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Abstract: Depression and vitamin D deficiency are often co-occurring pathologies, the common
pathogenetic ground of which includes an augmented inflammatory response. However, the molecu-
lar details of this relationship remain unclear. Here, we used a bioinformatic approach to analyze
GEO transcriptome datasets of major depressive disorder (MDD) and vitamin D deficiency (VDD) to
identify the hub genes within the regulatory networks of commonly differentially expressed genes
(DEGs). The MDD-VDD shared regulatory network contains 100 DEGs (71 upregulated and 29 down-
regulated), with six hub genes (PECAM1, TLR2, PTGS2, LRRK2, HCK, and IL18) all significantly
upregulated, of which PTGS2 (also known as COX2) shows the highest inference score and reference
count. The subsequent analysis of the miRNA-transcription factors network identified COX2, miR-
146a-5p, and miR-181c-5p as key co-regulatory actors in the MDD-VDD shared molecular pathogenic
mechanisms. Subsequent analysis of published MDD and VDD transcriptome data confirmed the
importance of the identified hub genes, further validating our bioinformatic analytical pipeline. Our
study demonstrated that PTGS2 was highly upregulated in both depressive patients and patients
with low vitamin D plasma levels. Therefore, regulators targeting PTGS2, like miR-146a-5p and
miR181c-5p, may have great potential in controlling both diseases simultaneously, accentuating their
role in future research.

Keywords: depression; vitamin D deficiency; transcriptome; GEO2R; bioinformatics; microRNA;
transcription factors

1. Introduction

As one of the most frequent psychiatric diseases, depression affects 5% of adults
worldwide and is ranked the fourth contributor to the global disease burden [1]. Depression
increases the risk of suicide but also of chronic disorders such as cardiovascular diseases,
diabetes, or cancer [2–5]. Conversely, individuals affected by chronic illnesses may develop
a depressive state due to the difficulties associated with their condition.

Even though the etiology and pathophysiology of depression are still not
fully understood [6], the monoamine hypothesis, along with the dysregulation of the
hypothalamus–pituitary–adrenal (HPA) or hypothalamus–pituitary–gonadal (HPG) axes,
remain the most accepted theories to be associated with the pathophysiology of depres-
sion [7]. Reduced levels of norepinephrine, dopamine, and serotonin in the brain of
depressed patients can alter several functions, including the regulation of emotions, en-
ergy levels, and stress response [8,9]. In recent years, the role of other molecules like
cytokines, neuropeptides, and oxidative stress biomarkers has been linked to depressive
disorder [10,11].

Despite the impressive advances in therapy, nearly 60% of depressive individuals
receive no treatment or discontinue their medication [12]. This phenomenon is due to
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the rather modest investments in mental health care, the social stigma associated with
mental disorders, the financial burden, and the lack of education in the general population,
manifested by the fear of side effects or addiction or the belief that medication is unneces-
sary [13,14]. We acknowledge that MDD is the most frequent comorbidity of schizophrenia
(SZ); moreover, epigenomic mechanisms have been hypothesized to contribute to the de-
velopment of MDD/SZ [15]. Nevertheless, despite the numerous studies in the field, the
prevalence of MDD in SZ is not known [16]. There is a consensus on the need to broaden
the therapeutic options for depression. Recently, attention has been increasingly drawn to
dietary factors [17], and Omega-3 fatty acids, minerals like Zinc or Magnesium, vitamin
D, and the vitamins of the B group have all been considered therapeutic adjuvants [18].
In general, appropriate nutritional micronutrients are essential for preventing the risk of
depression [19]. Among them, the potential role of vitamin D in depression has received
increasing research focus [20].

Accumulating evidence shows that low plasma levels of vitamin D are a common
finding in patients with depression; however, it is still unclear whether vitamin D deficiency
is a determining factor or has a simple association with depressive disorders [21]. An
explanation could be that some symptoms of depression include withdrawal from social
activities. Indoor confinement, a common state in depression, reduces direct exposure
to sunlight, diminishing vitamin D synthesis in the skin [22]. While the link between
depression and hypovitaminosis D continues to accumulate solid clinical evidence, the
molecular pathogenic mechanisms linking the two remain elusive.

