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Abstract: Anaplastic thyroid carcinoma (ATC) is an extremely difficult disease to tackle, with an
overall patient survival of only a few months. The currently used therapeutic drugs, such as kinase
inhibitors or immune checkpoint inhibitors, can prolong patient survival but fail to eradicate the
tumor. In addition, the onset of drug resistance and adverse side-effects over time drastically reduce
the chances of treatment. We recently showed that Twist1, a transcription factor involved in the
epithelial mesenchymal transition (EMT), was strongly upregulated in ATC, and we wondered
whether it might represent a therapeutic target in ATC patients. To investigate this hypothesis, the
effects of harmine, a β-carboline alkaloid shown to induce degradation of the Twist1 protein and to
possess antitumoral activity in different cancer types, were evaluated on two ATC-derived cell lines,
BHT-101 and CAL-62. The results obtained demonstrated that, in both cell lines, harmine reduced
the level of Twist1 protein and reverted the EMT, as suggested by the augmentation of E-cadherin
and decrease in fibronectin expression. The drug also inhibited cell proliferation and migration in a
dose-dependent manner and significantly reduced the anchorage-independent growth of both ATC
cell lines. Harmine was also capable of inducing apoptosis in BHT-101 cells, but not in CAL-62 ones.
Finally, the activation of PI3K/Akt signaling, but not that of the MAPK, was drastically reduced in
treated cells. Overall, these in vitro data suggest that harmine could represent a new therapeutic
option for ATC treatment.

Keywords: anaplastic thyroid cancer; epithelial mesenchymal transition; Twist1; harmine

1. Introduction

Anaplastic thyroid carcinoma (ATC) is an infrequent but highly aggressive and com-
monly fatal thyroid cancer characterized by a rapid local progression and early establish-
ment of distant metastases to lung, bone, liver, or brain [1,2]. ATC is usually observed
in elderly patients, mostly aged over 60 years, whose median overall survival (OS) is a
few months from the diagnosis [1–4]. It may originate as a primary tumor, i.e., ex novo in
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individuals without a history of thyroid neoplasms, or as a secondary tumor, arising from
preexisting differentiated (DTC) or poorly differentiated (PDTC) thyroid carcinomas [1,4,5].
A recent study analyzing the Surveillance, Epidemiology, and End Result (SEER) database
reported that ATC represents 1% of all thyroid cancers and that secondary ATC accounts
for only 3.7% of all ATC [5]. Conversely, studies of single institutional experiences with
small to moderate case series described an incidence of secondary ATC varying from 5 to
50% of all ATC [5–8]. At any rate, patients with primary and secondary ATC share very
similar clinical features and overall survival [4,5,9].

Several molecular alterations have been involved in the etiopathogenesis of ATC [1,4].
The most frequent are those of the TERT promoter and TP53 gene encountered, respectively,
in 75% and 63% of ATC patients [10,11]. Activating point mutations of the BRAF gene are
also commonly met in ATC tissues, but their frequency varies in the different geographical
areas from 14% to 45% [10–12]. Of note is that BRAF alterations are found more often in
secondary ATC tumors, containing foci of DTCs, compared with primary ATCs [1,13,14].
Other molecular alterations encountered in ATC are gene mutations of RAS in ~22% of cases,
PIK3CA in ~18% of cases, EIF1AX and PTEN in ~14% of cases, and NTRK and RET fusions
in 2–3% of cases [10,11,15–17]. The aberrant expression of genes involved in Wnt signaling,
DNA mismatch repair, the cell cycle, matrix remodeling enzymes, and different epigenetic
processes have also been described in ATC tissues with variable frequencies [10,11,17–24].
However, a deeper comprehension of the molecular mechanisms responsible for ATC
progression is of paramount importance for this deadly tumor, especially in this era, where
a growing number of targeted therapies are being developed. This issue was highlighted
in the American Thyroid Association (ATA) and European Society for Medical Oncology
(ESMO) guidelines, which recommended performing molecular tests for ATC patients with
unresectable diseases [3,25,26].

