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Abstract: Atherosclerosis is an inflammatory disease of the arteries associated with alterations in
lipid and other metabolism and is a major cause of cardiovascular disease (CVD). LDL consists of
several subclasses with different sizes, densities, and physicochemical compositions. Small dense
LDL (sd-LDL) is a subclass of LDL. There is growing evidence that sd-LDL-C is associated with CVD
risk, metabolic dysregulation, and several pathophysiological processes. In this study, we present a
straightforward membrane device filtration method that can be performed with simple laboratory
methods to directly determine sd-LDL in serum without the need for specialized equipment. The
method consists of three steps: first, the precipitation of lipoproteins with magnesium harpin; second,
the collection of effluent from a 100 nm filter; and third, the quantification of sd-LDL-ApoB in the
effluent with an SH-SAW biosensor. There was a good correlation between ApoB values obtained
using the centrifugation (y = 1.0411x + 12.96, r = 0.82, n = 20) and filtration (y = 1.0633x + 15.13, r = 0.88,
n = 20) methods and commercially available sd-LDL-C assay values. In addition to the filtrate method,
there was also a close correlation between sd-LDL-C and ELISA assay values (y = 1.0483x − 4489,
r = 0.88, n = 20). The filtration treatment method also showed a high correlation with LDL subfractions
and NMR spectra ApoB measurements (y = 2.4846x + 4.637, r = 0.89, n = 20). The presence of sd-LDL-
ApoB in the effluent was also confirmed by ELISA assay. These results suggest that this filtration
method is a simple and promising pretreatment for use with the SH-SAW biosensor as a rapid in vitro
diagnostic (IVD) method for predicting sd-LDL concentrations. Overall, we propose a very sensitive
and specific SH-SAW biosensor with the ApoB antibody in its sensitive region to monitor sd-LDL
levels by employing a simple delay-time phase shifted SH-SAW device. In conclusion, based on
the demonstration of our study, the SH-SAW biosensor could be a strong candidate for the future
measurement of sd-LDL.
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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, killing an
estimated 17.9 million people annually. CVDs are a group of diseases that affect the heart
and blood vessels. They include coronary heart disease, cerebrovascular disease, rheumatic
heart disease, and other diseases. People in low- and middle-income countries with CVDs
and other noncommunicable diseases are less likely to have access to efficient and equitable
health care services that meet their needs [1].

It is well known that low-density lipoprotein cholesterol (LDL-C) is one of the major
risk factors for coronary artery disease (CAD) [2–7]. Although LDL-C is an important risk
factor for CADs, LDL-C levels are not always elevated in patients with CAD [8]. There
is growing evidence that the predominance of small dense LDLs (sd-LDLs) is strongly
associated with CAD. In patients with type 2 diabetes and metabolic syndrome, sd-LDL-C
concentrations are elevated in those at high risk for CAD [9–12]. Importantly, elevated
sd-LDL-C is thought to be a feature of familial combined hyperlipidemia, a phenomenon
involving hypercholesterolemia and/or hypertriglyceridemia, which is associated with an
increased risk of premature CVD. Recent studies have shown that sd-LDL-C is associated
with CVD risk, metabolic dysregulation, and multiple pathophysiological processes [13–15].
Therefore, the concentration of sd-LDL-C reveals the role of this lipoprotein subclass in
cardiovascular pathophysiology and makes it available to physicians as a complemen-
tary biomarker.

LDL subclasses can be isolated by various laboratory procedures [16]. A range of
methods is available for analyzing LDL subclasses and measuring sd-LDL particle size and
number and cholesterol concentrations, such as ultracentrifugation (UC), vertical auto pro-
file, gradient gel electrophoresis (GGE), nuclear magnetic resonance (NMR) spectroscopy,
high performance liquid chromatography (HPLC), and ion mobility analysis(IM) [17].
Recently, a detergent-based method for sd-LDL-C homogeneity has been developed [18].
This method does not require any pretreatment and the has a high reproducibility of mea-
surements using an automated analyzer. The current sd-LDL technique is flawed and
produces inconsistent results, limiting its application in research laboratories. None of the
currently proposed formulas for measuring sd-LDL have been properly validated for use as
a clinical tool. To further reduce risk, studies of the particle size, composition, and amount
of sd-LDL in various clinical situations have the potential to further our understanding
of the atherosclerotic process and to provide information on risk stratification for CVD
beyond LDL-C. However, many analytical techniques are available for the detection of
sd-LDL particles. Their use is still largely limited to research laboratories because their
analytical and clinical performance and the clinical and cost effectiveness of sd-LDL assays
have not been fully demonstrated.