An indoor lifestyle has raised vitamin D deficiency (VDD) to a global public health
status, impacting a billion people worldwide [23]. Mostly known for its role in bone
health, the fat-soluble “sunshine” vitamin [24] can also act as a neuroactive steroid with
anti-inflammatory and antioxidant properties. A large-cohort 2019 study on vitamin D
supplementation reported a significant improvement in multiple inflammation-related
biomarkers [25]. Interestingly, neuroinflammation was documented in one in four patients
with MDD [26]. In a large cohort study, low levels of 25(OH)D (<14 ng/mL) were associated
with the existence and severity of depressive disorder, implying that VDD may represent a
biological vulnerability to depression [27].

Here, we analyzed public transcriptome datasets from individuals diagnosed with
MDD and VDD, aiming to identify the hub genes within the regulatory networks of com-
monly differentially expressed genes (DEGs). GEO (Gene Expression Omnibus) microarray
datasets [28] were downloaded and subjected to GEO2R analysis, followed by identifica-
tion of the common differentially expressed genes. The shared DEGs network was next
subjected to protein–protein interaction (PPI) and pathway analysis to reveal the connected
mechanism between the two conditions. Finally, we constructed a network of transcrip-
tional (transcription factors—TFs) and post-transcriptional (microRNAs) co-regulators of
the identified hub genes.

To the best of our knowledge, this is the first attempt to explore the relationship be-
tween depressive disorder and VDD at the transcriptional level, focusing on co-regulators
of the common hub genes. The hub-genes co-regulatory network might serve as novel pu-
tative targets relevant to the clinical and therapeutical management of depressive disorder.

2. Results
2.1. Identification of DEGs

The logical succession of the analytical steps of our study is represented in the
flowchart depicted in Figure 1. Basic information concerning the eight depression GEO
datasets (GSE190518, GSE98793, GSE76826, GSE217811, GSE101521, GSE23848, GSE80655,
and GSE169459) and two hypovitaminosis D datasets (GSE157939 and GSE22523) are
shown in Table 1.
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Figure 1. Research design flowchart diagram that represents the logical succession of the analytical
steps of our study.

Table 1. GEO datasets’ basic information: number of participants, type of biological sample, patho-
logical condition, and analytical platform used.

GSE Number Participants
(Patients/Controls) Biological Sample Pathological

Condition
Analytical
Platform

GSE190518 3/3 Blood Depression Illumina HiSeq 4000
GSE98793 128/64 Blood Depression Affymetrix GeneChip system
GSE76826 10/12 Blood Depression Agilent microarray
GSE217811 10/10 Plasma Depression Agilent microarray
GSE101521 18/38 Brain Depression Illumina MiSeq 2500

GSE23848 20/15 Blood Depression Sentrix Human-6 v2
Expression BeadChip

GSE80655 69/70 Brain Depression Illumina HiSeq 2000
GSE169459 3/3 Blood Depression Agilent microarray
GSE157939 80/80 Blood Hypovitaminosis D Fluidigm BioMark
GSE22523 2/2 Blood Hypovitaminosis D Affymetrix GeneChip system

GEO2R analysis of depression transcriptome data retrieved 7353 upregulated and
6564 downregulated genes. A similar analysis of hypovitaminosis D data identified 210 up-
regulated and 119 downregulated DEGs, of which 100 are shared between the two patholo-
gies: 71 upregulated and 29 downregulated (Figure 2 and Supplementary Table S1).
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Figure 2. Venn diagram of downregulated (left) and upregulated (right) differentially expressed
genes in major depressive disorder—MDD (blue) and vitamin D deficiency—VDD (red).