Type III epithelial–mesenchymal transition (EMT) is a hallmark of cancer that plays a
pivotal role in malignant cells dissemination [27–29]. The transition from an epithelial to a
mesenchymal phenotype grips a variety of cellular changes, not all of which necessarily
occur. Instead, tumor cells infrequently undertake a complete EMT, acquiring some mes-
enchymal characteristics while maintaining epithelial features [27–31]. The skill of cancer
cells to attain a mixed epithelial–mesenchymal phenotype, along with their ability to move
along the epithelial–mesenchymal spectrum, is denoted as the epithelial–mesenchymal
plasticity (EMP) [32]. The EMT degree affects the tumor metastatization mode, with
cells characterized by partial EMT spreading in multicellular clusters, while those with a
complete EMT migrate to distant sites as single cells [33]. Different players within the pri-
mary tumor microenvironment are assumed to affect cancer cells’ EMT, including cellular
and humoral components of inflammation, hypoxia, extracellular matrix enzymes, and
available growth factors [28]. All of these have been shown to modulate the expression
of EMT transcription factors (EMT-TFs), namely Zeb1 and Zeb2, Snail1 and Snail2, and
Twist1 [28]. These EMT-TFs repress the expression of epithelial markers (i.e., E-cadherin,
claudin, occludin) while prompting that of mesenchymal genes (i.e., N-cadherin, vimentin,
fibronectin) [28]. In addition, a number of experimental findings have suggested that the
role of EMT-TFs goes beyond cancer cell metastatization, controlling processes such as
cell fate specification, malignant transformation, cancer stem cell plasticity, resistance to
therapy, and immune evasion [34]. Altogether, these observations indicate that EMT-TFs
could represent new targets for the treatment of aggressive cancers, including ATC.

We recently showed that, among the five EMT-TFs above mentioned, Twist1 was
the only one to be strongly upregulated in ATC tissues compared with normal thyroid or
papillary thyroid cancer (PTC) tissues [35]. This evidence is corroborated in earlier studies
showing higher Twist1 protein levels in ATC compared with normal thyroid and DTC and
the ability of the Twist1/miR-584/TUSC2 pathway to induce resistance to apoptosis in
thyroid cancer cells [36,37]. In addition, it has been demonstrated that the most upregulated
genes induced by Twist1 in thyroid cancer cells are those controlling motility, proliferation,
cell death, and survival [38]. Interestingly, the knockdown of Twist1 by RNA interference
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in ATC cells reduced cell migration and invasion and increased sensitivity to apoptosis [37].
Similar effects were obtained in the PTC-derived TPC-1 cell line following treatment
with harmine, a beta-carboline alkaloid of plant origin having a broad spectrum of anti-
inflammatory and antitumor activities capable of inhibiting Twist1 protein expression by
promoting its degradation [36,39,40]. Altogether, these observations suggest that Twist1
could represent a valuable molecular therapeutic target in ATC patients.

Therefore, in the present study, we sought to evaluate the effects of harmine on growth,
motility, survival, and the epithelial–mesenchymal transition state of two ATC-derived cell
lines at the preclinical level.

2. Results
2.1. Harmine’s Effects on Twist1 Expression and EMT Markers in ATC-Derived Cell Lines

We first evaluated the effect of harmine exposure on Twist1 protein levels of BHT-
101 and CAL-62 cells. As shown in Figure 1, treatment with 20 µM harmine for 48 h
considerably reduced Twist1 protein amount by an average of 70% in both ATC cell lines.
This dose also inhibited cell growth by 50% or more in both cell lines as described below,
and thus, it was used in most of the experiments.
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Figure 1. Harmine-reduced Twist1 protein level in ATC-derived cell lines. Cells were incubated for
48 h with or without 20 µM harmine, after which cell protein extracts were prepared. (A) Western
blotting image of Twist1 and vinculin (loading control). (B) Densitometric analysis of the results.
Bars represent the mean ± SEM (standard error of the mean) of three independent experiments. C,
control; H, harmine.

We then examined harmine’s effects on the expression of EMT markers, i.e., E-cadherin
and fibronectin. As reported in Figure 2, both BHT-101 and CAL-62 cells showed increased
levels of E-cadherin and a reduction in fibronectin following treatment with 20 µM harmine
for 72 h and 96 h, respectively.

2.2. Harmine’s Effects on ATC Cell Migration

The effects of harmine on the motility of ATC cells were investigated in both 2D
and 3D cultures by means of a scratch assay and spheroid spreading on an adherent
surface. The results obtained from the scratch assay, reported in Figure 3, demonstrated
the ability of harmine to significantly reduce the migration of CAL-62 and BHT-101 in
monolayer cultures.
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Figure 2. Effects of harmine on E-cadherin and fibronectin protein levels in ATC-derived cell lines.
BHT-101 and CAL-62 were incubated, respectively, for 72 h and 96 h with or without 20 µM harmine.
At the end of the incubation, protein extracts were prepared and analyzed. Western blotting and
densitometric analyses for fibronectin (A) and E-cadherin (B). Bars represent the mean ± SEM of
three independent experiments. C, control; H, harmine.