Although sd-LDL-C is strongly associated with CAD, few conclusive studies have
shown that lowering sd-LDL-C reduces the risk of coronary artery disease [19–21]. Future
clinical studies need to answer this question using accurate and reproducible sd-LDL-C
measurement techniques. Thanks to intervention studies using robust statins and standard-
ized sd-LDL-C measurements, these questions should soon be answered.

The fundamental principle of surface acoustic wave (SAW) sensors is rooted in the
notion that the binding of biomolecules to the functionalized sensing layer induces an
increase in mass and disturbance in the viscoelastic characteristics. Consequently, this
induces a change in frequency or phase, which can be quantified through the utilization of
a frequency counter or network analyzer [22].

In our investigation, we employed a shear horizontal surface acoustic wave (SH-
SAW) biosensor incorporating an interdigital transducer (IDT) for both input and output,
a sensing region coated with antibodies or antigens specific to the target molecules, and
a reflector. Upon initiation of the measurement process, the initial electrical signal is
converted into surface acoustic waves by the input IDT. These waves propagate along
the sensing area and are subsequently reflected through the reflector to the output IDT.
Ultimately, the waves are reconverted into electrical signals. The output signal corresponds
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to the binding events occurring within the sensing region. As the target molecules bind to
the sensing area, the velocity and amplitude of the waves decrease. The magnitude of the
signal generated is directly proportional to the extent of binding between the target protein
or antibody and the sensing region [23–25].

It is well known that precipitation of apolipoprotein B (ApoB)-containing lipoproteins
with a mixture of divalent cations and polyanions allows determination of HDL choles-
terol [26,27]. Previous studies have shown that the small dense fraction of LDL remained in
the supernatant, suggesting that not all ApoB-containing lipoproteins can be precipitated
by the combination of heparin and magnesium [28]. Here, we present a straightforward
membrane filtration method that allows for the direct determination of sd-LDL in plasma
using a simple laboratory method without the need for specialized equipment. In this study,
our preprocessing method is easily adaptable to screening, clinical testing, and other uses
that require the rapid evaluation of large numbers of samples. In addition, we present an
extremely sensitive and specific shear horizontal surface acoustic wave (SH-SAW) biosen-
sor with apolipoprotein B antibodies in its sensitive region to monitor sd-LDL levels by
employing a simple delay-time phase shifted SH-SAW device. The SH-SAW biosensor
does not require a washing process or a complex flow system. Due to the wash-free, rapid,
and quantitative immunoassay, the SH-SAW biosensor promises to be the most advanced
point-of-care testing (POCT) application. We developed a simple pretreatment method and
rapid SH-SAW ApoB measurement compared to current commercial sd-LDL assays. Based
on our results, the SH-SAW biosensor may be a strong candidate for measuring sd-LDL in
the future.

2. Results
2.1. Measurements of Standard Curves for SH-SAW Biosensor

The ApoB Calibrator (Beckman Coulter, Ireland) was purchased to establish stan-
dard curves. First, the apolipoprotein B calibrators were resuspended to 24, 48, 105, and
148 mg/dL with PBS solution as 0 mg/dL. The samples were diluted 20-fold before mea-
suring the SH-SAW ApoB biosensor. To establish the standard curve, the 30-s phase shift
endpoint was measured as the SAW signals for different concentrations of total ApoB, as
shown in Figure 1a, with the following four-parameter logistics (4PL) equation (Figure 1b):
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Figure 1. Phase shifts of the SH-SAW biosensor at different concentrations of ApoB samples and
the 4PL curve of the SH-SAW biosensor. The purchased apolipoprotein B calibrator was diluted to
different concentrations (24–148 mg/dL) and the samples were diluted to 20× and blank (PBS). Then,
5 µL sample drops were measured in the reaction area of the SAW chip and repeated three times.
(a) Real-time curve of the measurements; (b) the 4PL fitting curve of the 30-s phase shift.
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SAW signal = a + (b − a)/{1 + ([A ApoB concentration]/c)ˆd}

where a = −0.46877 b = 2.00127, c = 75.14937, and d = −30.90905 are the coefficients for the
SAW biosensor chip with a coefficient of correlation (R) of 0.9962.