2.2. PPI Network and Functional Enrichment Analysis of Common DEGs

The depD list of 100 DEGs was uploaded on STRING, and the PPI network was
constructed at a medium (0.400) confidence level; the network’s edges represent interaction
evidence retrieved from all seven possible sources (text mining, neighborhood, experiments,
gene fusion, databases, co-occurrence, and co-expression). The PPI network included
98 nodes and 89 edges with a statistically significant PPI enrichment (p-value = 0.01). The
results were then imported to Cytoscape software version 3.9.1 for visual analysis (Figure 3).
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(p-value = 0.01).
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GO enrichment analysis showed that this network is significantly enriched in biological
processes related to the cellular response to stress, with a significant immunological com-
ponent, like positive regulation of the defense and inflammatory response (GO:0050729),
immune response (GO:0006955), and regulation in response to external factors and stress
(GO:0080134) (Figure 4a). This suggests that the immune and inflammatory responses
link the pathophysiology of the two conditions. A similar analysis of the KEGG path-
ways enrichment led to six distinct pathways, the most significant being metabolic path-
ways (hsa01100), followed by Alzheimer’s (hsa05010) and Parkinson’s disease (hsa05012)
(Figure 4b). This suggests that the transcriptome changes shared by the two conditions
might represent the molecular substrate of metabolic alterations related to neuronal de-
generative processes. Details regarding GO enrichment analysis and KEGG pathways are
provided in Supplementary Table S2.

2.3. Hub Genes Identification

In order to identify the hub genes within the PPI network, data were uploaded and
analyzed using cytoHubba, a Cytoscape plug-in designed to identify a network’s critical
genes according to their number of associations. The top 10 genes were selected in each
of the seven analytical algorithms used, and the final six hub genes were identified in the
uPSet diagram: PECAM1, TLR2, PTGS2, LRRK2, HCK, and IL18, all upregulated (Figure 5
and Table 2).

Table 2. Hub genes’ functions.

Gene Symbol Full Name Function

PECAM1 Platelet And Endothelial Cell
Adhesion Molecule 1

Cell adhesion molecule, which is required for leukocyte
transendothelial migration (TEM) under most inflammatory

conditions [29].

TLR2 Toll Like Receptor 2 Modulates the host’s inflammatory response and has been
implicated in the pathogenesis of several autoimmune diseases [30].

PTGS2 Prostaglandin-Endoperoxide
Synthase 2

With a particular role in the inflammatory response, during
neuroinflammation, plays a role in neuronal secretion of specialized

pre-resolving mediator [31].

LRRK2 Leucine Rich Repeat Kinase 2 Regulates neuronal process morphology in the intact central
nervous system [32].

HCK HCK Proto-Oncogene, Src Family
Tyrosine Kinase

Plays an important role in the regulation of innate immune
responses, including neutrophiles, monocytes, and

macrophages [33].

IL18 Interleukin 18 Pro-inflammatory cytokine primarily involved in epithelial barrier
repair [34].

2.4. Construction of TF-Hub Genes-MicroRNA Regulatory Networks

Next, we used NetworkAnalyst to build the network (trimmed down to a minimum
of two-degree connectivity) of transcriptional and post-transcriptional regulators of hub
genes, focusing on TFs and microRNAs, respectively. The final network (20 nodes and
66 edges) included six miRNAs and nine TFs targeting five of the six hub genes (PECAM1,
TLR2, PTGS2/COX2, LRRK2, and HCK) (Figure 6). Of note, PTGS2, the only hub gene
controlled by both microRNA and TFs, has the highest (33) connectivity degree and, thus,
represents a potential link in the clinical development of depression and hypovitaminosis
D. Of the nine TFs, TFAP2A is predicted to concomitantly regulate three hub genes (PTGS2,
PECAM1, and HCK), while the rest (ETS1, NFKB1, TCF3, STAT3, RELA, USF1, NFKB2, and
CTCF) might each regulate two of the hub genes. Of the six microRNAs, hsa-mir-335-5p
and hsa-mir-146a-5p display three-degree connectivity in the hub DEGs network, while
hsa-miR-181b, hsa-miR-181c, hsa-miR-181d, and has-miR-543 simultaneously regulate two
hub genes, PTGS2 and LRRK2 (Supplementary Table S4).
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2.5. Data Validation