The inhibitory effect of harmine on the motility of ATC cells was confirmed in 3D
cultures, that is, in spheroids formed by BHT-101 cells onto a poly-HEMA substrate. It
was not possible to perform such an experiment with CAL-62 because these cells were not
capable of generating spheroids but merely aggregated into poorly compacted clusters. As
evident from Figure 4, treatment with harmine significantly increased the spreading rate of
BHT-101 spheroids placed on an adherent surface.

2.3. Harmine’s Effects on ATC Cells Proliferation and Anchorage-Independent Growth

Harmine and its benzo[d]imidazo[2,1-b]thiazole derivatives were found to inhibit
the proliferation of a number of human cell lines derived from different tumor types,
including colon, liver, breast, and lung cancers [40–42]. Therefore, we investigated the dose-
dependent effects of harmine on ATC cell proliferation. The results of these experiments,
reported in Figure 5, clearly demonstrated the ability of the drug to inhibit cell proliferation
in a dose-dependent manner, with an IC50 of 11.7 ± 308 µM for BHT-101 and 22.0 ± 1.6 µM
for CAL-62.
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Figure 3. Effects of harmine on ATC cell migration in adherent cultures. Cells were seeded on
dishes and preincubated overnight with or without 20 µM harmine. Scratches were created on
100% confluent cultures, and fresh medium ± harmine was added. Dishes were photographed
immediately after the scratch and at different time intervals. The closure time of the scratch was
calculated with ImageJ software. Bars represent the mean ± standard deviation (SD) of three
independent experiments.
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measured by ImageJ software. Bars represent the mean ± SD of three independent experiments.



Int. J. Mol. Sci. 2024, 25, 1121 6 of 15Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 5. Dose-dependent inhibition of BHT-101 and CAL-62 proliferation by harmine. ATC cells 
were seeded in 96-well plates in quadruplicate and treated with increasing concentrations of 
harmine (0.1–100 µM) for 72 h. At the end of the incubation time, the WST-1 reagent was added to 
each well, and the absorbance was read after 4 h with a microplate ELISA reader. Points are means 
and error bars are SD of quadruplicate wells. 

In view of the above results, we next evaluated harmine’s effects on the anchorage-
independent growth of ATC cells in a semisolid milieu. As reported in Figure 6, exposure 
to 50 µM harmine totally impaired the ability of both cell lines to form colonies in soft agar 
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Figure 5. Dose-dependent inhibition of BHT-101 and CAL-62 proliferation by harmine. ATC cells
were seeded in 96-well plates in quadruplicate and treated with increasing concentrations of harmine
(0.1–100 µM) for 72 h. At the end of the incubation time, the WST-1 reagent was added to each well,
and the absorbance was read after 4 h with a microplate ELISA reader. Points are means and error
bars are SD of quadruplicate wells.

In view of the above results, we next evaluated harmine’s effects on the anchorage-
independent growth of ATC cells in a semisolid milieu. As reported in Figure 6, exposure
to 50 µM harmine totally impaired the ability of both cell lines to form colonies in soft agar
after 10–15 days of incubation.
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Figure 6. Effects of harmine on the anchorage-independent growth of ATC cells. Cells were plated in
soft agar medium containing 50 µM harmine or a vehicle alone and incubated for 10–15 days. Photos
of each treatment and control were acquired, and colonies with a ≥50 µm diameter were counted.
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2.4. Harmine’s Effects on ATC Cells Apoptosis

Moreover, we evaluated whether harmine was capable of inducing apoptosis in the
two ATC cell lines. To this end, cells were cultured in the absence or presence of 20 µM
harmine for 48 h and was then stained for annexin V and analyzed by cytofluorimetry. The
results, shown in Figure 7, demonstrated that harmine triggered apoptosis in BHT-101 cells
but not in CAL-62 cells. No signs of cell death were observed in CAL-62, even at the 50 µM
concentration of harmine, which resulted in a growth inhibition of almost 90%.
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Figure 7. Effects of Harmine on ATC cell apoptosis. Cells were cultured with or without 20 µM
harmine for 48 h; then, they were stained for annexin V and analyzed by cytofluorimetry. M1:
Annexin V positive cells.