2.2. Comparison of sd-LDL-apoB by SH-SAW Biosensor under Different Pretreatment Methods

The principle of this method offers the unique possibility of precipitating lipoproteins
in an in vitro system using only physiological polyanions such as heparin and magnesium.
In this study, different filtration grades were tested to evaluate the precipitation effect of
precipitation modifiers. Figure 2 shows the results of filtration efficiency for different pore
size classes. It is noteworthy that a filter with a pore size of 300 kDa removed most of the
ApoB proteins and showed very little phase shift on the SH-SAW biosensor. As the pore
size of the filter increases, the 100 nm filter comes very close to the sd-LDL-ApoB results
of current technology. In short, the 100 nm filter may be the optimal filtration grade for
precipitating sd-LDL-ApoB using the SH-SAW biosensor.
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Figure 2. Phase shift measurements were performed on different samples using SH-SAW biosensors.
Fresh serum was prepared for ApoB measurements. No precipitant was added to the serum. Samples,
including centrifuged supernatant, 300 kDa filtered effluent, 100 nm filter effluent, and 200 nm
filtered effluent, were spiked with precipitating heparin-Mg2+ precipitation reagents. After the
incubation step, the supernatant samples were centrifuged and the ultrafiltrate was collected. The
effluent samples were filtered through 300 kDa, 100 nm, and 200 nm filters and the effluent were
collected. (a) Measured real-time curves; (b) SH-SAW ApoB measurements of different pretreatment
serum samples.

Next, the amount of apoB proteins in the effluent was also determined using NMR
spectroscopy to further investigate the filtration capacity. Table 1 shows that the study
target was LDL-6 ApoB (1.044–1.063 g/mL) [29], with sd-LDL-ApoB of 14.8 mg/dL. NMR
spectra measurements of the 100 nm filter effluent showed the best match to the study
target LDL-6 ApoB values. Based on this result, we concluded that the 100 nm filter should
be the best choice for the next phase of testing on a large number of specimens.
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Table 1. NMR analysis result of serum and different pretreatment method samples.

Samples LDL Cholesterol
(mg/dL)

Apo-B100
(mg/dL)

LDL-ApoB
(mg/dL)

sd-LDL-ApoB (* LDL-6)
(mg/dL)

Serum 76.9 63.2 49.7 14.8
Centrifuged Supernatant 9.0 33.0 18.4 2.9

300 KDa Effluent 0.0 29.6 15.9 0.0
100nm Effluent 7.4 29.7 13.7 1.0
200nm Effluent 13.5 36.2 19.6 3.3

* LDL-6 is Lipoprotein subclass of density of 1.044–1.063 g/mL.

2.3. Comparative Study between Commercial sd-LDL-Cholesterol Assay Results and sd-LDL-ApoB
Results from the SH-SAW Biosensor in a Large Study Group

Next, the above method was applied to measure plasma samples from patients. The
results show a resolvable correlation between the commercial value of the sd-LDL-C kit and
the SH-SAW value of sd-LDL-ApoB from the heparin-Mg2+ supernatant in 20 individuals
(y = 1.0411x + 12.96, r = 0.82, n = 20) (Figure 3a). This suggests that the SH-SAW biosensor
is capable of estimating sd-LDL-ApoB in conjunction with heparin-Mg2+ precipitates in a
subsequent centrifugation step. However, we believe that the coefficients of the regression
results are not as good as initially expected, because the collection of supernatants in routine
clinical applications may require crude human manipulation and a longer centrifugation
process. To further study this, we measured the sd-LDL-ApoB content in the filtrate with an
SH-SAW biosensor using heparin-Mg2+ as precipitant and a 100 nm membrane filter. There
was also a good correlation between the commercial sd-LDL-C assay and the sd-LDL ApoB
measured by the SH-SAW ApoB biosensor (y = 1.0633x + 15.13, r = 0.88, n = 20) (Figure 3b).
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Figure 3. Comparative study between commercial sd-LD-C assay and SH-SAW ApoB biosensor
measurements of different pre-treatment samples. (a) Correlation between commercial sd-LDL
assay results and SH-SAW ApoB biosensor measurements of heparin-Mg2+ precipitated centrifuged
supernatant (N = 20). (b) Correlation between commercial sd-LDL-C assay results and SH-SAW
ApoB biosensor measurement on 100 nm pore size filtered effluent samples (N = 20).