The expression of the six hub genes common in MDD and VDD was further validated
in an independent human brain RNA-seq dataset, GSE125664. Except for HCK, all hub
genes were significantly upregulated in depressive patients compared to controls (Figure 7).
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Next, we interrogated the Comparative Toxicogenomic Database (CTD) for the inter-
ference score and the reference count of the six depD hub genes. We found that they are
significantly connected to depressive disorder, major depressive disorder, osteoporosis,
bone diseases, and vitamin D deficiency. This suggests that all six hub genes participate in
multiple pathophysiological processes associated with both pathological conditions. Of
note, the average hub gene inference scores are higher in depression compared to vitamin
D deficiency, with the maximum for PTGS2 (Figure 8 and Supplementary Table S3).
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Figure 8. The correlations between hub genes, depression-related diseases, and low vitamin D-related
diseases and their interference score in Comparative Toxicogenomic Database, with PTGS2 having
the highest interference score in all mentioned pathologies.

As for transcriptional regulators validation, we observed that the expression of five of
the identified TFs (ETS1, TFAP2A, NFKB2, CTCF, and RELA) is significantly altered in the
blood samples of depression patients (datasets GSE217811 and GSE23848) (Table 3); of note,
except for ETS1, all transcription factors show increased expression in patients vs. controls.

Table 3. Validation of TFs in GSE217811 and GSE23848 transcriptome datasets.

adj. p-Value logFC TF GEO Dataset

2.31 × 10−2 −1.18 ETS1

GSE217811
2.97 × 10−2 0.62 TFAP2A
4.69 × 10−2 0.75 NFKB2
2.91 × 10−2 0.55 CTCF
8.78 × 10−3 0.58 RELA GSE23848

To further validate the identified microRNAs, we interrogated PubMed for microRNAs
dysregulated in depressive patients (38 research papers) and hypovitaminosis D (19 re-
search papers) (Supplementary Table S5). After removing the duplicates, we identified six
commonly upregulated and ten commonly downregulated microRNAs (Figure 9).

Only two of these mutually deregulated microRNAs (miR-146a-5p and miR-181c-
5p) are part of the TF-hub genes-miR network, where they are predicted to impact the
expression of PTGS2. This suggests that the PTGS2 expression is the result of a delicate
regulatory balance between TFs and microRNAs. The two microRNAs are downregulated
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in both depressed and vitamin D-deficient patients, which can explain the overexpression
of the commonly targeted hub gene—PTGS2.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 8. The correlations between hub genes, depression-related diseases, and low vitamin D-re-

lated diseases and their interference score in Comparative Toxicogenomic Database, with PTGS2 

having the highest interference score in all mentioned pathologies. 

To further validate the identified microRNAs, we interrogated PubMed for mi-

croRNAs dysregulated in depressive patients (38 research papers) and hypovitaminosis 

D (19 research papers) (Supplementary Table S5). After removing the duplicates, we iden-

tified six commonly upregulated and ten commonly downregulated microRNAs (Figure 

9). 

Only two of these mutually deregulated microRNAs (miR-146a-5p and miR-181c-5p) 

are part of the TF-hub genes-miR network, where they are predicted to impact the expres-

sion of PTGS2. This suggests that the PTGS2 expression is the result of a delicate regula-

tory balance between TFs and microRNAs. The two microRNAs are downregulated in 

both depressed and vitamin D-deficient patients, which can explain the overexpression of 

the commonly targeted hub gene—PTGS2. 

 

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 9. Venn diagrams of the miRNAs identified upon PubMed search: upregulated (blue) or 

downregulated (purple) miRNAs common to both depression and low vitamin D levels. 

3. Discussion 

The association between depression and vitamin D deficiency has long been an at-

tractive topic for researchers worldwide. Clinical studies have shown that these two wide-

spread pathological conditions go hand in hand [23], yet little is known about their com-

mon molecular mechanisms. 

Herein, we interrogated public transcriptome data to identify and functionally char-

acterize the gene expression networks commonly underlying depressive and vitamin D 

deficiency disorders in humans. To the best of our knowledge, this is the first attempt to 

investigate the MDD and VDD comorbidity mechanisms at the gene expression network 

level. 