These observations were corroborated by the analysis of further apoptotic markers
in control and treated cells. Unexpectedly, no fragmentation of caspases 3, 8, and 9 was
detected by Western blot experiments in either ATC cell lines; however, 20 µM harmine
strongly induced the cleavage of PARP-1 in BHT-101 cells (see Figure 8).
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Figure 8. Effects of harmine on PARP-1 cleavage in ATC-derived cell lines. Cells were cultured
for 48 h or 96 h with or without 20 µM harmine. At the end of the incubation time, cells were
harvested and protein extracts were prepared. PARP-1 and β-actin protein levels were analyzed by
Western blotting.

2.5. Harmine Effects on the MAPK and PI3K/Akt Signaling Pathways in ATC Cells

Finally, we sought to investigate the effects of harmine on the MAPK and PI3K/Akt
signaling pathways, frequently deregulated in ATC [24]. As reported in Figure 9A,B, the
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phosphorylation status of Akt1/2/3 kinases was drastically reduced following 24 h of
treatment with harmine, while the phosphorylation of ERK1/2 kinases was unaffected,
even after 48 h (see Figure 9C,D).
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Figure 9. Effects of harmine on the phosphorylation status of Akt and ERK kinases in ATC-derived
cell lines. Cells were incubated for 24 h or 48 h with or without 20 µM harmine; then, they were
harvested, and the cell protein extracts were prepared. Ph-Akts, Akts, Ph-ERKs, and vinculin protein
levels were analyzed by Western blotting (A,C). The densitometric analyses, reported in (B,D), were
performed on a minimum of three independent experiments. Bars represent the mean ± SEM. C,
control; H, harmine.

3. Discussion

Anaplastic thyroid cancer (ATC) represents a rare highly aggressive thyroid cancer with
very limited therapeutic options and a disease-specific mortality of about 99% [1,3,25,43–52].
The strategies currently implemented include surgery, usually limited to patients with
localized disease, followed by adjuvant radio-, chemo-, immuno-, and/or targeted ther-
apies [3,52]. In particular, over the last few years, the advancement of knowledge on
ATC genomic alterations has led to the clinical trials of a number of molecular targeted
drugs [51]. Among these, small molecule inhibitors targeting BRAF (dabrafenib) and MEK
(trametinib) exhibited outstanding responses in ATC patients carrying the BRAFV600E mu-
tation [3,52–56]. However, effective therapies for patients harboring the wild type BRAF
are still lacking.
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Harmine, a β-carboline alkaloid drug isolated from the seeds of the medicinal plant
Peganum harmala, has been shown to possess antitumor activities both in vitro and in vivo
in different cancer types, as well as in a PTC-derived cell line (TPC-1) [39,41]. In particular,
harmine was found to inhibit the activity of some enzymes, e.g., monoamine oxidases,
topoisomerases, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A
(DYRK1A); moreover, to date, it is the only known pharmacological inductor of Twist1
protein degradation.

Based on previous findings that Twist1 is highly expressed in ATC tissues, in the
present study, we investigated the effects of harmine on ATC cell growth, survival, and
tumorigenicity in a preclinical setting [35–38]. Our results evidenced that Twist1 inhibition
by harmine promoted the reversal of the EMT transition in ATC cells, as indicated by the
increase in E-cadherin expression and concomitant reduction in fibronectin expression, as
well as through the delayed cell migration of both ATC cell lines. These data are in line
with those of previous studies describing the ability of harmine to inhibit the migration and
invasion of a number of cell lines derived from melanoma, glioblastoma, neuroblastoma,
leukemia, bladder, ovarian, thyroid, and pancreatic cancers [39,41,57–65]. Furthermore,
harmine was capable of inhibiting in a dose-dependent manner the proliferation of BHT-
101 and CAL-62 cells with an IC50 comparable with those previously reported for other
tumor-derived cell lines [39,41,57–65].