Altogether, the filtration method not only had a shorter pretreatment time, but also
had a more reliable effluent than the supernatant collection method. Most importantly,
the filtration method showed better regression coefficients compared with the commercial
sd-LDL-C assay.
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2.4. Comparative Study of a Commercial of sd-LDL-ApoB Kit and an Apolipoprotein B-100
ELISA Kit

To confirm the accuracy of this method, filtration pretreatment is more convenient and
ready than centrifugal separation. The filtered effluent was determined using an ApoB-100
ELISA kit and compared with the commercial sd-LDL assay. The reason for using the
ApoB-100 ELISA kit is that Apo B-100 is produced by the liver and is a component of
several other lipoproteins. Specifically, this protein is a component of very low-density
lipoproteins (VLDLs) and low-density lipoproteins (LDLs). As shown in Figure 4, there
was a very close correlation between sd-LDL-C and ELISA assay values in the filtrate
assay (y = 1.0483x − 4489, r = 0.88, n = 20). After pretreatment with heparin-magnesium
precipitant, the effluent showed a strong correlation with the sd-LDL-C results. This
indicates that the 100 nm filter removes most of the non-sd-LDL ApoB, while only the
sd-LDL-ApoB remain in the effluent.
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2.5. Comparison Study between LDL Subfractions LDL-6 Apo-B, and sd-LDL-ApoB Results by
SH-SAW Biosensor in a Large Study Group

To further confirm the accuracy of this method, the correlation between filtration
pretreatment and NMR spectra was investigated. The sd-LDL-ApoB obtained from filtrate
was determined with an SH-SAW biosensor using heparin-Mg2+ as the precipitant and
a 100 nm membrane filter. Similarly, good correlations were shown between the LDL
subfractions, Apo-B, LDL-6 and the sd-LDL ApoB measured with the SH-SAW ApoB
biosensor (y = 2.4846x + 4.637, r = 0.89, n = 20) (Figure 5). Our study confirmed the
filtration pretreatment combined with SH-SAW biosensor show a great ability to measure
sd-LDL ApoB. NMR is indeed a good tool for analyzing sd-LDL or sd-LDL-C, but the
overall equipment is expensive, and the operation requires professional personnel for daily
maintenance or analysis, which may not be suitable for commercial clinical analysis In
comparison, if the SH-SAW ApoB chip analysis platform is used, it has the advantages
of miniaturization, fast analysis times, etc., and it has good consistency with the results
of NMR analysis. We believe that in the future, the analysis of sd-LDL and the clinical
application of LDL-ApoB will have great development potential and market space.
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3. Discussion

The aim of this study was to develop a novel SH-SAW-based biosensor combined
with an easy-to-operate pretreatment method to measure sd-LDL-ApoB in human plasma
using SH-SAW technology. Since lipoprotein separation is not always precise, different
lipoprotein particles, such LDL and Lp(a) particles, may show up in the same fraction or
subfraction, depending on the method [18]. Although the distribution of LDL particles
and their characteristics can be described by comparable nomenclature, it is debatable
whether different methods define particles in the same way. There is an urgent need for a
rapid and reliable method to detect sd-LDL-C. In the study, a novel sample pre-treatment
method was introduced, utilizing a precipitation agent consisting of heparin and Mg2+.
This method facilitated the formation of larger particle-like precipitates of large, buoyant
LDL-C, which were then separated using a 100 nm filtration membrane. The separated
filtrate was subsequently measured for the concentration of ApoB using the SH-SAW A
biosensor. From the experimental results, a strong positive correlation was observed with
the results obtained from the commercially available sd-LDL-C reagent analysis, as well
as the NMR spectroscopy and ELISA kit results. Therefore, it is believed that this is a
promising new clinical diagnostic tool for the rapid measurement of sd-LDL-C.