Our bioinformatic analysis was performed on eight depression and two vitamin D 

deficiency independent GEO gene expression datasets. We pooled the unique DEGs iden-

tified through GEO2R analysis of the MDD and VDD datasets and obtained 100 com-

monly deregulated DEGs: 71 upregulated and 29 downregulated. 

Our gene ontology (GO) enrichment analysis of depD DEGs indicated four immune-

related mechanisms putatively involved in both depression and hypovitaminosis D: pos-

itive regulation of the inflammatory response, immune response, regulation of external 

factors, and stress. This is in accordance with published data showing that depression and 

hypovitaminosis D pathogenic mechanisms involve inflammation and immune response 

[35]. Immune cells, like macrophages that produce pro-inflammatory cytokines such as 

IL12 and IL18, are involved in both MDD and VDD; it is thus conceivable that alterations 

in the inflammatory status in hypovitaminosis D precede/trigger the fluctuations in the 

psychosomatic dimensions of MDD [36]. 

Our KEGG enrichment analysis pointed towards neurodegenerative disorder path-

ways such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Prior studies indi-

cated that depression could be linked to neurodegenerative processes, including dysfunc-

tions of the dopaminergic, serotoninergic, and noradrenergic systems. Moreover, due to 

an overlap with other Parkinson-related symptoms, depression is often underdiagnosed 

and undertreated in patients suffering from both conditions [37]. In addition, neuroin-

flammatory processes play an essential role in both depression and dementia, indicating 

common pathways connecting Alzheimer’s disease with depression [38]. 

Interestingly, we have noticed an enrichment in the retrograde endocannabinoid sig-

naling pathway, one of the main pathways accountable for stress, a well-known major risk 

factor for depression. The endocannabinoid system has been linked both physiopatholog-

ically and genetically to depressive disorders [39,40]; moreover, commonly used antide-

pressants downregulate the expression of cannabinoid receptors in the brain [41]. The en-

docannabinoid system is not only implicated in neuroinflammation but also chronic pain 

Figure 9. Venn diagrams of the miRNAs identified upon PubMed search: upregulated (blue) or
downregulated (purple) miRNAs common to both depression and low vitamin D levels.

3. Discussion

The association between depression and vitamin D deficiency has long been an at-
tractive topic for researchers worldwide. Clinical studies have shown that these two
widespread pathological conditions go hand in hand [23], yet little is known about their
common molecular mechanisms.

Herein, we interrogated public transcriptome data to identify and functionally char-
acterize the gene expression networks commonly underlying depressive and vitamin D
deficiency disorders in humans. To the best of our knowledge, this is the first attempt
to investigate the MDD and VDD comorbidity mechanisms at the gene expression net-
work level.

Our bioinformatic analysis was performed on eight depression and two vitamin D
deficiency independent GEO gene expression datasets. We pooled the unique DEGs identi-
fied through GEO2R analysis of the MDD and VDD datasets and obtained 100 commonly
deregulated DEGs: 71 upregulated and 29 downregulated.

Our gene ontology (GO) enrichment analysis of depD DEGs indicated four immune-
related mechanisms putatively involved in both depression and hypovitaminosis D: pos-
itive regulation of the inflammatory response, immune response, regulation of external
factors, and stress. This is in accordance with published data showing that depression
and hypovitaminosis D pathogenic mechanisms involve inflammation and immune re-
sponse [35]. Immune cells, like macrophages that produce pro-inflammatory cytokines such
as IL12 and IL18, are involved in both MDD and VDD; it is thus conceivable that alterations
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in the inflammatory status in hypovitaminosis D precede/trigger the fluctuations in the
psychosomatic dimensions of MDD [36].

Our KEGG enrichment analysis pointed towards neurodegenerative disorder path-
ways such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Prior studies indi-
cated that depression could be linked to neurodegenerative processes, including dysfunc-
tions of the dopaminergic, serotoninergic, and noradrenergic systems. Moreover, due to an
overlap with other Parkinson-related symptoms, depression is often underdiagnosed and
undertreated in patients suffering from both conditions [37]. In addition, neuroinflamma-
tory processes play an essential role in both depression and dementia, indicating common
pathways connecting Alzheimer’s disease with depression [38].