The PI3K/Akt and MAPK signaling pathways are strongly activated in thyroid cancer
progression, prompting cell proliferation and survival [1–4]. Previous works demonstrated
that harmine significantly reduced the level of Akt phosphorylation in gastric, colon,
and breast cancer-derived cell lines, as well as ERK phosphorylation in colon and breast
cancer cell lines [41]. Similarly, we observed that harmine caused a strong decrease in
Akt phosphorylation in both ATC cells, thus attenuating the PI3K/Akt signaling. In our
experimental setting, we failed to observe any modifications of ERK phosphorylation
status. Nonetheless, it can be assumed that interference with the Akt signal, together
with the harmine aptitude to bind to DNA and inhibit the activity of the topoisomerase I,
most likely contribute to the antiproliferative effect observed in both cell lines [41]. In this
context, it is of interest to note that several derivatives of harmine, especially those with
substitution in positions 1 and 9 of the molecule, displayed higher DNA binding affinity and
antiproliferative effects with lower IC50 values in several tumor-derived cell lines [42,66–71].
In our experimental model, treatment with harmine was also able to drastically inhibit
the anchorage-independent growth of both ATC cell lines, corroborating previous results
obtained in a PTC cell line [39]. The activation of caspases and apoptosis induction was
another feature commonly encountered in tumor-derived cell lines following harmine
exposure [41,57–65]. We did not observe fragmentation of any caspases, although annexin
V labeling and PARP-1 cleavage were evident in BHT-101 cells. These apparently conflicting
results could be explained considering that PARP-1, in addition to caspases, can be cut
by various proteins, including lysosomal cathepsins [72]. Harmine was found to induce
lysosomal membrane permeabilization and the consequent release of enzymes into the
cytosol, activating the so-called lysosomal apoptotic pathway [73]. It can be hypothesized
that in BHT-101, apoptosis occurs through a caspase-independent pathway(s), possibly
involving lysosomal proteases translocated to the cytosol, which are responsible for PARP-
1 cleavage.

We are aware that this study suffers from some evident limitations. First, harmine
is a compound that is active on various molecular substrates, each of which regulates
different biochemical pathways, and broader and more in-depth analyses are required
to elucidate the molecular mechanisms elicited by harmine in ATC and identify its most
relevant therapeutic targets. Such knowledge would enable the design and selection of
more powerful and specific pharmacological derivatives for anti-ATC therapy. Unlike
BHT-101 cells, CAL-62 cells did not undergo apoptosis following treatment; thus, it would
be especially interesting to determine which factors are responsible for this resistance. It
can be hypothesized, for instance, that the presence of a gain-of-function mutation of the
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KRAS gene in CAL-62 and/or of the BRAFV600E mutation in BHT-101 play a role. Moreover,
in vivo experiments are needed to verify whether and to what extent harmine is able to
counteract ATC growth and spread in living organisms.

Notwithstanding the requirement of further studies, the data reported here suggest
the potential usefulness of harmine, and eventually its derivatives, as therapeutic agents
for the treatment of ATC.

In conclusion, the present work documented the ability of harmine to exert multiple
anti-cancer actions on ATC cells, being able to revert the EMT by reducing the expression
of Twist1; and to impair ATC cell proliferation, motility, anchorage-independent growth
and, in one ATC cell line, survival.

4. Materials and Methods
4.1. Cell Cultures

The ATC-derived cell lines BHT-101 and CAL-62 were purchased from DSMZ (Braun-
schweig, Germany), and cultured in DMEM containing 10% (CAL-62) or 20% (BHT-101)
fetal bovine serum (FBS) and 2 mM L-glutamine at 37 ◦C in a 5% CO2 humidified atmo-
sphere. Harmine (7-methoxy-1-methyl-9H-pyrido[3,4-b]indole) was acquired in powder
form (Merck Life Science S.r.l., Milan, Italy), and dissolved in DMSO before use. In all the
experiments, control cells were treated with the drug vehicle alone at the same volume of
the highest dose of harmine employed. Culture medium containing or not containing the
drug was changed every other day up to the end of the incubation time.

