC monoculture [13]. A standard curve that correlates the fluorescence values of
viability and defined cell number was created to extrapolate the number of viable cells.
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(B). A representation of the main components of the LB2, with VSMCs grown in the bottom chamber
and ECs in the upper one. A permeable membrane separates the two chambers. (C). The LB2
connection to the peristaltic pump reproduces the in vivo dynamic conditions.

4.5. Intracellular Calcium Quantification

Calcification was assessed using the Calcium Colorimetric Assay Kit (Sigma-Aldrich,
Milan, Italy), according to the manufacturer’s instructions. Briefly, VSMCs were washed
twice with PBS without calcium and magnesium and lysed by HCl 0.6 M treatment for
1 h at 4 ◦C and overnight at −20 ◦C to promote decalcification. The intracellular calcium
content was determined colorimetrically by interaction with o-creosolphthalein.

4.6. IL-6 Determination

According to the manufacturer’s protocol, the IL-6 levels were determined in the cul-
ture media using a non-competitive chemiluminescent immunoassay kit (Roche, Mannhein,
Germany).

4.7. Transmission Electron Microscopy (TEM)

Confluent VSMCs were detached using trypsin and centrifuged at 300× g for 5 min.
VMSC pellets were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, for 2 h
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at 4 ◦C and postfixed in 1% osmium tetroxide in the same buffer for 1 h at room temperature.
Cells were then dehydrated in a graduated series of ethanol, embedded in Epon-Araldite,
and polymerized at 60 ◦C. Ultrathin sections (60–90 nm), obtained with a Reichert-Jung
Ultracut E (Reichert-Yung, Wien, Austria) equipped with a diamond knife, were collected
on 200-mesh formvar/carbon-coated copper grids, double stained with aqueous uranyl
acetate and lead citrate, and examined with a Jeol 100 SX transmission electron microscope
(Jeol, Tokyo, Japan) operating at 80 kV. Micrographs were obtained with an AMTXR80b
Camera System (Advanced Microscopy Techniques, Woburn, MA, USA).

4.8. RNA Extraction and Real-Time PCR Assay

The total RNA was extracted from mono- and co-culture samples using the RNeasy
Plus Micro Kit (Qiagen, S.p.A., Milan, Italy). Briefly, the cells were lysed in an adequate
lysis reagent, releasing the nucleic acids in solution and inactivating the endogenous
RNase. Genomic DNA was eliminated from the cell lysate (gDNA Eliminator spin column
for 30 s at 9000 g), and then the samples were loaded onto micro-columns of silica gel
(Rneasy MinElute spin column) to bind the RNA. Finally, the total RNA was eluted in
14 µL of RNAse-free water and stored at −80 ◦C until used after evaluating integrity,
purity, and concentration. The total RNA was reverse-transcribed in first-strand cDNA
by miScrpt RTII S Kit (Qiagen). Sirtuin-1 (SIRT-1) and Transforming Growth Factor β1
(TGFβ1) were determined by real-time PCR in the Bio-Rad C1000 TM thermal cycler (CFX-
96 Real-Time PCR detection systems, Bio-Rad) and monitored with EvaGreen (SsoFAST
EvaGreen Super-mix, Bio-Rad Laboratories, Inc. Hercules, CA, USA). The primers for
both control cells and target genes were accurately designed using dedicated software
as Beacon Designer ® (version 8.1; Premier Biosoft International, Palo Alto, CA, USA),
referring to the nucleotide sequences contained in the GenBank database of the NCBI
(http://www.ncbi.nlm.nih.gov/Genbank/index.html, accessed on 1 July 2024) (Table 1). To
assess product specificity, amplicons were systematically checked by melting curve analysis.
Melting curves were generated from 65 ◦C to 95 ◦C with increments of 0.5 ◦C/cycle. The
MIQE Guidelines [36] were followed (Table 2).

Table 2. Primer sequences for reference and target genes.

GENE PRIMER, 5’→3’ Genbank pb LOCALIZATION Ta

SIRT-1 F: TCCTCTAGTTCTTGTGGCAGTA
R: CATCTCCATCAGTCCCAAATCC NM_012238 169 chr 10q21.3 58

TGFβ1 F: TGAACCCGTGTTGCTCTC
R: GCCAGGAATTGTTGCTGTATT NM_000660.7 104 chr 19q13.2 60

4.9. Statistical Analysis

Data are expressed as means ± SD for biomolecular analysis, and a p-value < 0.05
was considered significant. All data were verified in at least 3 independent experiments
and analyzed using GraphPad Prism 8 (GraphPad Software, Boston, MA, USA). The real-
time PCR statistical analysis was done using Statview 5.0.1 Software for Windows (SAS
Institute, Inc., Cary, NC, USA). The geometric mean of the two most stably expressed
genes (eEF1a, RNSP1) and the relative quantification were performed by the ∆∆Ct method
using Bio-Rad’s CFX96 manager software version 3.1 (CFX-96 Real-Time PCR detection
systems, Bio-Rad Laboratories Inc., Hercules, CA, USA). Group differences were compared
using 2-way ANOVA and an appropriate post hoc test for multiple pairwise comparisons.
The Pearson correlation test was used to examine the relationship between continuous
variables in a linear regression model. Skewed variables were log-transformed before
statistical analysis.

http://www.ncbi.nlm.nih.gov/Genbank/index.html
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