Interestingly, we have noticed an enrichment in the retrograde endocannabinoid signal-
ing pathway, one of the main pathways accountable for stress, a well-known major risk fac-
tor for depression. The endocannabinoid system has been linked both physiopathologically
and genetically to depressive disorders [39,40]; moreover, commonly used antidepressants
downregulate the expression of cannabinoid receptors in the brain [41]. The endocannabi-
noid system is not only implicated in neuroinflammation but also chronic pain processing
in the brain and gut. This is in accordance with a study of a rat model showing that
low vitamin D levels amplify the inflammatory response by mediating endocannabinoid
receptor signaling [42].

Our CytoHubba analysis identified six hub genes (PECAM1, TLR2, PTGS2, LRRK2,
HCK, and IL18), all significantly upregulated in both depression and hypovitaminosis D,
with PTGS2 having the highest inference score and reference count. Except for HCK, the
expression of all hub genes was validated in a GEO transcriptome dataset from neurons
isolated from MDD patients refractory to SSRI (GSE125664). The analysis of this external
dataset confirmed that PTGS2 was the most overexpressed hub gene in depressive patients
versus control.

Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as Cyclooxygenase 2
(COX-2), is involved not only in inflammation but also in the central nervous system
neurodegenerative processes [43]. The relationship between depression and inflammation
is not a new topic. However, regardless of the type of study, COX2 seems to be the
key element of the dysregulated inflammatory response in depressive patients [44]. This
provides a solid ethio-pathogenic argument for the use of anti-inflammatory agents for
controlling depressive symptoms in MDD. Moreover, a meta-analysis stipulated that
the symptoms of depression could be controlled with Celecoxib, a non-steroidal anti-
inflammatory drug (NSAID) presenting high COX-2 selectivity, without developing any
serious side effects [45].

Based on our results, PTGS2 (COX2) was highly upregulated in both depressive
patients and patients with low vitamin D plasma levels, as shown in the present study for
the first time. In this regard, vitamin D significantly decreased COX-2 expression in brain
areas and inhibited the degranulation of activated neutrophils via ROS reduction [46]. In
this respect, adding COX-2 inhibitors and vitamin D supplementation can significantly
improve the effect of regular antidepressive regimens.

LRRK2, a major modulator of neuroinflammation involved in the pathogenesis
of Parkinson’s disease, is upregulated in both depressive (logFC = 0.56) and VDD
(logFC = 2.57) patients [47,48]. LRRK2 mutations have been found in individuals without
manifest Parkinson’s disease, in which compensatory changes in the serotonergic system
were described [49]. Direct inhibition of LRRK2 by PF-06447475 significantly reduces
depression-related symptoms in mice, suggesting that LRRK2 might be a valuable thera-
peutic target in MDD [50]. In contrast, very little is known about LRRK2 and vitamin D
deficiency, which is why we were intrigued that in both VDD datasets used in our study,
LRRK2 is strongly upregulated. A meta-analysis estimated that patients with Parkinson’s
disease had lower vitamin D levels than healthy controls, and it seems that this is reflected
in the loss of dopaminergic neurons; however, whether this associates the downregulation
of LRRK2 with a significant impact on PD pathogenesis remains to be evaluated [51].
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To better understand the role of the six hub genes in the two pathologies, we focused on
the factors that modulate their expression at transcriptional and post-transcriptional levels.
TFs and microRNAs can regulate gene expression: TFs bind to DNA regulatory regions and
modulate RNA transcription, while miRNAs bind to 3’UTRs of mRNA targets and influence
their translation and stability. Moreover, these two regulators can act concomitantly to
regulate the same gene expression or alter each other’s expression, making it difficult
to evaluate their impact on a gene network expression [52]. Our NetworkAnalyst study
predicted nine TFs that can concomitantly regulate at least two depD hub genes. Five of
these TFs, namely ETS1, TFAP2A, NFKB2, CTCF, and RELA, are significantly deregulated in
the blood samples of depression patients compared to controls (GSE217811 and GSE23848).

Of all transcription factors, ETS1 was the only one downregulated in our study, and
one of the reasons could be that its overexpression counteracts the depressive symptoms
through ERK1/2—GalR2 signaling, having an antidepressant-like effect in rodents [53].