4.2. Western Blot

Cells treated with or without harmine were lysed in RIPA buffer with fresh added
protease and phosphatase inhibitors. A total of 30 µg of proteins were run in SDS-PAGE un-
der reducing conditions and blotted onto nitrocellulose membranes. These were saturated
for 2 h in TBS-Tween with 5% nonfat dry milk, then incubated overnight at +4 ◦C with
the primary antibodies anti-Twist1 1:1000 (ab50581, Abcam Inc., Cambridge, MA, USA),
anti-PARP-1 1:2000 (sc-7150, Santa Cruz Biotechnology, Inc., Heidelberg, Germany), anti-
E-cadherin 1:1000 (3195, Cell signaling Technology, Danvers, MA, USA), anti-fibronectin
1:2000 (ab2413, Abcam, Cambridge, UK), anti-phospho(Thr308) AKT1/2/3 1:500 (sc-16646,
Santa Cruz Biotechnology, Inc., Heidelberg, Germany), anti-AKT1/2/3 1:500 (sc-8312,
Santa Cruz Biotechnology, Inc., Heidelberg, Germany), anti-phospho (Thr 202/204) ERK1/2
1:1000 (sc-16982, Santa Cruz Biotechnology, Inc., Heidelberg, Germany), anti-β-actin 1:10000
(A2066, Sigma-Aldrich/Merk Life Science S.r.l., Milan, Italy), and anti-vinculin 1:10000
(ab129002, Abcam Inc., Cambridge, MA, USA). After washing, membranes were incubated
with appropriate HRP-conjugated secondary antibodies diluted 1:10000 (Thermo Fisher
Scientific, Rockford, IL, USA) and were developed using the LiteAblot EXTEND chemilu-
minescent substrates (Euroclone, Milan, Italy). Immunopositive bands were detected with
the iBright1500 instrument (Thermo Fisher Scientific, Waltham, MA, USA) and quantified
by scanning densitometry using the iBright analysis software (version 5.2).

4.3. Migration Assay

ATC cells were seeded onto 60 mm dishes in medium ± harmine (20 µM) so as to
obtain 100% confluence the day after. Three scratches per dish were created in the cell mono-
layer with a p200 pipette tip. After washing to remove debris, fresh medium ± harmine
was added, and image fields for capturing were marked by reference signs. The dishes
were photographed immediately with the Moticam 2500 digital camera connected to the
microscope Motic-BA410 (Motic, Barcelona, Spain), then placed in an incubator and pho-
tographed again at different time intervals. Finally, the closure time of the scratches was
calculated for each culture using ImageJ software (version 1.48).
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4.4. Spheroid Formation and Spreading

ATC cells were seeded in round bottom 96-well plates previously coated with Poly-
HEMA (Poly(2-hydroxyethyl methacrylate)) hydrogel (Merck Life Science S.r.l., Milan,
Italy). Plates were centrifuged for 6 min at 232 g to bring the cells together and then
incubated in standard conditions. Culture media were changed every 48 h, and spheroid
formation occurred after 3–4 days of incubation. On the fifth day, fresh medium ± 20 µM
harmine was added to half of the wells. After 24 h incubation, spheroids were individually
aspirated and transferred into 24-well adherent plates with the same culture medium.
Spheroids were photographed immediately (T0) and after about 24 h (T1) with a micro-
scope digital camera. The surface occupied by cells was measured using ImageJ software,
and the spreading rate was calculated as (area T1 − area T0)/time.

4.5. Proliferation Assay

ATC cells were seeded in 96-well plates (2000 cells/well) in quadruplicate. The day
after, cells were treated with increasing doses of harmine (from 0.1 to 100 µM) for 72 h,
changing media ± harmine after 48 h. Finally, the tetrazolium salt WST-1 was added to each
well, and the absorbance was read 4 h later using a microplate ELISA reader (Tecan Group
Ltd., Männedorf, Switzerland). IC50 values were calculated for each cell line by using the
MyCurveFit online tool (https://mycurvefit.com/, accessed on 18 November 2023).

4.6. Colony Formation in Soft Agar

Petri dishes containing soft agar cell cultures supplemented with 20 µM harmine or
a vehicle alone were prepared as previously described [74]. After 2 weeks of incubation,
the dishes were photographed. Nine fields were acquired for each dish, and pictures were
analyzed by means of the ImageJ program, scoring colonies with a diameter of ≥50 µm.

4.7. Cytofluorimetric Analysis of Apoptosis

ATC cells were cultured with or without harmine for 48 h; then, they were harvested
by scraping in PBS, washed and centrifuged twice, and counted. Apoptotic cells were
marked by staining with allophycocyanin (APC) annexin V following the manufacturer’s
instructions (BD Biosciences, Franklin Lakes, NJ, USA); finally, the cells were analyzed by
FACS using the FACScalibur flow cytometer and CellQuestPro software (version 6) (BD
Biosciences, San Jose, CA, USA) within 1 h. Dead cells were excluded from the analysis by
gating the viable cell population on the basis of physical parameters (FSC/SSC).

4.8. Statistical Analysis

For cell migration, spheroid spreading, and colony formation assays, the t-test was
used to assess differences between control and treated cells. The Kruskal–Wallis and
Bonferroni post hoc tests were applied to the analysis of dose–response data. All statistics
were performed with SPSS software 25 (Armonk, NY, USA), and the results were considered
significantly different when the pertaining p-values were <0.05.
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