From the results of our experiments, we once again confirmed that sd-LDL and large
buoyant LDL can be successfully separated using a simple reagent containing heparin and
magnesium chloride, and further in combination with other analytical methods, sd-LDL-
ApoB can be effectively performed and the concentrations of sd-LDL-C in the samples can
be accurately determined. However, the effectiveness of the pre-treatment method will
directly affect the accuracy and efficiency of the subsequent analytical instruments. In our
experimental results, the SH-SAW biosensor was successfully used to find out the most
suitable filter pore size by using different filter suppliers with different filter pore sizes.
We also found that analysis of the filtered filtrate by conventional ELISA ApoB 100 assay
also correlated well with commercial results. The above experimental results show that
we can use the simple, inexpensive pretreatment reagents of heparin and magnesium
chloride and good filters without the need for more expensive commercial chemicals, and
that it can be a very efficient and highly accurate pretreatment method. In this study, we
also found that the experimental results showed that the detection of sd-LDL-ApoB in
the pretreated samples using the conventional ELISA ApoB 100 assay and the SH-SAW
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biosensor showed a good linear correlation after the same pretreated samples, as shown in
Figure 6 (y = 0.834x + 25.479, r = 0.88, n = 20). Therefore, we can replace ELISA assay with
the SH-SAW biosensor.
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The SH-SAW technique is designed and constructed with an inter-digital transducer
that generates acoustic waves on a solid surface, allowing us to directly observe changes
in the wave characteristics of a specific marker as it binds to the SH-SAW surface [30].
Although the SH-SAW biosensor has great potential for a variety of applications, it has
some limitations that need to be addressed: (i) The sd-LDL measured by the SH-SAW
biosensor may not reflect the concentration of this fraction obtained by other assays, which
needs to be investigated in future studies. (ii) The value of the SH-SAW biosensor must
be reinforced in future studies with larger samples of patients and controls. (iii) More
comparisons of the SH-SAW biosensor with other methods, especially ultracentrifuges, are
necessary to validate whether the SH-SAW biosensor can measure the classical sd-LDL
fraction. In this study, the filtration technique was easier and faster in obtaining real-time
results than the centrifugation method because it correlated better with the results of the
commercial sd-LDL-C assay.

We also demonstrated the SH-SAW assay system based on easy-to-use, highly reliable,
sensitive, and reproduction-free measurements. The SH-SAW biosensor platform coated
with anti-ApoB protein provides highly sensitive and rapid ApoB detection. This suggests
an innovative approach to sd-LDL quantitation that has the potential to improve the speed
and accuracy of measurements in patients with high CVD risk. Finally, the SH-SAW
biosensor platform has the potential to be developed in more aspects of in vitro diagnostic
biomarkers due to the preprocessing approach.

4. Materials and Methods
4.1. Subjects

Blood was collected from different subjects, including patients in Chang Gung Memo-
rial Hospital and healthy volunteers from the Healthy Clinic in CGMH, in accordance
with the guidelines approved by the institutional review board of Chang Gung Memorial
Hospital in Taiwan (IRB No.202101722B0). Twenty-one subjects aged 25 to 55 years with
a wide range of plasma lipid levels were enrolled. Whole blood samples were collected
from all subjects after fasting for at least 8 h in pre-coated heparin-sodium tubes (SST II
Advance Vacutainer, BD, Mississauga, ON, Canada) and stored at 4 ◦C. After centrifugation
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at 1000× g for 5 min at 4 ◦C, the supernatant plasma was harvested, separated, and stored
at −80 ◦C until analyzed. To ensure the reliability of the study, all measurements, which
differed from those obtained before the sampling, were performed.

4.2. NMR Analysis

NMR analysis was performed on Bruker Avance III HD 600 MHz spectrometers
(Bruker Biospin GmbH, Rheinstetten, Germany) equipped with a TXI probes and the
Bruker SampleJet automatic robot cooling system set to 6 ◦C. The 100 µL plasma samples
supernatant was mixed with 75 mM pH 7.4 sodium phosphate (buffer in 1:1 ratio) and
200 µL were ceded into a 3 mm × 4 inch Bruker SampleJet NMR tube.

Lipoprotein analysis reports containing around 112 lipoprotein paramecium for each
plasma sample were generated using the Bruker IVDr Lipoprotein Subclass Analysis
(B.I.-LISA) method. This is completed by mathematically interrogating and quantifying the
−CH2 (δ = 1.25 ppm) and −CH3 (δ = 0.8 ppm) peaks of the 1D spectrum from normalization
to the Bruker QuantRef manager among Topspin by using a PLS-2 regression model [31].

4.3. SH-SAW Biosensor Chips Assay

Immunoassay reader and SH-SAW biosensor chips were provided by tst biomedical
electronics Co., Ltd. (Taoyuan, Taiwan). SH-SAW biochip devices were produced in batches
of 100–500 chips, with an insertion loss in air stipulation of between 21 and 22 dB. SH-
SAW biochip dual-channel (reference and detection channel) devices were used with 5 µL
sample for each biochip run. After removing the signal from the reference NAP channel,
the change in phase shift attributable to sample antibody binding was assessed from the
sample (detection) channel [32,33].