We have identified TFAP2A (transcription factor AP-2 alpha) as a modulator of PTGS2,
the neuroinflammation hub gene related to oxidative stress [54]. Of note, differential
methylation of TFAP2A has been described in a twin study of early-onset major depression
disorder [55]. Furthermore, TFAP2A is among the TFs associated with mood disorders in
general and MDD in particular in humans [56].

NF-κB, which was significantly upregulated in our depressive samples, regulated
two hub genes, PTGS2 and TLR2. NF-κB signaling is a critical player in depression
and stress-related depressive-like behaviors, presumably through a positive feedback
loop involving BDNF and the BDNF/NFKB feedback loop in depression [57,58]. Recent
research identified that various types of cancers like breast cancer or prostate cancer, in
which depressive symptoms are highly prevalent, are associated with genetic variations
like NF-κB polymorphisms [59].

Inflammatory cytokines like IL12 and IL18 can activate NF-κB subunits and are critical
for inducing an inflammatory response [60]. Vitamin D can repress the activation of NF-κB
through VDR- IKKβ interaction and subsequent disruption of the TNFα-induced IKK
complex [61].

Of note, PTGS2 strongly synergizes with NFKB2 and RELA; the two NF-kB transcrip-
tion factors affect pain behavior by upregulating the expression of PTGS2 (COX-2) [62],
providing a molecular basis for vitamin D modulation of COX-2 gene expression.

Our transcriptomic analysis showed six miRNAs potentially interacting with at least
two of the hub genes, of which two have been experimentally identified as downregulated
in MDD and VDD: miR-146a-5p (targeting PTGS2) and miR-181c-5p (targeting both PTGS2
and LRRK2).

miR-146a-5p is a major regulator of COX2 expression in multiple experimental setups
through multiple mechanisms, including targeting PTGS2 [63,64]. Furthermore, exosome-
packed, microglia-derived miR-146a modulates hippocampal neurogenesis, and the down-
regulation of miR-146a-5p improves adult neurogenesis impairments and alleviates rodent
depression-related behaviors [65,66]. miR-146a expression is severely downregulated in
MDD, correlates with the severity of the disease, and is upregulated as the patients respond
to therapy [67,68].

miR-181c-5p is involved in inflammation by regulating the expression of pro-
inflammatory cytokines like TNF-α, IL-6, IL-1β, IL-8, and NF-κB [69,70]. While the
overexpression of miR-181c-5p in mice hippocampus reduced the expression levels of
inflammatory cytokines, lower levels of miR-181c-5p in the serum may indicate cerebral
vulnerability in elderly patients [71].

In conclusion, our bioinformatic network-based approach provides new biological
targets along with ideas for the early diagnosis of major depressive disorder combined
with vitamin D deficiency by revealing the physiopathologic mechanisms common to both
pathologies. To the best of our knowledge, this is the first study to explore the relationship
between MDD and VDD using transcriptome analysis. By constructing the miRNAs–TFs-
hub genes network, we found six miRNAs potentially interacting with at least two of
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the hub genes, of which two have been experimentally identified as downregulated in
MDD and VDD: miR-146a-5p (targeting PTGS2) and miR-181c-5p (targeting both PTGS2
and LRRK2). These findings are consistent with our study because the downregulation
of microRNAs could explain the mechanism of action by which inflammation genes like
COX2, but also PECAM1, IL18, or TLR2, are upregulated in both patients with depression
and low vitamin D levels. Furthermore, it becomes apparent that the existence of one
disease could increase the risk of developing the other.

4. Conclusions

Our miRNA-TFs-hub genes network advances several novel molecular targets like
PTGS2, LRRK2, miR-146a-5p, and miR-181c-5p, which might contribute to the development
of novel diagnostic, monitoring, and therapeutic strategies in (hypovitaminosis D-related)
depression. We propose these potential biomarkers to the medical research community as
potential targets. The function of these hub genes and their post-transcriptional regulators
needs to be further analyzed in an in vitro and in vivo model, which we will focus on in
the near future.

5. Materials and Methods
5.1. Data Collection and Identification of DEGs

We interrogated the GEO database [72] using the keywords “depression” and “vitamin
D deficiency”; data obtained from non-human specimens were excluded. Eight depres-
sion transcriptome datasets (GSE190518, GSE98793, GSE76826, GSE217811, GSE101521,
GSE23848, GSE80655, and GSE169459), as well as two vitamin D deficiency datasets
(GSE157939 and GSE22523), were included in the GEO2R analysis www.ncbi.nlm.nih.
gov/geo/ge2r (accessed on 11 July 2023). DEGs with logFC (fold change) ≥|0.5| and a
Bonferroni-adjusted p-value < 0.05 were considered statistically significant.

After excluding duplicates and genes with conflicting expressions, the depression and
hypovitaminosis D (depD) datasets were compared, and the shared DEGs were selected
for further analysis.

5.2. Construction of Protein–Protein Interaction Network and Functional Enrichment
Pathway Analysis

We used STRING 12.0 [73] to construct the protein–protein interaction (PPI) network
from the depD dataset at a medium (0.400) confidence interaction score threshold. Gene
ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment pathways analyses of the STRING PPI network were performed (FDR < 0.05)
to identify molecular functions and pathways shared between depression and hypovi-
taminosis D. The depD PPI network was further imported and visualized in Cytoscape,
version 3.9.1 [74].

5.3. Hub Genes Selection

We used the Cytoscape plug-in CytoHubba to identify the significant hub genes in
the depD PPI network, applying seven node-ranking methods (MCC—maximal clique
centrality, degree, closeness, betweenness, bottleneck, radiality, and stress). We used an
UpSet plot generated with the UpSetR package (version 1.4.0) [75] rather than a Venn
plot to better display the intersections between the seven datasets. The top 10 hub genes,
ranked according to all seven algorithms, were then visualized, and the common hub genes
were identified.

5.4. Construction of Transcription Factors (TFs) and MicroRNAs (miRNAs) Regulatory Networks

Next, we were interested in identifying the transcriptional (TF) and post-transcriptional
(microRNA) regulators of depD hub gene expression. NetworkAnalyst version 3.0 [76]
was first used to construct TF-gene regulatory network (based on the ENCODE database
https://www.encodeproject.org/; accessed on 30 January 2019), followed by RegNetwork

www.ncbi.nlm.nih.gov/geo/ge2r
www.ncbi.nlm.nih.gov/geo/ge2r
https://www.encodeproject.org/
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database (http://www.regnetworkweb.org; accessed on 2 April 2019) interrogation to
generate TF-hub genes-miRNA co-regulatory interactions. In order to create a strongly
interconnected network, only TFs and miRNAs common to a minimum of two hub genes
(2-degree connectivity) were taken into consideration.

5.5. Data Validation

We validated the depD hub genes by interrogating an independent human brain
RNA-seq dataset from neurons derived from SSRI (serotonin reuptake inhibitor)-resistant
MDD patients (GSE125664) and the Comparative Toxicogenomic Database (CTD), where
the interference score and reference count between the hub genes and five pathologies
related to depression and hypovitaminosis D were calculated.

To validate the microRNAs identified in the TF-hub genes-miRNA network, we
interrogated Pubmed using the terms “depression”, “microRNA”, “low vitamin D”, “hy-
povitaminosis D”, “transcriptome regulation”, and the following inclusion criteria:

1. Case–control, human studies on patients diagnosed with any form of depression or
low (non-drug-related) vitamin D;

2. Research articles reporting correlations between depression/vitamin D deficiency and
differentially expressed microRNAs (with an adjusted p-value < 0.05);

3. Full-text articles in English.

We excluded:

1. Studies evaluating the effect of certain antidepressants or vitamin D supplementation
on microRNA expression;

2. Cancer-related research articles;
3. Articles with insufficient data for subsequent analysis.

The list of microRNAs commonly deregulated in depression and in hypovitaminosis
D was retrieved and, after removing the duplicates, compared to those identified in our
depD TF-hub genes-microRNA regulatory network.
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