4.4. Establishment of the SH-S.A.W. 4PL Standard Regression Curve

Prior to sample testing, a quality control calibration curve was established using a
0, 24, 48, 105 and 148 mg/dL Apolipoprotein B Calibrator (Beckman Coulter, Ireland) to
guarantee working biochip production for the batch. The ApoB calibrator was used as
the standard. The standards were measured using SH-SAW biosensor chips and a 4PL
standard curve was established; the equation for the 4PL standard curve is as follows:

Y = d + (a − d)/[1 + (X/c)ˆb]

where a, b, c, and d are coefficients. Y is the SH-SAW biochip phase shift attribute, X is the
concentration of Apolipoprotein B. The Apolipoprotein B levels were quantified in mg/dL.

4.5. Centrifugation Assay Procedure

It is known that divalent cations and polyanions precipitate apolipoprotein B [27],
which contains lipoproteins. Based on this in Hirano et al. [28], the results were tested with
different combinations of polyanion and divalent cations and compared with the reference
method, ultracentrifugation. They were able to find the combination that showed the best
correlation with the results obtained from ultracentrifugation. In this study, a precipitation
reagent (0.1 mL) containing 150 U/mL of heparin sodium salt (Heparin Sodium CAS
2608411, Frankfurter, Merck, Germany) and 90 mmol/L of MgCl2 (MgCl2·6H2O CAS
7791-18-6 ACS grade, USB, Kachchh, Gujarat, India) were added to each plasma sample
(0.1 mL), mixed, and incubated for 10 min at 37 ◦C. The samples were placed in an ice bath
and allowed to stand for 15 min, then the precipitate was collected by centrifuging tool at
15,000 rpm for 15 min at 4 ◦C, Megafuge 16R (Thermo Fisher, Am Kalkberg, Germany). The
precipitates were strongly packed into the wall of the Eppendorf tube, and the supernatants
were clear. The supernatants were collected for the SAW ApoB biochip and performed the
measurement of sd-LDL-ApoB. Plasma sd-LDL were also detected by sd-LDL- cholesterol
“Seiken” assay (Denka Seiken Co. Ltd., Tokyo, Japan) on the Toshiba 200 FR automatic
biochemical analyzer (TOSHIBA, Tokyo, Japan)
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4.6. Filtration Assay Procedure

A schematic diagram of the centrifugation and filtration procedures for detection of
ApoB concentrations in plasma is shown in Figure 7. This filtration method is performed
as follows. The precipitation reagent (0.1 mL) containing 150 U/mL sodium salt and
90 mmol/L MgCl2 was added to each plasma sample (0.1 mL) and incubated for 10 min
at 37 ◦C. We selected three filtration rating centrifugal filters, with filtration pore sizes
following 300 KDa, 200 nm (Pall Corporation, Bloomfield Hills, MI, USA) and 100 nm
(Merck, Darmstadt, Germany) for precipitate removal. Then, centrifugal filters (Merck,
Darmstadt, Germany) were used for centrifuging at 5000× g for 1 min at room temperature.
After three filtration effluents were collected, the more buoyant lipoproteins in sediment
were removed, and measurement was performed using an SH-SAW ApoB biochip, NMR,
and ApoB-100 ELSIA assay (Human ApoB-100 assay, IBL-America, Minneapolis, MN,
USA). The total assay time for this precipitation and filtration procedure using an SH-SAW
ApoB biochip was shortened to 11 min.
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4.7. Statistical Analysis

In this study, all measurement results were expressed as means ± SD (standard
deviation). Statistical analysis was conducted using Student’s t-test. p-values of less than
0.05 were considered statistically significant. Statistical analyses were performed using
SPSS statistics 17 (SPSS, Chicago, IL, USA).



Int. J. Mol. Sci. 2024, 25, 1044 11 of 13

5. Conclusions

In conclusion, the present study shows that the quantification of sd-LDL-C can be
shown more clearly by using filtration technology with the SH-SAW biosensor platform.
Since the current modified method gives results that are consistent with those reported
by the original method, this simple and cost-effective technique can be easily adopted
even in small clinical laboratories for the rapid quantification of atherogenic sd-LDL-C
with conventional cholesterol detection reagents. We have developed a novel and simple
method to quantify sd-LDL in plasma using heparin-Mg2+ precipitation. This precipitation
method is suitable for automated analyzers and allows for the rapid measurement of many
samples. We plan to apply this simple method in a large sample to determine the prevalence
of sd-LDL and its association with established risk factors for coronary heart disease to
confirm the atherogenic potential of sd-LDL.
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